summaryrefslogtreecommitdiff
path: root/SRC/zhetd2.f
diff options
context:
space:
mode:
authorjulie <julielangou@users.noreply.github.com>2011-10-06 06:53:11 +0000
committerjulie <julielangou@users.noreply.github.com>2011-10-06 06:53:11 +0000
commite1d39294aee16fa6db9ba079b14442358217db71 (patch)
tree30e5aa04c1f6596991fda5334f63dfb9b8027849 /SRC/zhetd2.f
parent5fe0466a14e395641f4f8a300ecc9dcb8058081b (diff)
downloadlapack-e1d39294aee16fa6db9ba079b14442358217db71.tar.gz
lapack-e1d39294aee16fa6db9ba079b14442358217db71.tar.bz2
lapack-e1d39294aee16fa6db9ba079b14442358217db71.zip
Integrating Doxygen in comments
Diffstat (limited to 'SRC/zhetd2.f')
-rw-r--r--SRC/zhetd2.f232
1 files changed, 133 insertions, 99 deletions
diff --git a/SRC/zhetd2.f b/SRC/zhetd2.f
index 90d68af1..0a24e4cb 100644
--- a/SRC/zhetd2.f
+++ b/SRC/zhetd2.f
@@ -1,118 +1,152 @@
- SUBROUTINE ZHETD2( UPLO, N, A, LDA, D, E, TAU, INFO )
-*
-* -- LAPACK routine (version 3.3.1) --
-* -- LAPACK is a software package provided by Univ. of Tennessee, --
-* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
-* -- April 2011 --
-*
-* .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INFO, LDA, N
-* ..
-* .. Array Arguments ..
- DOUBLE PRECISION D( * ), E( * )
- COMPLEX*16 A( LDA, * ), TAU( * )
-* ..
-*
+*> \brief \b ZHETD2
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+* Definition
+* ==========
+*
+* SUBROUTINE ZHETD2( UPLO, N, A, LDA, D, E, TAU, INFO )
+*
+* .. Scalar Arguments ..
+* CHARACTER UPLO
+* INTEGER INFO, LDA, N
+* ..
+* .. Array Arguments ..
+* DOUBLE PRECISION D( * ), E( * )
+* COMPLEX*16 A( LDA, * ), TAU( * )
+* ..
+*
* Purpose
* =======
*
-* ZHETD2 reduces a complex Hermitian matrix A to real symmetric
-* tridiagonal form T by a unitary similarity transformation:
-* Q**H * A * Q = T.
+*>\details \b Purpose:
+*>\verbatim
+*>
+*> ZHETD2 reduces a complex Hermitian matrix A to real symmetric
+*> tridiagonal form T by a unitary similarity transformation:
+*> Q**H * A * Q = T.
+*>
+*>\endverbatim
*
* Arguments
* =========
*
-* UPLO (input) CHARACTER*1
-* Specifies whether the upper or lower triangular part of the
-* Hermitian matrix A is stored:
-* = 'U': Upper triangular
-* = 'L': Lower triangular
-*
-* N (input) INTEGER
-* The order of the matrix A. N >= 0.
-*
-* A (input/output) COMPLEX*16 array, dimension (LDA,N)
-* On entry, the Hermitian matrix A. If UPLO = 'U', the leading
-* n-by-n upper triangular part of A contains the upper
-* triangular part of the matrix A, and the strictly lower
-* triangular part of A is not referenced. If UPLO = 'L', the
-* leading n-by-n lower triangular part of A contains the lower
-* triangular part of the matrix A, and the strictly upper
-* triangular part of A is not referenced.
-* On exit, if UPLO = 'U', the diagonal and first superdiagonal
-* of A are overwritten by the corresponding elements of the
-* tridiagonal matrix T, and the elements above the first
-* superdiagonal, with the array TAU, represent the unitary
-* matrix Q as a product of elementary reflectors; if UPLO
-* = 'L', the diagonal and first subdiagonal of A are over-
-* written by the corresponding elements of the tridiagonal
-* matrix T, and the elements below the first subdiagonal, with
-* the array TAU, represent the unitary matrix Q as a product
-* of elementary reflectors. See Further Details.
-*
-* LDA (input) INTEGER
-* The leading dimension of the array A. LDA >= max(1,N).
+*> \param[in] UPLO
+*> \verbatim
+*> UPLO is CHARACTER*1
+*> Specifies whether the upper or lower triangular part of the
+*> Hermitian matrix A is stored:
+*> = 'U': Upper triangular
+*> = 'L': Lower triangular
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The order of the matrix A. N >= 0.
