summaryrefslogtreecommitdiff
path: root/SRC/zggsvp3.f
diff options
context:
space:
mode:
authorphilippe.theveny <philippe.theveny@8a072113-8704-0410-8d35-dd094bca7971>2015-08-14 22:54:14 +0000
committerphilippe.theveny <philippe.theveny@8a072113-8704-0410-8d35-dd094bca7971>2015-08-14 22:54:14 +0000
commitde7f36e7f9592366fb7db0bf6fc353924966f340 (patch)
tree91cc8980f885f5b391efbbd2a5dc5e0824195397 /SRC/zggsvp3.f
parent06f432d14d1a4255929e35ffd4ee9d8cabf07ced (diff)
downloadlapack-de7f36e7f9592366fb7db0bf6fc353924966f340.tar.gz
lapack-de7f36e7f9592366fb7db0bf6fc353924966f340.tar.bz2
lapack-de7f36e7f9592366fb7db0bf6fc353924966f340.zip
Added BLAS3 routines for generalised SVD.
TODO: LAPACKE wrappers.
Diffstat (limited to 'SRC/zggsvp3.f')
-rw-r--r--SRC/zggsvp3.f580
1 files changed, 580 insertions, 0 deletions
diff --git a/SRC/zggsvp3.f b/SRC/zggsvp3.f
new file mode 100644
index 00000000..b397651c
--- /dev/null
+++ b/SRC/zggsvp3.f
@@ -0,0 +1,580 @@
+*> \brief \b ZGGSVP3
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download ZGGSVP3 + dependencies
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggsvp3.f">
+*> [TGZ]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggsvp3.f">
+*> [ZIP]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggsvp3.f">
+*> [TXT]</a>
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE ZGGSVP3( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
+* TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
+* IWORK, RWORK, TAU, WORK, LWORK, INFO )
+*
+* .. Scalar Arguments ..
+* CHARACTER JOBQ, JOBU, JOBV
+* INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P, LWORK
+* DOUBLE PRECISION TOLA, TOLB
+* ..
+* .. Array Arguments ..
+* INTEGER IWORK( * )
+* DOUBLE PRECISION RWORK( * )
+* COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
+* $ TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> ZGGSVP3 computes unitary matrices U, V and Q such that
+*>
+*> N-K-L K L
+*> U**H*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0;
+*> L ( 0 0 A23 )
+*> M-K-L ( 0 0 0 )
+*>
+*> N-K-L K L
+*> = K ( 0 A12 A13 ) if M-K-L < 0;
+*> M-K ( 0 0 A23 )
+*>
+*> N-K-L K L
+*> V**H*B*Q = L ( 0 0 B13 )
+*> P-L ( 0 0 0 )
+*>
+*> where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
+*> upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
+*> otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective
+*> numerical rank of the (M+P)-by-N matrix (A**H,B**H)**H.
+*>
+*> This decomposition is the preprocessing step for computing the
+*> Generalized Singular Value Decomposition (GSVD), see subroutine
+*> ZGGSVD3.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] JOBU
+*> \verbatim
+*> JOBU is CHARACTER*1
+*> = 'U': Unitary matrix U is computed;
+*> = 'N': U is not computed.
+*> \endverbatim
+*>
+*> \param[in] JOBV
+*> \verbatim
+*> JOBV is CHARACTER*1
+*> = 'V': Unitary matrix V is computed;
+*> = 'N': V is not computed.
+*> \endverbatim
+*>
+*> \param[in] JOBQ
+*> \verbatim
+*> JOBQ is CHARACTER*1
+*> = 'Q': Unitary matrix Q is computed;
+*> = 'N': Q is not computed.
+*> \endverbatim
+*>
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the matrix A. M >= 0.
+*> \endverbatim
+*>
+*> \param[in] P
+*> \verbatim
+*> P is INTEGER
+*> The number of rows of the matrix B. P >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the matrices A and B. N >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is COMPLEX*16 array, dimension (LDA,N)
+*> On entry, the M-by-N matrix A.
+*> On exit, A contains the triangular (or trapezoidal) matrix
+*> described in the Purpose section.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[in,out] B
+*> \verbatim
+*> B is COMPLEX*16 array, dimension (LDB,N)
+*> On entry, the P-by-N matrix B.
+*> On exit, B contains the triangular matrix described in
+*> the Purpose section.
+*> \endverbatim
+*>
+*> \param[in] LDB
+*> \verbatim
+*> LDB is INTEGER
+*> The leading dimension of the array B. LDB >= max(1,P).
