summaryrefslogtreecommitdiff
path: root/SRC/zheevr_2stage.f
diff options
context:
space:
mode:
authorRenegade <Renegate@Renegates-MacBook-Pro.local>2016-11-06 20:35:15 -0500
committerRenegade <Renegate@Renegates-MacBook-Pro.local>2016-11-06 20:35:15 -0500
commitb9c9d7631188cdf4c658a808a0748dbef848b863 (patch)
treea18908ffdfd87e880c8ef219fa3fcb7357f307ba /SRC/zheevr_2stage.f
parentf9c3afd2ecda142d2e54a1fad7b7b6c157626166 (diff)
downloadlapack-b9c9d7631188cdf4c658a808a0748dbef848b863.tar.gz
lapack-b9c9d7631188cdf4c658a808a0748dbef848b863.tar.bz2
lapack-b9c9d7631188cdf4c658a808a0748dbef848b863.zip
adding the 2stage symmetric eigenvalue routines drivers checking
Diffstat (limited to 'SRC/zheevr_2stage.f')
-rw-r--r--SRC/zheevr_2stage.f779
1 files changed, 779 insertions, 0 deletions
diff --git a/SRC/zheevr_2stage.f b/SRC/zheevr_2stage.f
new file mode 100644
index 00000000..bfd43056
--- /dev/null
+++ b/SRC/zheevr_2stage.f
@@ -0,0 +1,779 @@
+*> \brief <b> ZHEEVR_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices</b>
+*
+* @precisions fortran z -> s d c
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download ZHEEVR_2STAGE + dependencies
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zheevr_2stage.f">
+*> [TGZ]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zheevr_2stage.f">
+*> [ZIP]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zheevr_2stage.f">
+*> [TXT]</a>
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE ZHEEVR_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU,
+* IL, IU, ABSTOL, M, W, Z, LDZ, ISUPPZ,
+* WORK, LWORK, RWORK, LRWORK, IWORK,
+* LIWORK, INFO )
+*
+* IMPLICIT NONE
+*
+* .. Scalar Arguments ..
+* CHARACTER JOBZ, RANGE, UPLO
+* INTEGER IL, INFO, IU, LDA, LDZ, LIWORK, LRWORK, LWORK,
+* $ M, N
+* DOUBLE PRECISION ABSTOL, VL, VU
+* ..
+* .. Array Arguments ..
+* INTEGER ISUPPZ( * ), IWORK( * )
+* DOUBLE PRECISION RWORK( * ), W( * )
+* COMPLEX*16 A( LDA, * ), WORK( * ), Z( LDZ, * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> ZHEEVR_2STAGE computes selected eigenvalues and, optionally, eigenvectors
+*> of a complex Hermitian matrix A using the 2stage technique for
+*> the reduction to tridiagonal. Eigenvalues and eigenvectors can
+*> be selected by specifying either a range of values or a range of
+*> indices for the desired eigenvalues.
+*>
+*> ZHEEVR_2STAGE first reduces the matrix A to tridiagonal form T with a call
+*> to ZHETRD. Then, whenever possible, ZHEEVR_2STAGE calls ZSTEMR to compute
+*> eigenspectrum using Relatively Robust Representations. ZSTEMR
+*> computes eigenvalues by the dqds algorithm, while orthogonal
+*> eigenvectors are computed from various "good" L D L^T representations
+*> (also known as Relatively Robust Representations). Gram-Schmidt
+*> orthogonalization is avoided as far as possible. More specifically,
+*> the various steps of the algorithm are as follows.
+*>
+*> For each unreduced block (submatrix) of T,
+*> (a) Compute T - sigma I = L D L^T, so that L and D
+*> define all the wanted eigenvalues to high relative accuracy.
+*> This means that small relative changes in the entries of D and L
+*> cause only small relative changes in the eigenvalues and
+*> eigenvectors. The standard (unfactored) representation of the
+*> tridiagonal matrix T does not have this property in general.
+*> (b) Compute the eigenvalues to suitable accuracy.
+*> If the eigenvectors are desired, the algorithm attains full
+*> accuracy of the computed eigenvalues only right before
+*> the corresponding vectors have to be computed, see steps c) and d).
