summaryrefslogtreecommitdiff
path: root/SRC/zhbgvx.f
diff options
context:
space:
mode:
authorjulie <julielangou@users.noreply.github.com>2011-10-06 06:53:11 +0000
committerjulie <julielangou@users.noreply.github.com>2011-10-06 06:53:11 +0000
commite1d39294aee16fa6db9ba079b14442358217db71 (patch)
tree30e5aa04c1f6596991fda5334f63dfb9b8027849 /SRC/zhbgvx.f
parent5fe0466a14e395641f4f8a300ecc9dcb8058081b (diff)
downloadlapack-e1d39294aee16fa6db9ba079b14442358217db71.tar.gz
lapack-e1d39294aee16fa6db9ba079b14442358217db71.tar.bz2
lapack-e1d39294aee16fa6db9ba079b14442358217db71.zip
Integrating Doxygen in comments
Diffstat (limited to 'SRC/zhbgvx.f')
-rw-r--r--SRC/zhbgvx.f446
1 files changed, 290 insertions, 156 deletions
diff --git a/SRC/zhbgvx.f b/SRC/zhbgvx.f
index d2a198c5..84f57ce9 100644
--- a/SRC/zhbgvx.f
+++ b/SRC/zhbgvx.f
@@ -1,11 +1,299 @@
+*> \brief \b ZHBGST
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+* Definition
+* ==========
+*
+* SUBROUTINE ZHBGVX( JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB,
+* LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z,
+* LDZ, WORK, RWORK, IWORK, IFAIL, INFO )
+*
+* .. Scalar Arguments ..
+* CHARACTER JOBZ, RANGE, UPLO
+* INTEGER IL, INFO, IU, KA, KB, LDAB, LDBB, LDQ, LDZ, M,
+* $ N
+* DOUBLE PRECISION ABSTOL, VL, VU
+* ..
+* .. Array Arguments ..
+* INTEGER IFAIL( * ), IWORK( * )
+* DOUBLE PRECISION RWORK( * ), W( * )
+* COMPLEX*16 AB( LDAB, * ), BB( LDBB, * ), Q( LDQ, * ),
+* $ WORK( * ), Z( LDZ, * )
+* ..
+*
+* Purpose
+* =======
+*
+*>\details \b Purpose:
+*>\verbatim
+*>
+*> ZHBGVX computes all the eigenvalues, and optionally, the eigenvectors
+*> of a complex generalized Hermitian-definite banded eigenproblem, of
+*> the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian
+*> and banded, and B is also positive definite. Eigenvalues and
+*> eigenvectors can be selected by specifying either all eigenvalues,
+*> a range of values or a range of indices for the desired eigenvalues.
+*>
+*>\endverbatim
+*
+* Arguments
+* =========
+*
+*> \param[in] JOBZ
+*> \verbatim
+*> JOBZ is CHARACTER*1
+*> = 'N': Compute eigenvalues only;
+*> = 'V': Compute eigenvalues and eigenvectors.
+*> \endverbatim
+*>
+*> \param[in] RANGE
+*> \verbatim
+*> RANGE is CHARACTER*1
+*> = 'A': all eigenvalues will be found;
+*> = 'V': all eigenvalues in the half-open interval (VL,VU]
+*> will be found;
+*> = 'I': the IL-th through IU-th eigenvalues will be found.
+*> \endverbatim
+*>
+*> \param[in] UPLO
+*> \verbatim
+*> UPLO is CHARACTER*1
+*> = 'U': Upper triangles of A and B are stored;
+*> = 'L': Lower triangles of A and B are stored.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The order of the matrices A and B. N >= 0.
+*> \endverbatim
+*>
+*> \param[in] KA
+*> \verbatim
+*> KA is INTEGER
+*> The number of superdiagonals of the matrix A if UPLO = 'U',
+*> or the number of subdiagonals if UPLO = 'L'. KA >= 0.
+*> \endverbatim
+*>
+*> \param[in] KB
+*> \verbatim
+*> KB is INTEGER
+*> The number of superdiagonals of the matrix B if UPLO = 'U',
+*> or the number of subdiagonals if UPLO = 'L'. KB >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] AB
+*> \verbatim
+*> AB is COMPLEX*16 array, dimension (LDAB, N)
+*> On entry, the upper or lower triangle of the Hermitian band
+*> matrix A, stored in the first ka+1 rows of the array. The
+*> j-th column of A is stored in the j-th column of the array AB
+*> as follows:
+*> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
+*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
+*> \endverbatim
+*> \verbatim
+*> On exit, the contents of AB are destroyed.
