summaryrefslogtreecommitdiff
path: root/SRC/zlaev2.f
diff options
context:
space:
mode:
authorjulie <julielangou@users.noreply.github.com>2011-10-06 06:53:11 +0000
committerjulie <julielangou@users.noreply.github.com>2011-10-06 06:53:11 +0000
commite1d39294aee16fa6db9ba079b14442358217db71 (patch)
tree30e5aa04c1f6596991fda5334f63dfb9b8027849 /SRC/zlaev2.f
parent5fe0466a14e395641f4f8a300ecc9dcb8058081b (diff)
downloadlapack-e1d39294aee16fa6db9ba079b14442358217db71.tar.gz
lapack-e1d39294aee16fa6db9ba079b14442358217db71.tar.bz2
lapack-e1d39294aee16fa6db9ba079b14442358217db71.zip
Integrating Doxygen in comments
Diffstat (limited to 'SRC/zlaev2.f')
-rw-r--r--SRC/zlaev2.f152
1 files changed, 107 insertions, 45 deletions
diff --git a/SRC/zlaev2.f b/SRC/zlaev2.f
index 1f31ff7b..8210b5fb 100644
--- a/SRC/zlaev2.f
+++ b/SRC/zlaev2.f
@@ -1,67 +1,129 @@
- SUBROUTINE ZLAEV2( A, B, C, RT1, RT2, CS1, SN1 )
+*> \brief \b ZLAEV2
*
-* -- LAPACK auxiliary routine (version 3.2) --
-* -- LAPACK is a software package provided by Univ. of Tennessee, --
-* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
-* November 2006
+* =========== DOCUMENTATION ===========
*
-* .. Scalar Arguments ..
- DOUBLE PRECISION CS1, RT1, RT2
- COMPLEX*16 A, B, C, SN1
-* ..
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+* Definition
+* ==========
*
+* SUBROUTINE ZLAEV2( A, B, C, RT1, RT2, CS1, SN1 )
+*
+* .. Scalar Arguments ..
+* DOUBLE PRECISION CS1, RT1, RT2
+* COMPLEX*16 A, B, C, SN1
+* ..
+*
* Purpose
* =======
*
-* ZLAEV2 computes the eigendecomposition of a 2-by-2 Hermitian matrix
-* [ A B ]
-* [ CONJG(B) C ].
-* On return, RT1 is the eigenvalue of larger absolute value, RT2 is the
-* eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right
-* eigenvector for RT1, giving the decomposition
-*
-* [ CS1 CONJG(SN1) ] [ A B ] [ CS1 -CONJG(SN1) ] = [ RT1 0 ]
-* [-SN1 CS1 ] [ CONJG(B) C ] [ SN1 CS1 ] [ 0 RT2 ].
+*>\details \b Purpose:
+*>\verbatim
+*>
+*> ZLAEV2 computes the eigendecomposition of a 2-by-2 Hermitian matrix
+*> [ A B ]
+*> [ CONJG(B) C ].
+*> On return, RT1 is the eigenvalue of larger absolute value, RT2 is the
+*> eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right
+*> eigenvector for RT1, giving the decomposition
+*>
+*> [ CS1 CONJG(SN1) ] [ A B ] [ CS1 -CONJG(SN1) ] = [ RT1 0 ]
+*> [-SN1 CS1 ] [ CONJG(B) C ] [ SN1 CS1 ] [ 0 RT2 ].
+*>
+*>\endverbatim
*
* Arguments
* =========
*
-* A (input) COMPLEX*16
-* The (1,1) element of the 2-by-2 matrix.
-*
-* B (input) COMPLEX*16
-* The (1,2) element and the conjugate of the (2,1) element of
-* the 2-by-2 matrix.
-*
-* C (input) COMPLEX*16
-* The (2,2) element of the 2-by-2 matrix.
+*> \param[in] A
+*> \verbatim
+*> A is COMPLEX*16
+*> The (1,1) element of the 2-by-2 matrix.
+*> \endverbatim
+*>
+*> \param[in] B
+*> \verbatim
+*> B is COMPLEX*16
+*> The (1,2) element and the conjugate of the (2,1) element of
+*> the 2-by-2 matrix.
+*> \endverbatim
+*>
+*> \param[in] C
+*> \verbatim
+*> C is COMPLEX*16
+*> The (2,2) element of the 2-by-2 matrix.
+*> \endverbatim
+*>
+*> \param[out] RT1
+*> \verbatim
+*> RT1 is DOUBLE PRECISION
+*> The eigenvalue of larger absolute value.
+*> \endverbatim
+*>
+*> \param[out] RT2
+*> \verbatim
+*> RT2 is DOUBLE PRECISION
+*> The eigenvalue of smaller absolute value.
+*> \endverbatim
+*>
+*> \param[out] CS1
+*> \verbatim
+*> CS1 is DOUBLE PRECISION
+*> \endverbatim
+*>
+*> \param[out] SN1
+*> \verbatim
+*> SN1 is COMPLEX*16
+*> The vector (CS1, SN1) is a unit right eigenvector for RT1.
+*> \endverbatim
+*>
+*
+* Authors
+* =======
*
-* RT1 (output) DOUBLE PRECISION
-* The eigenvalue of larger absolute value.
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
*
-* RT2 (output) DOUBLE PRECISION
-* The eigenvalue of smaller absolute value.
+*> \date November 2011
*
-* CS1 (output) DOUBLE PRECISION
+*> \ingroup complex16OTHERauxiliary
*
-* SN1 (output) COMPLEX*16
-* The vector (CS1, SN1) is a unit right eigenvector for RT1.
*
* Further Details
* ===============
+*>\details \b Further \b Details
+*> \verbatim
+*>
+*> RT1 is accurate to a few ulps barring over/underflow.
+*>
+*> RT2 may be inaccurate if there is massive cancellation in the
+*> determinant A*C-B*B; higher precision or correctly rounded or
+*> correctly truncated arithmetic would be needed to compute RT2
+*> accurately in all cases.
+*>
+*> CS1 and SN1 are accurate to a few ulps barring over/underflow.
+*>
+*> Overflow is possible only if RT1 is within a factor of 5 of overflow.
+*> Underflow is harmless if the input data is 0 or exceeds
+*> underflow_threshold / macheps.
+*>
+*> \endverbatim
+*>
+* =====================================================================
+ SUBROUTINE ZLAEV2( A, B, C, RT1, RT2, CS1, SN1 )
*
-* RT1 is accurate to a few ulps barring over/underflow.
-*
-* RT2 may be inaccurate if there is massive cancellation in the
-* determinant A*C-B*B; higher precision or correctly rounded or
-* correctly truncated arithmetic would be needed to compute RT2
-* accurately in all cases.
-*
-* CS1 and SN1 are accurate to a few ulps barring over/underflow.
+* -- LAPACK auxiliary routine (version 3.2) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2011
*
-* Overflow is possible only if RT1 is within a factor of 5 of overflow.
-* Underflow is harmless if the input data is 0 or exceeds
-* underflow_threshold / macheps.
+* .. Scalar Arguments ..
+ DOUBLE PRECISION CS1, RT1, RT2
+ COMPLEX*16 A, B, C, SN1
+* ..
*
* =====================================================================
*