+*> (c) For each cluster of close eigenvalues, select a new
+*> shift close to the cluster, find a new factorization, and refine
+*> the shifted eigenvalues to suitable accuracy.
+*> (d) For each eigenvalue with a large enough relative separation compute
+*> the corresponding eigenvector by forming a rank revealing twisted
+*> factorization. Go back to (c) for any clusters that remain.
+*>
+*> The desired accuracy of the output can be specified by the input
+*> parameter ABSTOL.
+*>
+*> For more details, see DSTEMR's documentation and:
+*> - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
+*> to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
+*> Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
+*> - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
+*> Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
+*> 2004. Also LAPACK Working Note 154.
+*> - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
+*> tridiagonal eigenvalue/eigenvector problem",
+*> Computer Science Division Technical Report No. UCB/CSD-97-971,
+*> UC Berkeley, May 1997.
+*>
+*>
+*> Note 1 : ZHEEVR_2STAGE calls ZSTEMR when the full spectrum is requested
+*> on machines which conform to the ieee-754 floating point standard.
+*> ZHEEVR_2STAGE calls DSTEBZ and ZSTEIN on non-ieee machines and
+*> when partial spectrum requests are made.
+*>
+*> Normal execution of ZSTEMR may create NaNs and infinities and
+*> hence may abort due to a floating point exception in environments
+*> which do not handle NaNs and infinities in the ieee standard default
+*> manner.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] JOBZ
+*> \verbatim
+*> JOBZ is CHARACTER*1
+*> = 'N': Compute eigenvalues only;
+*> = 'V': Compute eigenvalues and eigenvectors.
+*> Not available in this release.
+*> \endverbatim
+*>
+*> \param[in] RANGE
+*> \verbatim
+*> RANGE is CHARACTER*1
+*> = 'A': all eigenvalues will be found.
+*> = 'V': all eigenvalues in the half-open interval (VL,VU]
+*> will be found.
+*> = 'I': the IL-th through IU-th eigenvalues will be found.
+*> For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and
+*> ZSTEIN are called
+*> \endverbatim
+*>
+*> \param[in] UPLO
+*> \verbatim
+*> UPLO is CHARACTER*1
+*> = 'U': Upper triangle of A is stored;
+*> = 'L': Lower triangle of A is stored.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The order of the matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is COMPLEX*16 array, dimension (LDA, N)
+*> On entry, the Hermitian matrix A. If UPLO = 'U', the
+*> leading N-by-N upper triangular part of A contains the
+*> upper triangular part of the matrix A. If UPLO = 'L',
+*> the leading N-by-N lower triangular part of A contains
+*> the lower triangular part of the matrix A.
+*> On exit, the lower triangle (if UPLO='L') or the upper
+*> triangle (if UPLO='U') of A, including the diagonal, is
+*> destroyed.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,N).
+*> \endverbatim
+*>
+*> \param[in] VL
+*> \verbatim
+*> VL is DOUBLE PRECISION
+*> If RANGE='V', the lower bound of the interval to
+*> be searched for eigenvalues. VL < VU.
+*> Not referenced if RANGE = 'A' or 'I'.
+*> \endverbatim
+*>
+*> \param[in] VU
+*> \verbatim
+*> VU is DOUBLE PRECISION
+*> If RANGE='V', the upper bound of the interval to
+*> be searched for eigenvalues. VL < VU.
+*> Not referenced if RANGE = 'A' or 'I'.
+*> \endverbatim
+*>
+*> \param[in] IL
+*> \verbatim
+*> IL is INTEGER
+*> If RANGE='I', the index of the
+*> smallest eigenvalue to be returned.
+*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
+*> Not referenced if RANGE = 'A' or 'V'.
+*> \endverbatim
+*>
+*> \param[in] IU
+*> \verbatim
+*> IU is INTEGER
+*> If RANGE='I', the index of the
+*> largest eigenvalue to be returned.
+*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
+*> Not referenced if RANGE = 'A' or 'V'.
+*> \endverbatim
+*>
+*> \param[in] ABSTOL
+*> \verbatim
+*> ABSTOL is DOUBLE PRECISION
+*> The absolute error tolerance for the eigenvalues.