+*> \endverbatim
+*>
+*> \param[in] LDAB
+*> \verbatim
+*> LDAB is INTEGER
+*> The leading dimension of the array AB. LDAB >= KA+1.
+*> \endverbatim
+*>
+*> \param[in,out] BB
+*> \verbatim
+*> BB is COMPLEX*16 array, dimension (LDBB, N)
+*> On entry, the upper or lower triangle of the Hermitian band
+*> matrix B, stored in the first kb+1 rows of the array. The
+*> j-th column of B is stored in the j-th column of the array BB
+*> as follows:
+*> if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
+*> if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
+*> \endverbatim
+*> \verbatim
+*> On exit, the factor S from the split Cholesky factorization
+*> B = S**H*S, as returned by ZPBSTF.
+*> \endverbatim
+*>
+*> \param[in] LDBB
+*> \verbatim
+*> LDBB is INTEGER
+*> The leading dimension of the array BB. LDBB >= KB+1.
+*> \endverbatim
+*>
+*> \param[out] Q
+*> \verbatim
+*> Q is COMPLEX*16 array, dimension (LDQ, N)
+*> If JOBZ = 'V', the n-by-n matrix used in the reduction of
+*> A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x,
+*> and consequently C to tridiagonal form.
+*> If JOBZ = 'N', the array Q is not referenced.
+*> \endverbatim
+*>
+*> \param[in] LDQ
+*> \verbatim
+*> LDQ is INTEGER
+*> The leading dimension of the array Q. If JOBZ = 'N',
+*> LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N).
+*> \endverbatim
+*>
+*> \param[in] VL
+*> \verbatim
+*> VL is DOUBLE PRECISION
+*> \param[in] VU
+*> \verbatim
+*> VU is DOUBLE PRECISION
+*> If RANGE='V', the lower and upper bounds of the interval to
+*> be searched for eigenvalues. VL < VU.
+*> Not referenced if RANGE = 'A' or 'I'.
+*> \endverbatim
+*> \endverbatim
+*>
+*> \param[in] IL
+*> \verbatim
+*> IL is INTEGER
+*> \param[in] IU
+*> \verbatim
+*> IU is INTEGER
+*> If RANGE='I', the indices (in ascending order) of the
+*> smallest and largest eigenvalues to be returned.
+*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
+*> Not referenced if RANGE = 'A' or 'V'.
+*> \endverbatim
+*> \endverbatim
+*>
+*> \param[in] ABSTOL
+*> \verbatim
+*> ABSTOL is DOUBLE PRECISION
+*> The absolute error tolerance for the eigenvalues.
+*> An approximate eigenvalue is accepted as converged
+*> when it is determined to lie in an interval [a,b]
+*> of width less than or equal to
+*> \endverbatim
+*> \verbatim
+*> ABSTOL + EPS * max( |a|,|b| ) ,
+*> \endverbatim
+*> \verbatim
+*> where EPS is the machine precision. If ABSTOL is less than
+*> or equal to zero, then EPS*|T| will be used in its place,
+*> where |T| is the 1-norm of the tridiagonal matrix obtained
+*> by reducing AP to tridiagonal form.
+*> \endverbatim
+*> \verbatim
+*> Eigenvalues will be computed most accurately when ABSTOL is
+*> set to twice the underflow threshold 2*DLAMCH('S'), not zero.
+*> If this routine returns with INFO>0, indicating that some
+*> eigenvectors did not converge, try setting ABSTOL to
+*> 2*DLAMCH('S').
+*> \endverbatim
+*>
+*> \param[out] M
+*> \verbatim
+*> M is INTEGER
+*> The total number of eigenvalues found. 0 <= M <= N.
+*> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
+*> \endverbatim
+*>
+*> \param[out] W
+*> \verbatim
+*> W is DOUBLE PRECISION array, dimension (N)
+*> If INFO = 0, the eigenvalues in ascending order.
+*> \endverbatim
+*>
+*> \param[out] Z
+*> \verbatim
+*> Z is COMPLEX*16 array, dimension (LDZ, N)
+*> If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
+*> eigenvectors, with the i-th column of Z holding the
+*> eigenvector associated with W(i). The eigenvectors are
+*> normalized so that Z**H*B*Z = I.
