summaryrefslogtreecommitdiff
path: root/SRC/zgemlq.f
diff options
context:
space:
mode:
authorSyd Hashemi <syd@Syds-MacBook-Pro.local>2016-10-19 09:52:19 -0700
committerSyd Hashemi <syd@Syds-MacBook-Pro.local>2016-10-19 09:52:19 -0700
commita6afc403fab8bdcc4c09514ae86f3da2179d88e1 (patch)
tree8d531c7adbd65949b7f115c933a2cfb788a5dcfa /SRC/zgemlq.f
parent44399df62c95ae2a6feab918eecb1b1b4a8ccca8 (diff)
downloadlapack-a6afc403fab8bdcc4c09514ae86f3da2179d88e1.tar.gz
lapack-a6afc403fab8bdcc4c09514ae86f3da2179d88e1.tar.bz2
lapack-a6afc403fab8bdcc4c09514ae86f3da2179d88e1.zip
Tall skinny and short wide routines
Diffstat (limited to 'SRC/zgemlq.f')
-rw-r--r--SRC/zgemlq.f261
1 files changed, 261 insertions, 0 deletions
diff --git a/SRC/zgemlq.f b/SRC/zgemlq.f
new file mode 100644
index 00000000..f71b6fd8
--- /dev/null
+++ b/SRC/zgemlq.f
@@ -0,0 +1,261 @@
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE ZGEMLQ( SIDE, TRANS, M, N, K, A, LDA, WORK1,
+* $ LWORK1, C, LDC, WORK2, LWORK2, INFO )
+*
+*
+* .. Scalar Arguments ..
+* CHARACTER SIDE, TRANS
+* INTEGER INFO, LDA, M, N, K, MB, NB, LWORK1, LWORK2, LDC
+* ..
+* .. Array Arguments ..
+* COMPLEX*16 A( LDA, * ), WORK1( * ), C(LDC, * ),
+* $ WORK2( * )
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> ZGEMLQ overwrites the general real M-by-N matrix C with
+*>
+*>
+*> SIDE = 'L' SIDE = 'R'
+*> TRANS = 'N': Q * C C * Q
+*> TRANS = 'T': Q**T * C C * Q**T
+*> where Q is a complex orthogonal matrix defined as the product
+*> of blocked elementary reflectors computed by short wide LQ
+*> factorization (DGELQ)
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] SIDE
+*> SIDE is CHARACTER*1
+*> = 'L': apply Q or Q**T from the Left;
+*> = 'R': apply Q or Q**T from the Right.
+*>
+*> \param[in] TRANS
+*> TRANS is CHARACTER*1
+*> = 'N': No transpose, apply Q;
+*> = 'T': Transpose, apply Q**T.
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the matrix A. M >=0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the matrix C. N >= M.
+*> \endverbatim
+*>
+*> \param[in] K
+*> \verbatim
+*> K is INTEGER
+*> The number of elementary reflectors whose product defines
+*> the matrix Q.
+*> M >= K >= 0;
+*>
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is COMPLEX*16 array, dimension (LDA,K)
+*> The i-th row must contain the vector which defines the blocked
+*> elementary reflector H(i), for i = 1,2,...,k, as returned by
+*> DLASWLQ in the first k rows of its array argument A.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A.
+*> If SIDE = 'L', LDA >= max(1,M);
+*> if SIDE = 'R', LDA >= max(1,N).
+*> \endverbatim
+*>
+*> \param[in] WORK1
+*> \verbatim
+*> WORK1 is COMPLEX*16 array, dimension (MAX(1,LWORK1)) is
+*> returned by GEQR.
+*> \endverbatim
+*>
+*> \param[in] LWORK1
+*> \verbatim
+*> LWORK1 is INTEGER
+*> The dimension of the array WORK1.
+*> \endverbatim
+*>
+*> \param[in,out] C
+*> C is COMPLEX*16 array, dimension (LDC,N)
+*> On entry, the M-by-N matrix C.
+*> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
+*> \param[in] LDC
+*> LDC is INTEGER
+*> The leading dimension of the array C. LDC >= max(1,M).
+*>
+*> \param[out] WORK2
+*> \verbatim
+*> (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK2))
+*>
+*> \endverbatim
+*> \param[in] LWORK2
+*> \verbatim
+*> LWORK2 is INTEGER
+*> The dimension of the array WORK2.
+*> If LWORK2 = -1, then a workspace query is assumed; the routine
+*> only calculates the optimal size of the WORK2 array, returns
+*> this value as the third entry of the WORK2 array (WORK2(1)),
+*> and no error message related to LWORK2 is issued by XERBLA.