+*> An approximate eigenvalue is accepted as converged
+*> when it is determined to lie in an interval [a,b]
+*> of width less than or equal to
+*>
+*> ABSTOL + EPS * max( |a|,|b| ) ,
+*>
+*> where EPS is the machine precision. If ABSTOL is less than
+*> or equal to zero, then EPS*|T| will be used in its place,
+*> where |T| is the 1-norm of the tridiagonal matrix obtained
+*> by reducing A to tridiagonal form.
+*>
+*> See "Computing Small Singular Values of Bidiagonal Matrices
+*> with Guaranteed High Relative Accuracy," by Demmel and
+*> Kahan, LAPACK Working Note #3.
+*>
+*> If high relative accuracy is important, set ABSTOL to
+*> DLAMCH( 'Safe minimum' ). Doing so will guarantee that
+*> eigenvalues are computed to high relative accuracy when
+*> possible in future releases. The current code does not
+*> make any guarantees about high relative accuracy, but
+*> furutre releases will. See J. Barlow and J. Demmel,
+*> "Computing Accurate Eigensystems of Scaled Diagonally
+*> Dominant Matrices", LAPACK Working Note #7, for a discussion
+*> of which matrices define their eigenvalues to high relative
+*> accuracy.
+*> \endverbatim
+*>
+*> \param[out] M
+*> \verbatim
+*> M is INTEGER
+*> The total number of eigenvalues found. 0 <= M <= N.
+*> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
+*> \endverbatim
+*>
+*> \param[out] W
+*> \verbatim
+*> W is DOUBLE PRECISION array, dimension (N)
+*> The first M elements contain the selected eigenvalues in
+*> ascending order.
+*> \endverbatim
+*>
+*> \param[out] Z
+*> \verbatim
+*> Z is COMPLEX*16 array, dimension (LDZ, max(1,M))
+*> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
+*> contain the orthonormal eigenvectors of the matrix A
+*> corresponding to the selected eigenvalues, with the i-th
+*> column of Z holding the eigenvector associated with W(i).
+*> If JOBZ = 'N', then Z is not referenced.
+*> Note: the user must ensure that at least max(1,M) columns are
+*> supplied in the array Z; if RANGE = 'V', the exact value of M
+*> is not known in advance and an upper bound must be used.
+*> \endverbatim
+*>
+*> \param[in] LDZ
+*> \verbatim
+*> LDZ is INTEGER
+*> The leading dimension of the array Z. LDZ >= 1, and if
+*> JOBZ = 'V', LDZ >= max(1,N).
+*> \endverbatim
+*>
+*> \param[out] ISUPPZ
+*> \verbatim
+*> ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
+*> The support of the eigenvectors in Z, i.e., the indices
+*> indicating the nonzero elements in Z. The i-th eigenvector
+*> is nonzero only in elements ISUPPZ( 2*i-1 ) through
+*> ISUPPZ( 2*i ). This is an output of ZSTEMR (tridiagonal
+*> matrix). The support of the eigenvectors of A is typically
+*> 1:N because of the unitary transformations applied by ZUNMTR.
+*> Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
+*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> The dimension of the array WORK.
+*> If JOBZ = 'N' and N > 1, LWORK must be queried.
+*> LWORK = MAX(1, 26*N, dimension) where
+*> dimension = max(stage1,stage2) + (KD+1)*N + N
+*> = N*KD + N*max(KD+1,FACTOPTNB)
+*> + max(2*KD*KD, KD*NTHREADS)
+*> + (KD+1)*N + N
+*> where KD is the blocking size of the reduction,
+*> FACTOPTNB is the blocking used by the QR or LQ
+*> algorithm, usually FACTOPTNB=128 is a good choice
+*> NTHREADS is the number of threads used when
+*> openMP compilation is enabled, otherwise =1.
+*> If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available
+*>
+*> If LWORK = -1, then a workspace query is assumed; the routine
+*> only calculates the optimal sizes of the WORK, RWORK and
+*> IWORK arrays, returns these values as the first entries of
+*> the WORK, RWORK and IWORK arrays, and no error message
+*> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] RWORK
+*> \verbatim
+*> RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
+*> On exit, if INFO = 0, RWORK(1) returns the optimal
+*> (and minimal) LRWORK.
+*> \endverbatim
+*>
+*> \param[in] LRWORK
+*> \verbatim
+*> LRWORK is INTEGER
+*> The length of the array RWORK. LRWORK >= max(1,24*N).