+*> If JOBZ = 'N', then Z is not referenced.
+*> \endverbatim
+*>
+*> \param[in] LDZ
+*> \verbatim
+*> LDZ is INTEGER
+*> The leading dimension of the array Z. LDZ >= 1, and if
+*> JOBZ = 'V', LDZ >= N.
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is COMPLEX*16 array, dimension (N)
+*> \endverbatim
+*>
+*> \param[out] RWORK
+*> \verbatim
+*> RWORK is DOUBLE PRECISION array, dimension (7*N)
+*> \endverbatim
+*>
+*> \param[out] IWORK
+*> \verbatim
+*> IWORK is INTEGER array, dimension (5*N)
+*> \endverbatim
+*>
+*> \param[out] IFAIL
+*> \verbatim
+*> IFAIL is INTEGER array, dimension (N)
+*> If JOBZ = 'V', then if INFO = 0, the first M elements of
+*> IFAIL are zero. If INFO > 0, then IFAIL contains the
+*> indices of the eigenvectors that failed to converge.
+*> If JOBZ = 'N', then IFAIL is not referenced.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> > 0: if INFO = i, and i is:
+*> <= N: then i eigenvectors failed to converge. Their
+*> indices are stored in array IFAIL.
+*> > N: if INFO = N + i, for 1 <= i <= N, then ZPBSTF
+*> returned INFO = i: B is not positive definite.
+*> The factorization of B could not be completed and
+*> no eigenvalues or eigenvectors were computed.
+*> \endverbatim
+*>
+*
+* Authors
+* =======
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2011
+*
+*> \ingroup complex16OTHEReigen
+*
+*
+* Further Details
+* ===============
+*>\details \b Further \b Details
+*> \verbatim
+*>
+*> Based on contributions by
+*> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
+*>
+*> \endverbatim
+*>
+* =====================================================================
SUBROUTINE ZHBGVX( JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB,
$ LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z,
$ LDZ, WORK, RWORK, IWORK, IFAIL, INFO )
*
-* -- LAPACK driver routine (version 3.2) --
+* -- LAPACK eigen routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
-* November 2006
+* November 2011
*
* .. Scalar Arguments ..
CHARACTER JOBZ, RANGE, UPLO
@@ -20,160 +308,6 @@
$ WORK( * ), Z( LDZ, * )
* ..
*
-* Purpose
-* =======
-*
-* ZHBGVX computes all the eigenvalues, and optionally, the eigenvectors
-* of a complex generalized Hermitian-definite banded eigenproblem, of
-* the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian
-* and banded, and B is also positive definite. Eigenvalues and
-* eigenvectors can be selected by specifying either all eigenvalues,
-* a range of values or a range of indices for the desired eigenvalues.
-*
-* Arguments
-* =========
-*
-* JOBZ (input) CHARACTER*1
-* = 'N': Compute eigenvalues only;
-* = 'V': Compute eigenvalues and eigenvectors.
-*
-* RANGE (input) CHARACTER*1
-* = 'A': all eigenvalues will be found;
-* = 'V': all eigenvalues in the half-open interval (VL,VU]
-* will be found;
-* = 'I': the IL-th through IU-th eigenvalues will be found.
-*
-* UPLO (input) CHARACTER*1
-* = 'U': Upper triangles of A and B are stored;
-* = 'L': Lower triangles of A and B are stored.
-*
-* N (input) INTEGER
-* The order of the matrices A and B. N >= 0.
-*
-* KA (input) INTEGER
-* The number of superdiagonals of the matrix A if UPLO = 'U',
-* or the number of subdiagonals if UPLO = 'L'. KA >= 0.
-*
-* KB (input) INTEGER
-* The number of superdiagonals of the matrix B if UPLO = 'U',
-* or the number of subdiagonals if UPLO = 'L'. KB >= 0.
-*
-* AB (input/output) COMPLEX*16 array, dimension (LDAB, N)
-* On entry, the upper or lower triangle of the Hermitian band
-* matrix A, stored in the first ka+1 rows of the array. The
-* j-th column of A is stored in the j-th column of the array AB
-* as follows:
-* if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
-* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
-*
-* On exit, the contents of AB are destroyed.
