summaryrefslogtreecommitdiff
path: root/SRC/ztgsna.f
diff options
context:
space:
mode:
authorjulie <julielangou@users.noreply.github.com>2011-10-06 06:53:11 +0000
committerjulie <julielangou@users.noreply.github.com>2011-10-06 06:53:11 +0000
commite1d39294aee16fa6db9ba079b14442358217db71 (patch)
tree30e5aa04c1f6596991fda5334f63dfb9b8027849 /SRC/ztgsna.f
parent5fe0466a14e395641f4f8a300ecc9dcb8058081b (diff)
downloadlapack-e1d39294aee16fa6db9ba079b14442358217db71.tar.gz
lapack-e1d39294aee16fa6db9ba079b14442358217db71.tar.bz2
lapack-e1d39294aee16fa6db9ba079b14442358217db71.zip
Integrating Doxygen in comments
Diffstat (limited to 'SRC/ztgsna.f')
-rw-r--r--SRC/ztgsna.f490
1 files changed, 300 insertions, 190 deletions
diff --git a/SRC/ztgsna.f b/SRC/ztgsna.f
index 46fdce5a..80b93a06 100644
--- a/SRC/ztgsna.f
+++ b/SRC/ztgsna.f
@@ -1,11 +1,309 @@
+*> \brief \b ZTGSNA
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+* Definition
+* ==========
+*
+* SUBROUTINE ZTGSNA( JOB, HOWMNY, SELECT, N, A, LDA, B, LDB, VL,
+* LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK,
+* IWORK, INFO )
+*
+* .. Scalar Arguments ..
+* CHARACTER HOWMNY, JOB
+* INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, M, MM, N
+* ..
+* .. Array Arguments ..
+* LOGICAL SELECT( * )
+* INTEGER IWORK( * )
+* DOUBLE PRECISION DIF( * ), S( * )
+* COMPLEX*16 A( LDA, * ), B( LDB, * ), VL( LDVL, * ),
+* $ VR( LDVR, * ), WORK( * )
+* ..
+*
+* Purpose
+* =======
+*
+*>\details \b Purpose:
+*>\verbatim
+*>
+*> ZTGSNA estimates reciprocal condition numbers for specified
+*> eigenvalues and/or eigenvectors of a matrix pair (A, B).
+*>
+*> (A, B) must be in generalized Schur canonical form, that is, A and
+*> B are both upper triangular.
+*>
+*>\endverbatim
+*
+* Arguments
+* =========
+*
+*> \param[in] JOB
+*> \verbatim
+*> JOB is CHARACTER*1
+*> Specifies whether condition numbers are required for
+*> eigenvalues (S) or eigenvectors (DIF):
+*> = 'E': for eigenvalues only (S);
+*> = 'V': for eigenvectors only (DIF);
+*> = 'B': for both eigenvalues and eigenvectors (S and DIF).
+*> \endverbatim
+*>
+*> \param[in] HOWMNY
+*> \verbatim
+*> HOWMNY is CHARACTER*1
+*> = 'A': compute condition numbers for all eigenpairs;
+*> = 'S': compute condition numbers for selected eigenpairs
+*> specified by the array SELECT.
+*> \endverbatim
+*>
+*> \param[in] SELECT
+*> \verbatim
+*> SELECT is LOGICAL array, dimension (N)
+*> If HOWMNY = 'S', SELECT specifies the eigenpairs for which
+*> condition numbers are required. To select condition numbers
+*> for the corresponding j-th eigenvalue and/or eigenvector,
+*> SELECT(j) must be set to .TRUE..
+*> If HOWMNY = 'A', SELECT is not referenced.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The order of the square matrix pair (A, B). N >= 0.
+*> \endverbatim
+*>
+*> \param[in] A
+*> \verbatim
+*> A is COMPLEX*16 array, dimension (LDA,N)
+*> The upper triangular matrix A in the pair (A,B).
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,N).