+*> \endverbatim
+*>
+*> \param[in] TOLA
+*> \verbatim
+*> TOLA is DOUBLE PRECISION
+*> \endverbatim
+*>
+*> \param[in] TOLB
+*> \verbatim
+*> TOLB is DOUBLE PRECISION
+*>
+*> TOLA and TOLB are the thresholds to determine the effective
+*> numerical rank of matrix B and a subblock of A. Generally,
+*> they are set to
+*> TOLA = MAX(M,N)*norm(A)*MAZHEPS,
+*> TOLB = MAX(P,N)*norm(B)*MAZHEPS.
+*> The size of TOLA and TOLB may affect the size of backward
+*> errors of the decomposition.
+*> \endverbatim
+*>
+*> \param[out] K
+*> \verbatim
+*> K is INTEGER
+*> \endverbatim
+*>
+*> \param[out] L
+*> \verbatim
+*> L is INTEGER
+*>
+*> On exit, K and L specify the dimension of the subblocks
+*> described in Purpose section.
+*> K + L = effective numerical rank of (A**H,B**H)**H.
+*> \endverbatim
+*>
+*> \param[out] U
+*> \verbatim
+*> U is COMPLEX*16 array, dimension (LDU,M)
+*> If JOBU = 'U', U contains the unitary matrix U.
+*> If JOBU = 'N', U is not referenced.
+*> \endverbatim
+*>
+*> \param[in] LDU
+*> \verbatim
+*> LDU is INTEGER
+*> The leading dimension of the array U. LDU >= max(1,M) if
+*> JOBU = 'U'; LDU >= 1 otherwise.
+*> \endverbatim
+*>
+*> \param[out] V
+*> \verbatim
+*> V is COMPLEX*16 array, dimension (LDV,P)
+*> If JOBV = 'V', V contains the unitary matrix V.
+*> If JOBV = 'N', V is not referenced.
+*> \endverbatim
+*>
+*> \param[in] LDV
+*> \verbatim
+*> LDV is INTEGER
+*> The leading dimension of the array V. LDV >= max(1,P) if
+*> JOBV = 'V'; LDV >= 1 otherwise.
+*> \endverbatim
+*>
+*> \param[out] Q
+*> \verbatim
+*> Q is COMPLEX*16 array, dimension (LDQ,N)
+*> If JOBQ = 'Q', Q contains the unitary matrix Q.
+*> If JOBQ = 'N', Q is not referenced.
+*> \endverbatim
+*>
+*> \param[in] LDQ
+*> \verbatim
+*> LDQ is INTEGER
+*> The leading dimension of the array Q. LDQ >= max(1,N) if
+*> JOBQ = 'Q'; LDQ >= 1 otherwise.
+*> \endverbatim
+*>
+*> \param[out] IWORK
+*> \verbatim
+*> IWORK is INTEGER array, dimension (N)
+*> \endverbatim
+*>
+*> \param[out] RWORK
+*> \verbatim
+*> RWORK is DOUBLE PRECISION array, dimension (2*N)
+*> \endverbatim
+*>
+*> \param[out] TAU
+*> \verbatim
+*> TAU is COMPLEX*16 array, dimension (N)
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
+*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> The dimension of the array WORK.
+*>
+*> If LWORK = -1, then a workspace query is assumed; the routine
+*> only calculates the optimal size of the WORK array, returns
+*> this value as the first entry of the WORK array, and no error
+*> message related to LWORK is issued by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value.
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date August 2015
+*
+*> \ingroup complex16OTHERcomputational
+*
+*> \par Further Details:
+* =====================
+*
+*> \verbatim
+*>
+*> The subroutine uses LAPACK subroutine ZGEQP3 for the QR factorization
+*> with column pivoting to detect the effective numerical rank of the
+*> a matrix. It may be replaced by a better rank determination strategy.
+*>
+*> ZGGSVP3 replaces the deprecated subroutine ZGGSVP.
+*>
+*> \endverbatim
+*>
+* =====================================================================
+ SUBROUTINE ZGGSVP3( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
+ $ TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
+ $ IWORK, RWORK, TAU, WORK, LWORK, INFO )
+*
+* -- LAPACK computational routine (version 3.6.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* August 2015
+*
+ IMPLICIT NONE
+*
+* .. Scalar Arguments ..
+ CHARACTER JOBQ, JOBU, JOBV
+ INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P,
+ $ LWORK
+ DOUBLE PRECISION TOLA, TOLB
+* ..
+* .. Array Arguments ..
+ INTEGER IWORK( * )
+ DOUBLE PRECISION RWORK( * )
+ COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
+ $ TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ COMPLEX*16 CZERO, CONE
+ PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
+ $ CONE = ( 1.0D+0, 0.0D+0 ) )
+* ..
+* .. Local Scalars ..
+ LOGICAL FORWRD, WANTQ, WANTU, WANTV, LQUERY
+ INTEGER I, J, LWKOPT
+ COMPLEX*16 T
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. External Subroutines ..