+*>
+*> If LRWORK = -1, then a workspace query is assumed; the
+*> routine only calculates the optimal sizes of the WORK, RWORK
+*> and IWORK arrays, returns these values as the first entries
+*> of the WORK, RWORK and IWORK arrays, and no error message
+*> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] IWORK
+*> \verbatim
+*> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
+*> On exit, if INFO = 0, IWORK(1) returns the optimal
+*> (and minimal) LIWORK.
+*> \endverbatim
+*>
+*> \param[in] LIWORK
+*> \verbatim
+*> LIWORK is INTEGER
+*> The dimension of the array IWORK. LIWORK >= max(1,10*N).
+*>
+*> If LIWORK = -1, then a workspace query is assumed; the
+*> routine only calculates the optimal sizes of the WORK, RWORK
+*> and IWORK arrays, returns these values as the first entries
+*> of the WORK, RWORK and IWORK arrays, and no error message
+*> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> > 0: Internal error
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date June 2016
+*
+*> \ingroup complex16HEeigen
+*
+*> \par Contributors:
+* ==================
+*>
+*> Inderjit Dhillon, IBM Almaden, USA \n
+*> Osni Marques, LBNL/NERSC, USA \n
+*> Ken Stanley, Computer Science Division, University of
+*> California at Berkeley, USA \n
+*> Jason Riedy, Computer Science Division, University of
+*> California at Berkeley, USA \n
+*>
+*> \par Further Details:
+* =====================
+*>
+*> \verbatim
+*>
+*> All details about the 2stage techniques are available in:
+*>
+*> Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
+*> Parallel reduction to condensed forms for symmetric eigenvalue problems
+*> using aggregated fine-grained and memory-aware kernels. In Proceedings
+*> of 2011 International Conference for High Performance Computing,
+*> Networking, Storage and Analysis (SC '11), New York, NY, USA,
+*> Article 8 , 11 pages.
+*> http://doi.acm.org/10.1145/2063384.2063394
+*>
+*> A. Haidar, J. Kurzak, P. Luszczek, 2013.
+*> An improved parallel singular value algorithm and its implementation
+*> for multicore hardware, In Proceedings of 2013 International Conference
+*> for High Performance Computing, Networking, Storage and Analysis (SC '13).
+*> Denver, Colorado, USA, 2013.
+*> Article 90, 12 pages.
+*> http://doi.acm.org/10.1145/2503210.2503292
+*>
+*> A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
+*> A novel hybrid CPU-GPU generalized eigensolver for electronic structure
+*> calculations based on fine-grained memory aware tasks.
+*> International Journal of High Performance Computing Applications.
+*> Volume 28 Issue 2, Pages 196-209, May 2014.
+*> http://hpc.sagepub.com/content/28/2/196
+*>
+*> \endverbatim
+*
+* =====================================================================
+ SUBROUTINE ZHEEVR_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU,
+ $ IL, IU, ABSTOL, M, W, Z, LDZ, ISUPPZ,
+ $ WORK, LWORK, RWORK, LRWORK, IWORK,
+ $ LIWORK, INFO )
+*
+ IMPLICIT NONE
+*
+* -- LAPACK driver routine (version 3.6.1) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* June 2016
+*
+* .. Scalar Arguments ..
+ CHARACTER JOBZ, RANGE, UPLO
+ INTEGER IL, INFO, IU, LDA, LDZ, LIWORK, LRWORK, LWORK,
+ $ M, N
+ DOUBLE PRECISION ABSTOL, VL, VU
+* ..
+* .. Array Arguments ..
+ INTEGER ISUPPZ( * ), IWORK( * )
+ DOUBLE PRECISION RWORK( * ), W( * )
+ COMPLEX*16 A( LDA, * ), WORK( * ), Z( LDZ, * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE, TWO
+ PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
+ $ WANTZ, TRYRAC
+ CHARACTER ORDER
+ INTEGER I, IEEEOK, IINFO, IMAX, INDIBL, INDIFL, INDISP,
+ $ INDIWO, INDRD, INDRDD, INDRE, INDREE, INDRWK,
+ $ INDTAU, INDWK, INDWKN, ISCALE, ITMP1, J, JJ,
+ $ LIWMIN, LLWORK, LLRWORK, LLWRKN, LRWMIN,
+ $ LWMIN, NSPLIT, LHTRD, LWTRD, KD, IB, INDHOUS
+ DOUBLE PRECISION ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
+ $ SIGMA, SMLNUM, TMP1, VLL, VUU
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER ILAENV
+ DOUBLE PRECISION DLAMCH, ZLANSY
+ EXTERNAL LSAME, ILAENV, DLAMCH, ZLANSY
+* ..