+*> \endverbatim
+*>
+*> \param[in] B
+*> \verbatim
+*> B is COMPLEX*16 array, dimension (LDB,N)
+*> The upper triangular matrix B in the pair (A, B).
+*> \endverbatim
+*>
+*> \param[in] LDB
+*> \verbatim
+*> LDB is INTEGER
+*> The leading dimension of the array B. LDB >= max(1,N).
+*> \endverbatim
+*>
+*> \param[in] VL
+*> \verbatim
+*> VL is COMPLEX*16 array, dimension (LDVL,M)
+*> IF JOB = 'E' or 'B', VL must contain left eigenvectors of
+*> (A, B), corresponding to the eigenpairs specified by HOWMNY
+*> and SELECT. The eigenvectors must be stored in consecutive
+*> columns of VL, as returned by ZTGEVC.
+*> If JOB = 'V', VL is not referenced.
+*> \endverbatim
+*>
+*> \param[in] LDVL
+*> \verbatim
+*> LDVL is INTEGER
+*> The leading dimension of the array VL. LDVL >= 1; and
+*> If JOB = 'E' or 'B', LDVL >= N.
+*> \endverbatim
+*>
+*> \param[in] VR
+*> \verbatim
+*> VR is COMPLEX*16 array, dimension (LDVR,M)
+*> IF JOB = 'E' or 'B', VR must contain right eigenvectors of
+*> (A, B), corresponding to the eigenpairs specified by HOWMNY
+*> and SELECT. The eigenvectors must be stored in consecutive
+*> columns of VR, as returned by ZTGEVC.
+*> If JOB = 'V', VR is not referenced.
+*> \endverbatim
+*>
+*> \param[in] LDVR
+*> \verbatim
+*> LDVR is INTEGER
+*> The leading dimension of the array VR. LDVR >= 1;
+*> If JOB = 'E' or 'B', LDVR >= N.
+*> \endverbatim
+*>
+*> \param[out] S
+*> \verbatim
+*> S is DOUBLE PRECISION array, dimension (MM)
+*> If JOB = 'E' or 'B', the reciprocal condition numbers of the
+*> selected eigenvalues, stored in consecutive elements of the
+*> array.
+*> If JOB = 'V', S is not referenced.
+*> \endverbatim
+*>
+*> \param[out] DIF
+*> \verbatim
+*> DIF is DOUBLE PRECISION array, dimension (MM)
+*> If JOB = 'V' or 'B', the estimated reciprocal condition
+*> numbers of the selected eigenvectors, stored in consecutive
+*> elements of the array.
+*> If the eigenvalues cannot be reordered to compute DIF(j),
+*> DIF(j) is set to 0; this can only occur when the true value
+*> would be very small anyway.
+*> For each eigenvalue/vector specified by SELECT, DIF stores
+*> a Frobenius norm-based estimate of Difl.
+*> If JOB = 'E', DIF is not referenced.
+*> \endverbatim
+*>
+*> \param[in] MM
+*> \verbatim
+*> MM is INTEGER
+*> The number of elements in the arrays S and DIF. MM >= M.
+*> \endverbatim
+*>
+*> \param[out] M
+*> \verbatim
+*> M is INTEGER
+*> The number of elements of the arrays S and DIF used to store
+*> the specified condition numbers; for each selected eigenvalue
+*> one element is used. If HOWMNY = 'A', M is set to N.
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
+*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> The dimension of the array WORK. LWORK >= max(1,N).
+*> If JOB = 'V' or 'B', LWORK >= max(1,2*N*N).