+ EXTERNAL XERBLA, ZGEQP3, ZGEQR2, ZGERQ2, ZLACPY, ZLAPMT,
+ $ ZLASET, ZUNG2R, ZUNM2R, ZUNMR2
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, DBLE, DIMAG, MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters
+*
+ WANTU = LSAME( JOBU, 'U' )
+ WANTV = LSAME( JOBV, 'V' )
+ WANTQ = LSAME( JOBQ, 'Q' )
+ FORWRD = .TRUE.
+ LQUERY = ( LWORK.EQ.-1 )
+ LWKOPT = 1
+*
+* Test the input arguments
+*
+ INFO = 0
+ IF( .NOT.( WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
+ INFO = -1
+ ELSE IF( .NOT.( WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
+ INFO = -2
+ ELSE IF( .NOT.( WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
+ INFO = -3
+ ELSE IF( M.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( P.LT.0 ) THEN
+ INFO = -5
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -6
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -8
+ ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
+ INFO = -10
+ ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
+ INFO = -16
+ ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
+ INFO = -18
+ ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
+ INFO = -20
+ ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
+ INFO = -24
+ END IF
+*
+* Compute workspace
+*
+ IF( INFO.EQ.0 ) THEN
+ CALL ZGEQP3( P, N, B, LDB, IWORK, TAU, WORK, -1, RWORK, INFO )
+ LWKOPT = INT( WORK ( 1 ) )
+ IF( WANTV ) THEN
+ LWKOPT = MAX( LWKOPT, P )
+ END IF
+ LWKOPT = MAX( LWKOPT, MIN( N, P ) )
+ LWKOPT = MAX( LWKOPT, M )
+ IF( WANTQ ) THEN
+ LWKOPT = MAX( LWKOPT, N )
+ END IF
+ CALL ZGEQP3( M, N, A, LDA, IWORK, TAU, WORK, -1, RWORK, INFO )
+ LWKOPT = MAX( LWKOPT, INT( WORK ( 1 ) ) )
+ LWKOPT = MAX( 1, LWKOPT )
+ WORK( 1 ) = DCMPLX( LWKOPT )
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZGGSVP3', -INFO )
+ RETURN
+ END IF
+ IF( LQUERY ) THEN
+ RETURN
+ ENDIF
+*
+* QR with column pivoting of B: B*P = V*( S11 S12 )
+* ( 0 0 )
+*
+ DO 10 I = 1, N
+ IWORK( I ) = 0
+ 10 CONTINUE
+ CALL ZGEQP3( P, N, B, LDB, IWORK, TAU, WORK, LWORK, RWORK, INFO )
+*
+* Update A := A*P
+*
+ CALL ZLAPMT( FORWRD, M, N, A, LDA, IWORK )
+*
+* Determine the effective rank of matrix B.
+*
+ L = 0
+ DO 20 I = 1, MIN( P, N )
+ IF( ABS( B( I, I ) ).GT.TOLB )
+ $ L = L + 1
+ 20 CONTINUE
+*
+ IF( WANTV ) THEN
+*
+* Copy the details of V, and form V.
+*
+ CALL ZLASET( 'Full', P, P, CZERO, CZERO, V, LDV )
+ IF( P.GT.1 )
+ $ CALL ZLACPY( 'Lower', P-1, N, B( 2, 1 ), LDB, V( 2, 1 ),
+ $ LDV )
+ CALL ZUNG2R( P, P, MIN( P, N ), V, LDV, TAU, WORK, INFO )
+ END IF
+*
+* Clean up B
+*
+ DO 40 J = 1, L - 1
+ DO 30 I = J + 1, L
+ B( I, J ) = CZERO
+ 30 CONTINUE
+ 40 CONTINUE
+ IF( P.GT.L )
+ $ CALL ZLASET( 'Full', P-L, N, CZERO, CZERO, B( L+1, 1 ), LDB )
+*
+ IF( WANTQ ) THEN
+*
+* Set Q = I and Update Q := Q*P
+*
+ CALL ZLASET( 'Full', N, N, CZERO, CONE, Q, LDQ )
+ CALL ZLAPMT( FORWRD, N, N, Q, LDQ, IWORK )
+ END IF
+*
+ IF( P.GE.L .AND. N.NE.L ) THEN
+*