+*>
+*> \endverbatim
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \par Further Details:
+* =====================
+*>
+*> \verbatim
+*> Depending on the matrix dimensions M and N, and row and column
+*> block sizes MB and NB returned by ILAENV, GELQ will use either
+*> LASWLQ(if the matrix is short-and-wide) or GELQT to compute
+*> the LQ decomposition.
+*> The output of LASWLQ or GELQT representing Q is stored in A and in
+*> array WORK1(6:LWORK1) for later use.
+*> WORK1(2:5) contains the matrix dimensions M,N and block sizes MB, NB
+*> which are needed to interpret A and WORK1(6:LWORK1) for later use.
+*> WORK1(1)=1 indicates that the code needed to take WORK1(2:5) and
+*> decide whether LASWLQ or GELQT was used is the same as used below in
+*> GELQ. For a detailed description of A and WORK1(6:LWORK1), see
+*> Further Details in LASWLQ or GELQT.
+*> \endverbatim
+*>
+* =====================================================================
+ SUBROUTINE ZGEMLQ( SIDE, TRANS, M, N, K, A, LDA, WORK1, LWORK1,
+ $ C, LDC, WORK2, LWORK2, INFO )
+*
+* -- LAPACK computational routine (version 3.5.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2013
+*
+* .. Scalar Arguments ..
+ CHARACTER SIDE, TRANS
+ INTEGER INFO, LDA, M, N, K, LWORK1, LWORK2, LDC
+* ..
+* .. Array Arguments ..
+ COMPLEX*16 A( LDA, * ), C( LDC, * ), WORK1( * ), WORK2( * )
+* ..
+*
+* =====================================================================
+*
+* ..
+* .. Local Scalars ..
+ LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY
+ INTEGER I, II, KK, MB, NB, LW, NBLCKS, MN
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* .. External Subroutines ..
+ EXTERNAL ZLAMSWLQ, ZGEMLQT, XERBLA
+* .. Intrinsic Functions ..
+ INTRINSIC INT, MAX, MIN, MOD
+* ..
+* .. Executable Statements ..
+*
+* Test the input arguments
+*
+ LQUERY = LWORK2.LT.0
+ NOTRAN = LSAME( TRANS, 'N' )
+ TRAN = LSAME( TRANS, 'C' )
+ LEFT = LSAME( SIDE, 'L' )
+ RIGHT = LSAME( SIDE, 'R' )
+*
+ MB = INT(WORK1(4))
+ NB = INT(WORK1(5))
+ IF (LEFT) THEN
+ LW = N * MB
+ MN = M
+ ELSE
+ LW = M * MB
+ MN = N
+ END IF
+ IF ((NB.GT.K).AND.(MN.GT.K)) THEN
+ IF(MOD(MN-K, NB-K).EQ.0) THEN
+ NBLCKS = (MN-K)/(NB-K)
+ ELSE
+ NBLCKS = (MN-K)/(NB-K) + 1
+ END IF
+ ELSE
+ NBLCKS = 1
+ END IF
+*
+ INFO = 0
+ IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN
+ INFO = -1
+ ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN
+ INFO = -2
+ ELSE IF( M.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( N.LT.0) THEN
+ INFO = -4
+ ELSE IF( K.LT.0 ) THEN
+ INFO = -5
+ ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
+ INFO = -7
+ ELSE IF( LWORK1.LT.MAX( 1, MB*K*NBLCKS+5 )) THEN
+ INFO = -9
+ ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
+ INFO = -11
+ ELSE IF(( LWORK2.LT.MAX(1,LW)).AND.(.NOT.LQUERY)) THEN
+ INFO = -13
+ END IF
+*
+ IF( INFO.EQ.0) THEN
+ WORK2(1) = LW
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZGEMLQ', -INFO )
+ RETURN
+ ELSE IF (LQUERY) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( MIN(M,N,K).EQ.0 ) THEN
+ RETURN
+ END IF
+*
+ IF((LEFT.AND.M.LE.K).OR.(RIGHT.AND.N.LE.K).OR.(NB.LE.K).OR.
+ $ (NB.GE.MAX(M,N,K))) THEN
+ CALL ZGEMLQT( SIDE, TRANS, M, N, K, MB, A, LDA,
+ $ WORK1(6), MB, C, LDC, WORK2, INFO)
+ ELSE
+ CALL ZLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, WORK1(6),
+ $ MB, C, LDC, WORK2, LWORK2, INFO )
+ END IF
+*
+ WORK2(1) = LW
+ RETURN
+*
+* End of ZGEMLQ
+*
+ END \ No newline at end of file