+* .. External Subroutines ..
+ EXTERNAL DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZDSCAL,
+ $ ZHETRD_2STAGE, ZSTEMR, ZSTEIN, ZSWAP, ZUNMTR
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC DBLE, MAX, MIN, SQRT
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ IEEEOK = ILAENV( 10, 'ZHEEVR', 'N', 1, 2, 3, 4 )
+*
+ LOWER = LSAME( UPLO, 'L' )
+ WANTZ = LSAME( JOBZ, 'V' )
+ ALLEIG = LSAME( RANGE, 'A' )
+ VALEIG = LSAME( RANGE, 'V' )
+ INDEIG = LSAME( RANGE, 'I' )
+*
+ LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LRWORK.EQ.-1 ) .OR.
+ $ ( LIWORK.EQ.-1 ) )
+*
+ KD = ILAENV( 17, 'DSYTRD_2STAGE', JOBZ, N, -1, -1, -1 )
+ IB = ILAENV( 18, 'DSYTRD_2STAGE', JOBZ, N, KD, -1, -1 )
+ LHTRD = ILAENV( 19, 'DSYTRD_2STAGE', JOBZ, N, KD, IB, -1 )
+ LWTRD = ILAENV( 20, 'DSYTRD_2STAGE', JOBZ, N, KD, IB, -1 )
+ LWMIN = N + LHTRD + LWTRD
+ LRWMIN = MAX( 1, 24*N )
+ LIWMIN = MAX( 1, 10*N )
+*
+ INFO = 0
+ IF( .NOT.( LSAME( JOBZ, 'N' ) ) ) THEN
+ INFO = -1
+ ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
+ INFO = -2
+ ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
+ INFO = -3
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+ INFO = -6
+ ELSE
+ IF( VALEIG ) THEN
+ IF( N.GT.0 .AND. VU.LE.VL )
+ $ INFO = -8
+ ELSE IF( INDEIG ) THEN
+ IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
+ INFO = -9
+ ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
+ INFO = -10
+ END IF
+ END IF
+ END IF
+ IF( INFO.EQ.0 ) THEN
+ IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
+ INFO = -15
+ END IF
+ END IF
+*
+ IF( INFO.EQ.0 ) THEN
+ WORK( 1 ) = LWMIN
+ RWORK( 1 ) = LRWMIN
+ IWORK( 1 ) = LIWMIN
+*
+ IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
+ INFO = -18
+ ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
+ INFO = -20
+ ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
+ INFO = -22
+ END IF
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZHEEVR_2STAGE', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ M = 0
+ IF( N.EQ.0 ) THEN
+ WORK( 1 ) = 1
+ RETURN
+ END IF
+*
+ IF( N.EQ.1 ) THEN
+ WORK( 1 ) = 2
+ IF( ALLEIG .OR. INDEIG ) THEN
+ M = 1
+ W( 1 ) = DBLE( A( 1, 1 ) )
+ ELSE
+ IF( VL.LT.DBLE( A( 1, 1 ) ) .AND. VU.GE.DBLE( A( 1, 1 ) ) )
+ $ THEN
+ M = 1
+ W( 1 ) = DBLE( A( 1, 1 ) )
+ END IF
+ END IF
+ IF( WANTZ ) THEN
+ Z( 1, 1 ) = ONE
+ ISUPPZ( 1 ) = 1
+ ISUPPZ( 2 ) = 1
+ END IF
+ RETURN
+ END IF
+*
+* Get machine constants.
+*
+ SAFMIN = DLAMCH( 'Safe minimum' )
+ EPS = DLAMCH( 'Precision' )
+ SMLNUM = SAFMIN / EPS
+ BIGNUM = ONE / SMLNUM
+ RMIN = SQRT( SMLNUM )
+ RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
+*
+* Scale matrix to allowable range, if necessary.
