summaryrefslogtreecommitdiff
path: root/SRC/zhbevd.f
diff options
context:
space:
mode:
authorjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
committerjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
commitbaba851215b44ac3b60b9248eb02bcce7eb76247 (patch)
tree8c0f5c006875532a30d4409f5e94b0f310ff00a7 /SRC/zhbevd.f
downloadlapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.gz
lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.bz2
lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.zip
Move LAPACK trunk into position.
Diffstat (limited to 'SRC/zhbevd.f')
-rw-r--r--SRC/zhbevd.f302
1 files changed, 302 insertions, 0 deletions
diff --git a/SRC/zhbevd.f b/SRC/zhbevd.f
new file mode 100644
index 00000000..a3b2ffe7
--- /dev/null
+++ b/SRC/zhbevd.f
@@ -0,0 +1,302 @@
+ SUBROUTINE ZHBEVD( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK,
+ $ LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )
+*
+* -- LAPACK driver routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER JOBZ, UPLO
+ INTEGER INFO, KD, LDAB, LDZ, LIWORK, LRWORK, LWORK, N
+* ..
+* .. Array Arguments ..
+ INTEGER IWORK( * )
+ DOUBLE PRECISION RWORK( * ), W( * )
+ COMPLEX*16 AB( LDAB, * ), WORK( * ), Z( LDZ, * )
+* ..
+*
+* Purpose
+* =======
+*
+* ZHBEVD computes all the eigenvalues and, optionally, eigenvectors of
+* a complex Hermitian band matrix A. If eigenvectors are desired, it
+* uses a divide and conquer algorithm.
+*
+* The divide and conquer algorithm makes very mild assumptions about
+* floating point arithmetic. It will work on machines with a guard
+* digit in add/subtract, or on those binary machines without guard
+* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
+* Cray-2. It could conceivably fail on hexadecimal or decimal machines
+* without guard digits, but we know of none.
+*
+* Arguments
+* =========
+*
+* JOBZ (input) CHARACTER*1
+* = 'N': Compute eigenvalues only;
+* = 'V': Compute eigenvalues and eigenvectors.
+*
+* UPLO (input) CHARACTER*1
+* = 'U': Upper triangle of A is stored;
+* = 'L': Lower triangle of A is stored.
+*
+* N (input) INTEGER
+* The order of the matrix A. N >= 0.
+*
+* KD (input) INTEGER
+* The number of superdiagonals of the matrix A if UPLO = 'U',
+* or the number of subdiagonals if UPLO = 'L'. KD >= 0.
+*
+* AB (input/output) COMPLEX*16 array, dimension (LDAB, N)
+* On entry, the upper or lower triangle of the Hermitian band
+* matrix A, stored in the first KD+1 rows of the array. The
+* j-th column of A is stored in the j-th column of the array AB
+* as follows:
+* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
+* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
+*
+* On exit, AB is overwritten by values generated during the
+* reduction to tridiagonal form. If UPLO = 'U', the first
+* superdiagonal and the diagonal of the tridiagonal matrix T
+* are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
+* the diagonal and first subdiagonal of T are returned in the
+* first two rows of AB.
+*
+* LDAB (input) INTEGER
+* The leading dimension of the array AB. LDAB >= KD + 1.
+*
+* W (output) DOUBLE PRECISION array, dimension (N)
+* If INFO = 0, the eigenvalues in ascending order.
+*
+* Z (output) COMPLEX*16 array, dimension (LDZ, N)
+* If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
+* eigenvectors of the matrix A, with the i-th column of Z
+* holding the eigenvector associated with W(i).
+* If JOBZ = 'N', then Z is not referenced.
+*
+* LDZ (input) INTEGER
+* The leading dimension of the array Z. LDZ >= 1, and if
+* JOBZ = 'V', LDZ >= max(1,N).
+*
+* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
+* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*
+* LWORK (input) INTEGER
+* The dimension of the array WORK.
+* If N <= 1, LWORK must be at least 1.
+* If JOBZ = 'N' and N > 1, LWORK must be at least N.
+* If JOBZ = 'V' and N > 1, LWORK must be at least 2*N**2.
+*
+* If LWORK = -1, then a workspace query is assumed; the routine
+* only calculates the optimal sizes of the WORK, RWORK and
+* IWORK arrays, returns these values as the first entries of
+* the WORK, RWORK and IWORK arrays, and no error message
+* related to LWORK or LRWORK or LIWORK is issued by XERBLA.
+*
+* RWORK (workspace/output) DOUBLE PRECISION array,
+* dimension (LRWORK)
+* On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
+*
+* LRWORK (input) INTEGER
+* The dimension of array RWORK.
+* If N <= 1, LRWORK must be at least 1.
+* If JOBZ = 'N' and N > 1, LRWORK must be at least N.
+* If JOBZ = 'V' and N > 1, LRWORK must be at least
+* 1 + 5*N + 2*N**2.
+*
+* If LRWORK = -1, then a workspace query is assumed; the
+* routine only calculates the optimal sizes of the WORK, RWORK
+* and IWORK arrays, returns these values as the first entries
+* of the WORK, RWORK and IWORK arrays, and no error message
+* related to LWORK or LRWORK or LIWORK is issued by XERBLA.
+*
+* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
+* On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
+*
+* LIWORK (input) INTEGER
+* The dimension of array IWORK.
+* If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
+* If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N .
+*
+* If LIWORK = -1, then a workspace query is assumed; the
+* routine only calculates the optimal sizes of the WORK, RWORK
+* and IWORK arrays, returns these values as the first entries
+* of the WORK, RWORK and IWORK arrays, and no error message
+* related to LWORK or LRWORK or LIWORK is issued by XERBLA.