+*> \endverbatim
+*>
+*
+* Authors
+* =======
*
-* D (output) DOUBLE PRECISION array, dimension (N)
-* The diagonal elements of the tridiagonal matrix T:
-* D(i) = A(i,i).
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
*
-* E (output) DOUBLE PRECISION array, dimension (N-1)
-* The off-diagonal elements of the tridiagonal matrix T:
-* E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
+*> \date November 2011
*
-* TAU (output) COMPLEX*16 array, dimension (N-1)
-* The scalar factors of the elementary reflectors (see Further
-* Details).
+*> \ingroup complex16HEcomputational
*
-* INFO (output) INTEGER
-* = 0: successful exit
-* < 0: if INFO = -i, the i-th argument had an illegal value.
*
* Further Details
* ===============
+*>\details \b Further \b Details
+*> \verbatim
+* of elementary reflectors. See Further Details.
+*>
+*> LDA (input) INTEGER
+*> The leading dimension of the array A. LDA >= max(1,N).
+*>
+*> D (output) DOUBLE PRECISION array, dimension (N)
+*> The diagonal elements of the tridiagonal matrix T:
+*> D(i) = A(i,i).
+*>
+*> E (output) DOUBLE PRECISION array, dimension (N-1)
+*> The off-diagonal elements of the tridiagonal matrix T:
+*> E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
+*>
+*> TAU (output) COMPLEX*16 array, dimension (N-1)
+*> The scalar factors of the elementary reflectors (see Further
+*> Details).
+*>
+*> INFO (output) INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value.
+*>
+*>
+*> If UPLO = 'U', the matrix Q is represented as a product of elementary
+*> reflectors
+*>
+*> Q = H(n-1) . . . H(2) H(1).
+*>
+*> Each H(i) has the form
+*>
+*> H(i) = I - tau * v * v**H
+*>
+*> where tau is a complex scalar, and v is a complex vector with
+*> v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
+*> A(1:i-1,i+1), and tau in TAU(i).
+*>
+*> If UPLO = 'L', the matrix Q is represented as a product of elementary
+*> reflectors
+*>
+*> Q = H(1) H(2) . . . H(n-1).
+*>
+*> Each H(i) has the form
+*>
+*> H(i) = I - tau * v * v**H
+*>
+*> where tau is a complex scalar, and v is a complex vector with
+*> v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
+*> and tau in TAU(i).
+*>
+*> The contents of A on exit are illustrated by the following examples
+*> with n = 5:
+*>
+*> if UPLO = 'U': if UPLO = 'L':
+*>
+*> ( d e v2 v3 v4 ) ( d )
+*> ( d e v3 v4 ) ( e d )
+*> ( d e v4 ) ( v1 e d )
+*> ( d e ) ( v1 v2 e d )
+*> ( d ) ( v1 v2 v3 e d )
+*>
+*> where d and e denote diagonal and off-diagonal elements of T, and vi
+*> denotes an element of the vector defining H(i).
+*>
+*> \endverbatim
+*>
+* =====================================================================
+ SUBROUTINE ZHETD2( UPLO, N, A, LDA, D, E, TAU, INFO )
*
-* If UPLO = 'U', the matrix Q is represented as a product of elementary
-* reflectors
-*
-* Q = H(n-1) . . . H(2) H(1).
-*
-* Each H(i) has the form
-*
-* H(i) = I - tau * v * v**H
-*
-* where tau is a complex scalar, and v is a complex vector with
-* v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
-* A(1:i-1,i+1), and tau in TAU(i).
-*
-* If UPLO = 'L', the matrix Q is represented as a product of elementary
-* reflectors
-*
-* Q = H(1) H(2) . . . H(n-1).
-*
-* Each H(i) has the form
-*
-* H(i) = I - tau * v * v**H
-*
-* where tau is a complex scalar, and v is a complex vector with
-* v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
-* and tau in TAU(i).
-*
-* The contents of A on exit are illustrated by the following examples
-* with n = 5:
-*
-* if UPLO = 'U': if UPLO = 'L':
-*
-* ( d e v2 v3 v4 ) ( d )
-* ( d e v3 v4 ) ( e d )
-* ( d e v4 ) ( v1 e d )
-* ( d e ) ( v1 v2 e d )
-* ( d ) ( v1 v2 v3 e d )
+* -- LAPACK computational routine (version 3.3.1) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2011
*
-* where d and e denote diagonal and off-diagonal elements of T, and vi
-* denotes an element of the vector defining H(i).
+* .. Scalar Arguments ..
+ CHARACTER UPLO
+ INTEGER INFO, LDA, N
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION D( * ), E( * )
+ COMPLEX*16 A( LDA, * ), TAU( * )
+* ..
*
* =====================================================================
*