+*> \endverbatim
+*>
+*> \param[out] IWORK
+*> \verbatim
+*> IWORK is INTEGER array, dimension (N+2)
+*> If JOB = 'E', IWORK is not referenced.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: Successful exit
+*> < 0: If INFO = -i, the i-th argument had an illegal value
+*> \endverbatim
+*>
+*
+* Authors
+* =======
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2011
+*
+*> \ingroup complex16OTHERcomputational
+*
+*
+* Further Details
+* ===============
+*>\details \b Further \b Details
+*> \verbatim
+*>
+*> The reciprocal of the condition number of the i-th generalized
+*> eigenvalue w = (a, b) is defined as
+*>
+*> S(I) = (|v**HAu|**2 + |v**HBu|**2)**(1/2) / (norm(u)*norm(v))
+*>
+*> where u and v are the right and left eigenvectors of (A, B)
+*> corresponding to w; |z| denotes the absolute value of the complex
+*> number, and norm(u) denotes the 2-norm of the vector u. The pair
+*> (a, b) corresponds to an eigenvalue w = a/b (= v**HAu/v**HBu) of the
+*> matrix pair (A, B). If both a and b equal zero, then (A,B) is
+*> singular and S(I) = -1 is returned.
+*>
+*> An approximate error bound on the chordal distance between the i-th
+*> computed generalized eigenvalue w and the corresponding exact
+*> eigenvalue lambda is
+*>
+*> chord(w, lambda) <= EPS * norm(A, B) / S(I),
+*>
+*> where EPS is the machine precision.
+*>
+*> The reciprocal of the condition number of the right eigenvector u
+*> and left eigenvector v corresponding to the generalized eigenvalue w
+*> is defined as follows. Suppose
+*>
+*> (A, B) = ( a * ) ( b * ) 1
+*> ( 0 A22 ),( 0 B22 ) n-1
+*> 1 n-1 1 n-1
+*>
+*> Then the reciprocal condition number DIF(I) is
+*>
+*> Difl[(a, b), (A22, B22)] = sigma-min( Zl )
+*>
+*> where sigma-min(Zl) denotes the smallest singular value of
+*>
+*> Zl = [ kron(a, In-1) -kron(1, A22) ]
+*> [ kron(b, In-1) -kron(1, B22) ].
+*>
+*> Here In-1 is the identity matrix of size n-1 and X**H is the conjugate
+*> transpose of X. kron(X, Y) is the Kronecker product between the
+*> matrices X and Y.
+*>
+*> We approximate the smallest singular value of Zl with an upper
+*> bound. This is done by ZLATDF.
+*>
+*> An approximate error bound for a computed eigenvector VL(i) or
+*> VR(i) is given by
+*>
+*> EPS * norm(A, B) / DIF(i).
+*>
+*> See ref. [2-3] for more details and further references.
+*>
+*> Based on contributions by
+*> Bo Kagstrom and Peter Poromaa, Department of Computing Science,
+*> Umea University, S-901 87 Umea, Sweden.
+*>
+*> References
+*> ==========
+*>
+*> [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
+*> Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
+*> M.S. Moonen et al (eds), Linear Algebra for Large Scale and
+*> Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
+*>
+*> [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
+*> Eigenvalues of a Regular Matrix Pair (A, B) and Condition
+*> Estimation: Theory, Algorithms and Software, Report
+*> UMINF - 94.04, Department of Computing Science, Umea University,
+*> S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87.
+*> To appear in Numerical Algorithms, 1996.
+*>
+*> [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
+*> for Solving the Generalized Sylvester Equation and Estimating the
+*> Separation between Regular Matrix Pairs, Report UMINF - 93.23,
+*> Department of Computing Science, Umea University, S-901 87 Umea,
+*> Sweden, December 1993, Revised April 1994, Also as LAPACK Working
+*> Note 75.
+*> To appear in ACM Trans. on Math. Software, Vol 22, No 1, 1996.
+*>
+*> \endverbatim
+*>
+* =====================================================================
SUBROUTINE ZTGSNA( JOB, HOWMNY, SELECT, N, A, LDA, B, LDB, VL,
$ LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK,
$ IWORK, INFO )
*
-* -- LAPACK routine (version 3.3.1) --
+* -- LAPACK computational routine (version 3.3.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
-* -- April 2011 --
+* November 2011
*
* .. Scalar Arguments ..
CHARACTER HOWMNY, JOB
@@ -19,194 +317,6 @@
$ VR( LDVR, * ), WORK( * )
* ..