+*
+* INFO (output) INTEGER
+* = 0: successful exit.
+* < 0: if INFO = -i, the i-th argument had an illegal value.
+* > 0: if INFO = i, the algorithm failed to converge; i
+* off-diagonal elements of an intermediate tridiagonal
+* form did not converge to zero.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
+ COMPLEX*16 CZERO, CONE
+ PARAMETER ( CZERO = ( 0.0D0, 0.0D0 ),
+ $ CONE = ( 1.0D0, 0.0D0 ) )
+* ..
+* .. Local Scalars ..
+ LOGICAL LOWER, LQUERY, WANTZ
+ INTEGER IINFO, IMAX, INDE, INDWK2, INDWRK, ISCALE,
+ $ LIWMIN, LLRWK, LLWK2, LRWMIN, LWMIN
+ DOUBLE PRECISION ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
+ $ SMLNUM
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ DOUBLE PRECISION DLAMCH, ZLANHB
+ EXTERNAL LSAME, DLAMCH, ZLANHB
+* ..
+* .. External Subroutines ..
+ EXTERNAL DSCAL, DSTERF, XERBLA, ZGEMM, ZHBTRD, ZLACPY,
+ $ ZLASCL, ZSTEDC
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC SQRT
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ WANTZ = LSAME( JOBZ, 'V' )
+ LOWER = LSAME( UPLO, 'L' )
+ LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 .OR. LRWORK.EQ.-1 )
+*
+ INFO = 0
+ IF( N.LE.1 ) THEN
+ LWMIN = 1
+ LRWMIN = 1
+ LIWMIN = 1
+ ELSE
+ IF( WANTZ ) THEN
+ LWMIN = 2*N**2
+ LRWMIN = 1 + 5*N + 2*N**2
+ LIWMIN = 3 + 5*N
+ ELSE
+ LWMIN = N
+ LRWMIN = N
+ LIWMIN = 1
+ END IF
+ END IF
+ IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
+ INFO = -1
+ ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
+ INFO = -2
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( KD.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( LDAB.LT.KD+1 ) THEN
+ INFO = -6
+ ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
+ INFO = -9
+ END IF
+*
+ IF( INFO.EQ.0 ) THEN
+ WORK( 1 ) = LWMIN
+ RWORK( 1 ) = LRWMIN
+ IWORK( 1 ) = LIWMIN
+*
+ IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
+ INFO = -11
+ ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
+ INFO = -13
+ ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
+ INFO = -15
+ END IF
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZHBEVD', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( N.EQ.0 )
+ $ RETURN
+*
+ IF( N.EQ.1 ) THEN
+ W( 1 ) = AB( 1, 1 )
+ IF( WANTZ )
+ $ Z( 1, 1 ) = CONE
+ RETURN
+ END IF
+*
+* Get machine constants.
+*
+ SAFMIN = DLAMCH( 'Safe minimum' )
+ EPS = DLAMCH( 'Precision' )
+ SMLNUM = SAFMIN / EPS
+ BIGNUM = ONE / SMLNUM
+ RMIN = SQRT( SMLNUM )
+ RMAX = SQRT( BIGNUM )
+*
+* Scale matrix to allowable range, if necessary.
+*
+ ANRM = ZLANHB( 'M', UPLO, N, KD, AB, LDAB, RWORK )
+ ISCALE = 0
+ IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
+ ISCALE = 1
+ SIGMA = RMIN / ANRM
+ ELSE IF( ANRM.GT.RMAX ) THEN
+ ISCALE = 1
+ SIGMA = RMAX / ANRM
+ END IF
+ IF( ISCALE.EQ.1 ) THEN
+ IF( LOWER ) THEN
+ CALL ZLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
+ ELSE
+ CALL ZLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
+ END IF
+ END IF
+*
+* Call ZHBTRD to reduce Hermitian band matrix to tridiagonal form.
+*
+ INDE = 1
+ INDWRK = INDE + N
+ INDWK2 = 1 + N*N
+ LLWK2 = LWORK - INDWK2 + 1
+ LLRWK = LRWORK - INDWRK + 1
+ CALL ZHBTRD( JOBZ, UPLO, N, KD, AB, LDAB, W, RWORK( INDE ), Z,
+ $ LDZ, WORK, IINFO )
+*
+* For eigenvalues only, call DSTERF. For eigenvectors, call ZSTEDC.
+*
+ IF( .NOT.WANTZ ) THEN
+ CALL DSTERF( N, W, RWORK( INDE ), INFO )
+ ELSE
+ CALL ZSTEDC( 'I', N, W, RWORK( INDE ), WORK, N, WORK( INDWK2 ),
+ $ LLWK2, RWORK( INDWRK ), LLRWK, IWORK, LIWORK,
+ $ INFO )
+ CALL ZGEMM( 'N', 'N', N, N, N, CONE, Z, LDZ, WORK, N, CZERO,
+ $ WORK( INDWK2 ), N )
+ CALL ZLACPY( 'A', N, N, WORK( INDWK2 ), N, Z, LDZ )
+ END IF
+*
+* If matrix was scaled, then rescale eigenvalues appropriately.
+*
+ IF( ISCALE.EQ.1 ) THEN
+ IF( INFO.EQ.0 ) THEN
+ IMAX = N
+ ELSE
+ IMAX = INFO - 1
+ END IF
+ CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
+ END IF
+*
+ WORK( 1 ) = LWMIN
+ RWORK( 1 ) = LRWMIN
+ IWORK( 1 ) = LIWMIN
+ RETURN
+*
+* End of ZHBEVD
+*
+ END