summaryrefslogtreecommitdiff
path: root/SRC/zggsvd.f
diff options
context:
space:
mode:
authorjulie <julielangou@users.noreply.github.com>2011-04-02 11:08:56 +0000
committerjulie <julielangou@users.noreply.github.com>2011-04-02 11:08:56 +0000
commitf2953573ede24d7f8c01fdb18de48f65f00a9943 (patch)
tree53172aa9083b9aa1abe2d6c130f7c173d8d8725b /SRC/zggsvd.f
parent53b71f5605f83d116ab6bcf477bfb6d2ca757de1 (diff)
downloadlapack-f2953573ede24d7f8c01fdb18de48f65f00a9943.tar.gz
lapack-f2953573ede24d7f8c01fdb18de48f65f00a9943.tar.bz2
lapack-f2953573ede24d7f8c01fdb18de48f65f00a9943.zip
First pass to homgenize notation for transpose (**T) and conjugate transpose (**H)
Corresponds to bug0024
Diffstat (limited to 'SRC/zggsvd.f')
-rw-r--r--SRC/zggsvd.f20
1 files changed, 10 insertions, 10 deletions
diff --git a/SRC/zggsvd.f b/SRC/zggsvd.f
index 6727531c..c7be33f2 100644
--- a/SRC/zggsvd.f
+++ b/SRC/zggsvd.f
@@ -24,11 +24,11 @@
* ZGGSVD computes the generalized singular value decomposition (GSVD)
* of an M-by-N complex matrix A and P-by-N complex matrix B:
*
-* U'*A*Q = D1*( 0 R ), V'*B*Q = D2*( 0 R )
+* U**H*A*Q = D1*( 0 R ), V**H*B*Q = D2*( 0 R )
*
-* where U, V and Q are unitary matrices, and Z' means the conjugate
-* transpose of Z. Let K+L = the effective numerical rank of the
-* matrix (A',B')', then R is a (K+L)-by-(K+L) nonsingular upper
+* where U, V and Q are unitary matrices.
+* Let K+L = the effective numerical rank of the
+* matrix (A**H,B**H)**H, then R is a (K+L)-by-(K+L) nonsingular upper
* triangular matrix, D1 and D2 are M-by-(K+L) and P-by-(K+L) "diagonal"
* matrices and of the following structures, respectively:
*
@@ -85,13 +85,13 @@
*
* In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
* A and B implicitly gives the SVD of A*inv(B):
-* A*inv(B) = U*(D1*inv(D2))*V'.
-* If ( A',B')' has orthnormal columns, then the GSVD of A and B is also
+* A*inv(B) = U*(D1*inv(D2))*V**H.
+* If ( A**H,B**H)**H has orthnormal columns, then the GSVD of A and B is also
* equal to the CS decomposition of A and B. Furthermore, the GSVD can
* be used to derive the solution of the eigenvalue problem:
-* A'*A x = lambda* B'*B x.
+* A**H*A x = lambda* B**H*B x.
* In some literature, the GSVD of A and B is presented in the form
-* U'*A*X = ( 0 D1 ), V'*B*X = ( 0 D2 )
+* U**H*A*X = ( 0 D1 ), V**H*B*X = ( 0 D2 )
* where U and V are orthogonal and X is nonsingular, and D1 and D2 are
* ``diagonal''. The former GSVD form can be converted to the latter
* form by taking the nonsingular matrix X as
@@ -127,7 +127,7 @@
* L (output) INTEGER
* On exit, K and L specify the dimension of the subblocks
* described in Purpose.
-* K + L = effective numerical rank of (A',B')'.
+* K + L = effective numerical rank of (A**H,B**H)**H.
*
* A (input/output) COMPLEX*16 array, dimension (LDA,N)
* On entry, the M-by-N matrix A.
@@ -209,7 +209,7 @@
* TOLA DOUBLE PRECISION
* TOLB DOUBLE PRECISION
* TOLA and TOLB are the thresholds to determine the effective
-* rank of (A',B')'. Generally, they are set to
+* rank of (A**H,B**H)**H. Generally, they are set to
* TOLA = MAX(M,N)*norm(A)*MAZHEPS,
* TOLB = MAX(P,N)*norm(B)*MAZHEPS.
* The size of TOLA and TOLB may affect the size of backward