+*
+ ISCALE = 0
+ ABSTLL = ABSTOL
+ IF (VALEIG) THEN
+ VLL = VL
+ VUU = VU
+ END IF
+ ANRM = ZLANSY( 'M', UPLO, N, A, LDA, RWORK )
+ IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
+ ISCALE = 1
+ SIGMA = RMIN / ANRM
+ ELSE IF( ANRM.GT.RMAX ) THEN
+ ISCALE = 1
+ SIGMA = RMAX / ANRM
+ END IF
+ IF( ISCALE.EQ.1 ) THEN
+ IF( LOWER ) THEN
+ DO 10 J = 1, N
+ CALL ZDSCAL( N-J+1, SIGMA, A( J, J ), 1 )
+ 10 CONTINUE
+ ELSE
+ DO 20 J = 1, N
+ CALL ZDSCAL( J, SIGMA, A( 1, J ), 1 )
+ 20 CONTINUE
+ END IF
+ IF( ABSTOL.GT.0 )
+ $ ABSTLL = ABSTOL*SIGMA
+ IF( VALEIG ) THEN
+ VLL = VL*SIGMA
+ VUU = VU*SIGMA
+ END IF
+ END IF
+
+* Initialize indices into workspaces. Note: The IWORK indices are
+* used only if DSTERF or ZSTEMR fail.
+
+* WORK(INDTAU:INDTAU+N-1) stores the complex scalar factors of the
+* elementary reflectors used in ZHETRD.
+ INDTAU = 1
+* INDWK is the starting offset of the remaining complex workspace,
+* and LLWORK is the remaining complex workspace size.
+ INDHOUS = INDTAU + N
+ INDWK = INDHOUS + LHTRD
+ LLWORK = LWORK - INDWK + 1
+
+* RWORK(INDRD:INDRD+N-1) stores the real tridiagonal's diagonal
+* entries.
+ INDRD = 1
+* RWORK(INDRE:INDRE+N-1) stores the off-diagonal entries of the
+* tridiagonal matrix from ZHETRD.
+ INDRE = INDRD + N
+* RWORK(INDRDD:INDRDD+N-1) is a copy of the diagonal entries over
+* -written by ZSTEMR (the DSTERF path copies the diagonal to W).
+ INDRDD = INDRE + N
+* RWORK(INDREE:INDREE+N-1) is a copy of the off-diagonal entries over
+* -written while computing the eigenvalues in DSTERF and ZSTEMR.
+ INDREE = INDRDD + N
+* INDRWK is the starting offset of the left-over real workspace, and
+* LLRWORK is the remaining workspace size.
+ INDRWK = INDREE + N
+ LLRWORK = LRWORK - INDRWK + 1
+
+* IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and
+* stores the block indices of each of the M<=N eigenvalues.
+ INDIBL = 1
+* IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and
+* stores the starting and finishing indices of each block.
+ INDISP = INDIBL + N
+* IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
+* that corresponding to eigenvectors that fail to converge in
+* ZSTEIN. This information is discarded; if any fail, the driver
+* returns INFO > 0.
+ INDIFL = INDISP + N
+* INDIWO is the offset of the remaining integer workspace.
+ INDIWO = INDIFL + N
+
+*
+* Call ZHETRD_2STAGE to reduce Hermitian matrix to tridiagonal form.
+*
+ CALL ZHETRD_2STAGE( JOBZ, UPLO, N, A, LDA, RWORK( INDRD ),
+ $ RWORK( INDRE ), WORK( INDTAU ),
+ $ WORK( INDHOUS ), LHTRD,
+ $ WORK( INDWK ), LLWORK, IINFO )
+*
+* If all eigenvalues are desired
+* then call DSTERF or ZSTEMR and ZUNMTR.
+*
+ TEST = .FALSE.
+ IF( INDEIG ) THEN
+ IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
+ TEST = .TRUE.
