diff options
author | jason <jason@8a072113-8704-0410-8d35-dd094bca7971> | 2008-10-28 01:38:50 +0000 |
---|---|---|
committer | jason <jason@8a072113-8704-0410-8d35-dd094bca7971> | 2008-10-28 01:38:50 +0000 |
commit | baba851215b44ac3b60b9248eb02bcce7eb76247 (patch) | |
tree | 8c0f5c006875532a30d4409f5e94b0f310ff00a7 /SRC/zsymv.f | |
download | lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.gz lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.bz2 lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.zip |
Move LAPACK trunk into position.
Diffstat (limited to 'SRC/zsymv.f')
-rw-r--r-- | SRC/zsymv.f | 264 |
1 files changed, 264 insertions, 0 deletions
diff --git a/SRC/zsymv.f b/SRC/zsymv.f new file mode 100644 index 00000000..8d66ebe0 --- /dev/null +++ b/SRC/zsymv.f @@ -0,0 +1,264 @@ + SUBROUTINE ZSYMV( UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY ) +* +* -- LAPACK auxiliary routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + CHARACTER UPLO + INTEGER INCX, INCY, LDA, N + COMPLEX*16 ALPHA, BETA +* .. +* .. Array Arguments .. + COMPLEX*16 A( LDA, * ), X( * ), Y( * ) +* .. +* +* Purpose +* ======= +* +* ZSYMV performs the matrix-vector operation +* +* y := alpha*A*x + beta*y, +* +* where alpha and beta are scalars, x and y are n element vectors and +* A is an n by n symmetric matrix. +* +* Arguments +* ========== +* +* UPLO (input) CHARACTER*1 +* On entry, UPLO specifies whether the upper or lower +* triangular part of the array A is to be referenced as +* follows: +* +* UPLO = 'U' or 'u' Only the upper triangular part of A +* is to be referenced. +* +* UPLO = 'L' or 'l' Only the lower triangular part of A +* is to be referenced. +* +* Unchanged on exit. +* +* N (input) INTEGER +* On entry, N specifies the order of the matrix A. +* N must be at least zero. +* Unchanged on exit. +* +* ALPHA (input) COMPLEX*16 +* On entry, ALPHA specifies the scalar alpha. +* Unchanged on exit. +* +* A (input) COMPLEX*16 array, dimension ( LDA, N ) +* Before entry, with UPLO = 'U' or 'u', the leading n by n +* upper triangular part of the array A must contain the upper +* triangular part of the symmetric matrix and the strictly +* lower triangular part of A is not referenced. +* Before entry, with UPLO = 'L' or 'l', the leading n by n +* lower triangular part of the array A must contain the lower +* triangular part of the symmetric matrix and the strictly +* upper triangular part of A is not referenced. +* Unchanged on exit. +* +* LDA (input) INTEGER +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. LDA must be at least +* max( 1, N ). +* Unchanged on exit. +* +* X (input) COMPLEX*16 array, dimension at least +* ( 1 + ( N - 1 )*abs( INCX ) ). +* Before entry, the incremented array X must contain the N- +* element vector x. +* Unchanged on exit. +* +* INCX (input) INTEGER +* On entry, INCX specifies the increment for the elements of +* X. INCX must not be zero. +* Unchanged on exit. +* +* BETA (input) COMPLEX*16 +* On entry, BETA specifies the scalar beta. When BETA is +* supplied as zero then Y need not be set on input. +* Unchanged on exit. +* +* Y (input/output) COMPLEX*16 array, dimension at least +* ( 1 + ( N - 1 )*abs( INCY ) ). +* Before entry, the incremented array Y must contain the n +* element vector y. On exit, Y is overwritten by the updated +* vector y. +* +* INCY (input) INTEGER +* On entry, INCY specifies the increment for the elements of +* Y. INCY must not be zero. +* Unchanged on exit. +* +* ===================================================================== +* +* .. Parameters .. + COMPLEX*16 ONE + PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) ) + COMPLEX*16 ZERO + PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) ) +* .. +* .. Local Scalars .. + INTEGER I, INFO, IX, IY, J, JX, JY, KX, KY + COMPLEX*16 TEMP1, TEMP2 +* .. +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. +* .. External Subroutines .. + EXTERNAL XERBLA +* .. +* .. Intrinsic Functions .. + INTRINSIC MAX +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN + INFO = 1 + ELSE IF( N.LT.0 ) THEN + INFO = 2 + ELSE IF( LDA.LT.MAX( 1, N ) ) THEN + INFO = 5 + ELSE IF( INCX.EQ.0 ) THEN + INFO = 7 + ELSE IF( INCY.EQ.0 ) THEN + INFO = 10 + END IF + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'ZSYMV ', INFO ) + RETURN + END IF +* +* Quick return if possible. +* + IF( ( N.EQ.0 ) .OR. ( ( ALPHA.EQ.ZERO ) .AND. ( BETA.EQ.ONE ) ) ) + $ RETURN +* +* Set up the start points in X and Y. +* + IF( INCX.GT.0 ) THEN + KX = 1 + ELSE + KX = 1 - ( N-1 )*INCX + END IF + IF( INCY.GT.0 ) THEN + KY = 1 + ELSE + KY = 1 - ( N-1 )*INCY + END IF +* +* Start the operations. In this version the elements of A are +* accessed sequentially with one pass through the triangular part +* of A. +* +* First form y := beta*y. +* + IF( BETA.NE.ONE ) THEN + IF( INCY.EQ.1 ) THEN + IF( BETA.EQ.ZERO ) THEN + DO 10 I = 1, N + Y( I ) = ZERO + 10 CONTINUE + ELSE + DO 20 I = 1, N + Y( I ) = BETA*Y( I ) + 20 CONTINUE + END IF + ELSE + IY = KY + IF( BETA.EQ.ZERO ) THEN + DO 30 I = 1, N + Y( IY ) = ZERO + IY = IY + INCY + 30 CONTINUE + ELSE + DO 40 I = 1, N + Y( IY ) = BETA*Y( IY ) + IY = IY + INCY + 40 CONTINUE + END IF + END IF + END IF + IF( ALPHA.EQ.ZERO ) + $ RETURN + IF( LSAME( UPLO, 'U' ) ) THEN +* +* Form y when A is stored in upper triangle. +* + IF( ( INCX.EQ.1 ) .AND. ( INCY.EQ.1 ) ) THEN + DO 60 J = 1, N + TEMP1 = ALPHA*X( J ) + TEMP2 = ZERO + DO 50 I = 1, J - 1 + Y( I ) = Y( I ) + TEMP1*A( I, J ) + TEMP2 = TEMP2 + A( I, J )*X( I ) + 50 CONTINUE + Y( J ) = Y( J ) + TEMP1*A( J, J ) + ALPHA*TEMP2 + 60 CONTINUE + ELSE + JX = KX + JY = KY + DO 80 J = 1, N + TEMP1 = ALPHA*X( JX ) + TEMP2 = ZERO + IX = KX + IY = KY + DO 70 I = 1, J - 1 + Y( IY ) = Y( IY ) + TEMP1*A( I, J ) + TEMP2 = TEMP2 + A( I, J )*X( IX ) + IX = IX + INCX + IY = IY + INCY + 70 CONTINUE + Y( JY ) = Y( JY ) + TEMP1*A( J, J ) + ALPHA*TEMP2 + JX = JX + INCX + JY = JY + INCY + 80 CONTINUE + END IF + ELSE +* +* Form y when A is stored in lower triangle. +* + IF( ( INCX.EQ.1 ) .AND. ( INCY.EQ.1 ) ) THEN + DO 100 J = 1, N + TEMP1 = ALPHA*X( J ) + TEMP2 = ZERO + Y( J ) = Y( J ) + TEMP1*A( J, J ) + DO 90 I = J + 1, N + Y( I ) = Y( I ) + TEMP1*A( I, J ) + TEMP2 = TEMP2 + A( I, J )*X( I ) + 90 CONTINUE + Y( J ) = Y( J ) + ALPHA*TEMP2 + 100 CONTINUE + ELSE + JX = KX + JY = KY + DO 120 J = 1, N + TEMP1 = ALPHA*X( JX ) + TEMP2 = ZERO + Y( JY ) = Y( JY ) + TEMP1*A( J, J ) + IX = JX + IY = JY + DO 110 I = J + 1, N + IX = IX + INCX + IY = IY + INCY + Y( IY ) = Y( IY ) + TEMP1*A( I, J ) + TEMP2 = TEMP2 + A( I, J )*X( IX ) + 110 CONTINUE + Y( JY ) = Y( JY ) + ALPHA*TEMP2 + JX = JX + INCX + JY = JY + INCY + 120 CONTINUE + END IF + END IF +* + RETURN +* +* End of ZSYMV +* + END |