+* RQ factorization of ( S11 S12 ) = ( 0 S12 )*Z
+*
+ CALL ZGERQ2( L, N, B, LDB, TAU, WORK, INFO )
+*
+* Update A := A*Z**H
+*
+ CALL ZUNMR2( 'Right', 'Conjugate transpose', M, N, L, B, LDB,
+ $ TAU, A, LDA, WORK, INFO )
+ IF( WANTQ ) THEN
+*
+* Update Q := Q*Z**H
+*
+ CALL ZUNMR2( 'Right', 'Conjugate transpose', N, N, L, B,
+ $ LDB, TAU, Q, LDQ, WORK, INFO )
+ END IF
+*
+* Clean up B
+*
+ CALL ZLASET( 'Full', L, N-L, CZERO, CZERO, B, LDB )
+ DO 60 J = N - L + 1, N
+ DO 50 I = J - N + L + 1, L
+ B( I, J ) = CZERO
+ 50 CONTINUE
+ 60 CONTINUE
+*
+ END IF
+*
+* Let N-L L
+* A = ( A11 A12 ) M,
+*
+* then the following does the complete QR decomposition of A11:
+*
+* A11 = U*( 0 T12 )*P1**H
+* ( 0 0 )
+*
+ DO 70 I = 1, N - L
+ IWORK( I ) = 0
+ 70 CONTINUE
+ CALL ZGEQP3( M, N-L, A, LDA, IWORK, TAU, WORK, LWORK, RWORK,
+ $ INFO )
+*
+* Determine the effective rank of A11
+*
+ K = 0
+ DO 80 I = 1, MIN( M, N-L )
+ IF( ABS( A( I, I ) ).GT.TOLA )
+ $ K = K + 1
+ 80 CONTINUE
+*
+* Update A12 := U**H*A12, where A12 = A( 1:M, N-L+1:N )
+*
+ CALL ZUNM2R( 'Left', 'Conjugate transpose', M, L, MIN( M, N-L ),
+ $ A, LDA, TAU, A( 1, N-L+1 ), LDA, WORK, INFO )
+*
+ IF( WANTU ) THEN
+*
+* Copy the details of U, and form U
+*
+ CALL ZLASET( 'Full', M, M, CZERO, CZERO, U, LDU )
+ IF( M.GT.1 )
+ $ CALL ZLACPY( 'Lower', M-1, N-L, A( 2, 1 ), LDA, U( 2, 1 ),
+ $ LDU )
+ CALL ZUNG2R( M, M, MIN( M, N-L ), U, LDU, TAU, WORK, INFO )
+ END IF
+*
+ IF( WANTQ ) THEN
+*
+* Update Q( 1:N, 1:N-L ) = Q( 1:N, 1:N-L )*P1
+*
+ CALL ZLAPMT( FORWRD, N, N-L, Q, LDQ, IWORK )
+ END IF
+*
+* Clean up A: set the strictly lower triangular part of
+* A(1:K, 1:K) = 0, and A( K+1:M, 1:N-L ) = 0.
+*
+ DO 100 J = 1, K - 1
+ DO 90 I = J + 1, K
+ A( I, J ) = CZERO
+ 90 CONTINUE
+ 100 CONTINUE
+ IF( M.GT.K )
+ $ CALL ZLASET( 'Full', M-K, N-L, CZERO, CZERO, A( K+1, 1 ), LDA )
+*
+ IF( N-L.GT.K ) THEN
+*
+* RQ factorization of ( T11 T12 ) = ( 0 T12 )*Z1
+*
+ CALL ZGERQ2( K, N-L, A, LDA, TAU, WORK, INFO )
+*
+ IF( WANTQ ) THEN
+*
+* Update Q( 1:N,1:N-L ) = Q( 1:N,1:N-L )*Z1**H
+*
+ CALL ZUNMR2( 'Right', 'Conjugate transpose', N, N-L, K, A,
+ $ LDA, TAU, Q, LDQ, WORK, INFO )
+ END IF
+*
+* Clean up A
+*
+ CALL ZLASET( 'Full', K, N-L-K, CZERO, CZERO, A, LDA )
+ DO 120 J = N - L - K + 1, N - L
+ DO 110 I = J - N + L + K + 1, K
+ A( I, J ) = CZERO
+ 110 CONTINUE
+ 120 CONTINUE
+*
+ END IF
+*
+ IF( M.GT.K ) THEN
+*
+* QR factorization of A( K+1:M,N-L+1:N )
+*
+ CALL ZGEQR2( M-K, L, A( K+1, N-L+1 ), LDA, TAU, WORK, INFO )
+*
+ IF( WANTU ) THEN
+*
+* Update U(:,K+1:M) := U(:,K+1:M)*U1
+*
+ CALL ZUNM2R( 'Right', 'No transpose', M, M-K, MIN( M-K, L ),
+ $ A( K+1, N-L+1 ), LDA, TAU, U( 1, K+1 ), LDU,
+ $ WORK, INFO )
+ END IF
+*
+* Clean up
+*
+ DO 140 J = N - L + 1, N
+ DO 130 I = J - N + K + L + 1, M
+ A( I, J ) = CZERO
+ 130 CONTINUE
+ 140 CONTINUE
+*
+ END IF
+*
+ WORK( 1 ) = DCMPLX( LWKOPT )
+ RETURN
+*
+* End of ZGGSVP3
+*
+ END