*
-* Purpose
-* =======
-*
-* ZTGSNA estimates reciprocal condition numbers for specified
-* eigenvalues and/or eigenvectors of a matrix pair (A, B).
-*
-* (A, B) must be in generalized Schur canonical form, that is, A and
-* B are both upper triangular.
-*
-* Arguments
-* =========
-*
-* JOB (input) CHARACTER*1
-* Specifies whether condition numbers are required for
-* eigenvalues (S) or eigenvectors (DIF):
-* = 'E': for eigenvalues only (S);
-* = 'V': for eigenvectors only (DIF);
-* = 'B': for both eigenvalues and eigenvectors (S and DIF).
-*
-* HOWMNY (input) CHARACTER*1
-* = 'A': compute condition numbers for all eigenpairs;
-* = 'S': compute condition numbers for selected eigenpairs
-* specified by the array SELECT.
-*
-* SELECT (input) LOGICAL array, dimension (N)
-* If HOWMNY = 'S', SELECT specifies the eigenpairs for which
-* condition numbers are required. To select condition numbers
-* for the corresponding j-th eigenvalue and/or eigenvector,
-* SELECT(j) must be set to .TRUE..
-* If HOWMNY = 'A', SELECT is not referenced.
-*
-* N (input) INTEGER
-* The order of the square matrix pair (A, B). N >= 0.
-*
-* A (input) COMPLEX*16 array, dimension (LDA,N)
-* The upper triangular matrix A in the pair (A,B).
-*
-* LDA (input) INTEGER
-* The leading dimension of the array A. LDA >= max(1,N).
-*
-* B (input) COMPLEX*16 array, dimension (LDB,N)
-* The upper triangular matrix B in the pair (A, B).
-*
-* LDB (input) INTEGER
-* The leading dimension of the array B. LDB >= max(1,N).
-*
-* VL (input) COMPLEX*16 array, dimension (LDVL,M)
-* IF JOB = 'E' or 'B', VL must contain left eigenvectors of
-* (A, B), corresponding to the eigenpairs specified by HOWMNY
-* and SELECT. The eigenvectors must be stored in consecutive
-* columns of VL, as returned by ZTGEVC.
-* If JOB = 'V', VL is not referenced.
-*
-* LDVL (input) INTEGER
-* The leading dimension of the array VL. LDVL >= 1; and
-* If JOB = 'E' or 'B', LDVL >= N.
-*
-* VR (input) COMPLEX*16 array, dimension (LDVR,M)
-* IF JOB = 'E' or 'B', VR must contain right eigenvectors of
-* (A, B), corresponding to the eigenpairs specified by HOWMNY
-* and SELECT. The eigenvectors must be stored in consecutive
-* columns of VR, as returned by ZTGEVC.
-* If JOB = 'V', VR is not referenced.
-*
-* LDVR (input) INTEGER
-* The leading dimension of the array VR. LDVR >= 1;
-* If JOB = 'E' or 'B', LDVR >= N.
-*
-* S (output) DOUBLE PRECISION array, dimension (MM)
-* If JOB = 'E' or 'B', the reciprocal condition numbers of the
-* selected eigenvalues, stored in consecutive elements of the
-* array.
-* If JOB = 'V', S is not referenced.
-*
-* DIF (output) DOUBLE PRECISION array, dimension (MM)
-* If JOB = 'V' or 'B', the estimated reciprocal condition
-* numbers of the selected eigenvectors, stored in consecutive
-* elements of the array.
-* If the eigenvalues cannot be reordered to compute DIF(j),
-* DIF(j) is set to 0; this can only occur when the true value
-* would be very small anyway.
-* For each eigenvalue/vector specified by SELECT, DIF stores
-* a Frobenius norm-based estimate of Difl.
-* If JOB = 'E', DIF is not referenced.
-*
-* MM (input) INTEGER
-* The number of elements in the arrays S and DIF. MM >= M.