-*
-* LDAB (input) INTEGER
-* The leading dimension of the array AB. LDAB >= KA+1.
-*
-* BB (input/output) COMPLEX*16 array, dimension (LDBB, N)
-* On entry, the upper or lower triangle of the Hermitian band
-* matrix B, stored in the first kb+1 rows of the array. The
-* j-th column of B is stored in the j-th column of the array BB
-* as follows:
-* if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
-* if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
-*
-* On exit, the factor S from the split Cholesky factorization
-* B = S**H*S, as returned by ZPBSTF.
-*
-* LDBB (input) INTEGER
-* The leading dimension of the array BB. LDBB >= KB+1.
-*
-* Q (output) COMPLEX*16 array, dimension (LDQ, N)
-* If JOBZ = 'V', the n-by-n matrix used in the reduction of
-* A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x,
-* and consequently C to tridiagonal form.
-* If JOBZ = 'N', the array Q is not referenced.
-*
-* LDQ (input) INTEGER
-* The leading dimension of the array Q. If JOBZ = 'N',
-* LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N).
-*
-* VL (input) DOUBLE PRECISION
-* VU (input) DOUBLE PRECISION
-* If RANGE='V', the lower and upper bounds of the interval to
-* be searched for eigenvalues. VL < VU.
-* Not referenced if RANGE = 'A' or 'I'.
-*
-* IL (input) INTEGER
-* IU (input) INTEGER
-* If RANGE='I', the indices (in ascending order) of the
-* smallest and largest eigenvalues to be returned.
-* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
-* Not referenced if RANGE = 'A' or 'V'.
-*
-* ABSTOL (input) DOUBLE PRECISION
-* The absolute error tolerance for the eigenvalues.
-* An approximate eigenvalue is accepted as converged
-* when it is determined to lie in an interval [a,b]
-* of width less than or equal to
-*
-* ABSTOL + EPS * max( |a|,|b| ) ,
-*
-* where EPS is the machine precision. If ABSTOL is less than
-* or equal to zero, then EPS*|T| will be used in its place,
-* where |T| is the 1-norm of the tridiagonal matrix obtained
-* by reducing AP to tridiagonal form.
-*
-* Eigenvalues will be computed most accurately when ABSTOL is
-* set to twice the underflow threshold 2*DLAMCH('S'), not zero.
-* If this routine returns with INFO>0, indicating that some
-* eigenvectors did not converge, try setting ABSTOL to
-* 2*DLAMCH('S').
-*
-* M (output) INTEGER
-* The total number of eigenvalues found. 0 <= M <= N.
-* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
-*
-* W (output) DOUBLE PRECISION array, dimension (N)
-* If INFO = 0, the eigenvalues in ascending order.
-*
-* Z (output) COMPLEX*16 array, dimension (LDZ, N)
-* If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
-* eigenvectors, with the i-th column of Z holding the
-* eigenvector associated with W(i). The eigenvectors are
-* normalized so that Z**H*B*Z = I.
-* If JOBZ = 'N', then Z is not referenced.
-*
-* LDZ (input) INTEGER
-* The leading dimension of the array Z. LDZ >= 1, and if
-* JOBZ = 'V', LDZ >= N.
-*
-* WORK (workspace) COMPLEX*16 array, dimension (N)
-*
-* RWORK (workspace) DOUBLE PRECISION array, dimension (7*N)
-*
-* IWORK (workspace) INTEGER array, dimension (5*N)
-*
-* IFAIL (output) INTEGER array, dimension (N)
-* If JOBZ = 'V', then if INFO = 0, the first M elements of
-* IFAIL are zero. If INFO > 0, then IFAIL contains the
-* indices of the eigenvectors that failed to converge.
-* If JOBZ = 'N', then IFAIL is not referenced.
-*
-* INFO (output) INTEGER
-* = 0: successful exit
-* < 0: if INFO = -i, the i-th argument had an illegal value
-* > 0: if INFO = i, and i is:
-* <= N: then i eigenvectors failed to converge. Their
-* indices are stored in array IFAIL.
-* > N: if INFO = N + i, for 1 <= i <= N, then ZPBSTF
-* returned INFO = i: B is not positive definite.
-* The factorization of B could not be completed and
-* no eigenvalues or eigenvectors were computed.
-*
-* Further Details
-* ===============
-*
-* Based on contributions by
-* Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
-*
* =====================================================================
*
* .. Parameters ..