+ END IF
+ END IF
+ IF( ( ALLEIG.OR.TEST ) .AND. ( IEEEOK.EQ.1 ) ) THEN
+ IF( .NOT.WANTZ ) THEN
+ CALL DCOPY( N, RWORK( INDRD ), 1, W, 1 )
+ CALL DCOPY( N-1, RWORK( INDRE ), 1, RWORK( INDREE ), 1 )
+ CALL DSTERF( N, W, RWORK( INDREE ), INFO )
+ ELSE
+ CALL DCOPY( N-1, RWORK( INDRE ), 1, RWORK( INDREE ), 1 )
+ CALL DCOPY( N, RWORK( INDRD ), 1, RWORK( INDRDD ), 1 )
+*
+ IF (ABSTOL .LE. TWO*N*EPS) THEN
+ TRYRAC = .TRUE.
+ ELSE
+ TRYRAC = .FALSE.
+ END IF
+ CALL ZSTEMR( JOBZ, 'A', N, RWORK( INDRDD ),
+ $ RWORK( INDREE ), VL, VU, IL, IU, M, W,
+ $ Z, LDZ, N, ISUPPZ, TRYRAC,
+ $ RWORK( INDRWK ), LLRWORK,
+ $ IWORK, LIWORK, INFO )
+*
+* Apply unitary matrix used in reduction to tridiagonal
+* form to eigenvectors returned by ZSTEMR.
+*
+ IF( WANTZ .AND. INFO.EQ.0 ) THEN
+ INDWKN = INDWK
+ LLWRKN = LWORK - INDWKN + 1
+ CALL ZUNMTR( 'L', UPLO, 'N', N, M, A, LDA,
+ $ WORK( INDTAU ), Z, LDZ, WORK( INDWKN ),
+ $ LLWRKN, IINFO )
+ END IF
+ END IF
+*
+*
+ IF( INFO.EQ.0 ) THEN
+ M = N
+ GO TO 30
+ END IF
+ INFO = 0
+ END IF
+*
+* Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
+* Also call DSTEBZ and ZSTEIN if ZSTEMR fails.
+*
+ IF( WANTZ ) THEN
+ ORDER = 'B'
+ ELSE
+ ORDER = 'E'
+ END IF
+
+ CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
+ $ RWORK( INDRD ), RWORK( INDRE ), M, NSPLIT, W,
+ $ IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
+ $ IWORK( INDIWO ), INFO )
+*
+ IF( WANTZ ) THEN
+ CALL ZSTEIN( N, RWORK( INDRD ), RWORK( INDRE ), M, W,
+ $ IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
+ $ RWORK( INDRWK ), IWORK( INDIWO ), IWORK( INDIFL ),
+ $ INFO )
+*
+* Apply unitary matrix used in reduction to tridiagonal
+* form to eigenvectors returned by ZSTEIN.
+*
+ INDWKN = INDWK
+ LLWRKN = LWORK - INDWKN + 1
+ CALL ZUNMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
+ $ LDZ, WORK( INDWKN ), LLWRKN, IINFO )
+ END IF
+*
+* If matrix was scaled, then rescale eigenvalues appropriately.
+*
+ 30 CONTINUE
+ IF( ISCALE.EQ.1 ) THEN
+ IF( INFO.EQ.0 ) THEN
+ IMAX = M
+ ELSE
+ IMAX = INFO - 1
+ END IF
+ CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
+ END IF
+*
+* If eigenvalues are not in order, then sort them, along with
+* eigenvectors.
+*
+ IF( WANTZ ) THEN
+ DO 50 J = 1, M - 1
+ I = 0
+ TMP1 = W( J )
+ DO 40 JJ = J + 1, M
+ IF( W( JJ ).LT.TMP1 ) THEN
+ I = JJ
+ TMP1 = W( JJ )
+ END IF
+ 40 CONTINUE
+*
+ IF( I.NE.0 ) THEN
+ ITMP1 = IWORK( INDIBL+I-1 )
+ W( I ) = W( J )
+ IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
+ W( J ) = TMP1
+ IWORK( INDIBL+J-1 ) = ITMP1
+ CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
+ END IF
+ 50 CONTINUE
+ END IF
+*
+* Set WORK(1) to optimal workspace size.
+*
+ WORK( 1 ) = LWMIN
+ RWORK( 1 ) = LRWMIN
+ IWORK( 1 ) = LIWMIN
+*
+ RETURN
+*
+* End of ZHEEVR_2STAGE
+*
+ END