-*
-* M (output) INTEGER
-* The number of elements of the arrays S and DIF used to store
-* the specified condition numbers; for each selected eigenvalue
-* one element is used. If HOWMNY = 'A', M is set to N.
-*
-* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
-* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-*
-* LWORK (input) INTEGER
-* The dimension of the array WORK. LWORK >= max(1,N).
-* If JOB = 'V' or 'B', LWORK >= max(1,2*N*N).
-*
-* IWORK (workspace) INTEGER array, dimension (N+2)
-* If JOB = 'E', IWORK is not referenced.
-*
-* INFO (output) INTEGER
-* = 0: Successful exit
-* < 0: If INFO = -i, the i-th argument had an illegal value
-*
-* Further Details
-* ===============
-*
-* The reciprocal of the condition number of the i-th generalized
-* eigenvalue w = (a, b) is defined as
-*
-* S(I) = (|v**HAu|**2 + |v**HBu|**2)**(1/2) / (norm(u)*norm(v))
-*
-* where u and v are the right and left eigenvectors of (A, B)
-* corresponding to w; |z| denotes the absolute value of the complex
-* number, and norm(u) denotes the 2-norm of the vector u. The pair
-* (a, b) corresponds to an eigenvalue w = a/b (= v**HAu/v**HBu) of the
-* matrix pair (A, B). If both a and b equal zero, then (A,B) is
-* singular and S(I) = -1 is returned.
-*
-* An approximate error bound on the chordal distance between the i-th
-* computed generalized eigenvalue w and the corresponding exact
-* eigenvalue lambda is
-*
-* chord(w, lambda) <= EPS * norm(A, B) / S(I),
-*
-* where EPS is the machine precision.
-*
-* The reciprocal of the condition number of the right eigenvector u
-* and left eigenvector v corresponding to the generalized eigenvalue w
-* is defined as follows. Suppose
-*
-* (A, B) = ( a * ) ( b * ) 1
-* ( 0 A22 ),( 0 B22 ) n-1
-* 1 n-1 1 n-1
-*
-* Then the reciprocal condition number DIF(I) is
-*
-* Difl[(a, b), (A22, B22)] = sigma-min( Zl )
-*
-* where sigma-min(Zl) denotes the smallest singular value of
-*
-* Zl = [ kron(a, In-1) -kron(1, A22) ]
-* [ kron(b, In-1) -kron(1, B22) ].
-*
-* Here In-1 is the identity matrix of size n-1 and X**H is the conjugate
-* transpose of X. kron(X, Y) is the Kronecker product between the
-* matrices X and Y.
-*
-* We approximate the smallest singular value of Zl with an upper
-* bound. This is done by ZLATDF.
-*
-* An approximate error bound for a computed eigenvector VL(i) or
-* VR(i) is given by
-*
-* EPS * norm(A, B) / DIF(i).
-*
-* See ref. [2-3] for more details and further references.
-*
-* Based on contributions by
-* Bo Kagstrom and Peter Poromaa, Department of Computing Science,
-* Umea University, S-901 87 Umea, Sweden.
-*
-* References
-* ==========
-*
-* [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
-* Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
-* M.S. Moonen et al (eds), Linear Algebra for Large Scale and
-* Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
-*
-* [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
-* Eigenvalues of a Regular Matrix Pair (A, B) and Condition
-* Estimation: Theory, Algorithms and Software, Report
-* UMINF - 94.04, Department of Computing Science, Umea University,
-* S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87.
-* To appear in Numerical Algorithms, 1996.
-*
-* [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
-* for Solving the Generalized Sylvester Equation and Estimating the
-* Separation between Regular Matrix Pairs, Report UMINF - 93.23,
-* Department of Computing Science, Umea University, S-901 87 Umea,
-* Sweden, December 1993, Revised April 1994, Also as LAPACK Working
-* Note 75.
-* To appear in ACM Trans. on Math. Software, Vol 22, No 1, 1996.
-*
* =====================================================================
*
* .. Parameters ..