summaryrefslogtreecommitdiff
path: root/SRC/ssytrf_rk.f
diff options
context:
space:
mode:
authorJulie <julie@cs.utk.edu>2016-11-15 20:39:35 -0800
committerJulie <julie@cs.utk.edu>2016-11-15 20:39:35 -0800
commitead2c73f1a6dad1342bf32987c0b2f2eaf61f18a (patch)
treeb82e9ad49e12960ad410a418d03d68adc7e2e653 /SRC/ssytrf_rk.f
parent39698bc46ca55081ebd94c81c5c95771c9f125cd (diff)
downloadlapack-ead2c73f1a6dad1342bf32987c0b2f2eaf61f18a.tar.gz
lapack-ead2c73f1a6dad1342bf32987c0b2f2eaf61f18a.tar.bz2
lapack-ead2c73f1a6dad1342bf32987c0b2f2eaf61f18a.zip
Added (S,D,C,Z) (SY,HE) routines, drivers for new rook code
Close #82 Added routines for new factorization code for symmetric indefinite ( or Hermitian indefinite ) matrices with bounded Bunch-Kaufman ( rook ) pivoting algorithm. New more efficient storage format for factors U ( or L ), block-diagonal matrix D, and pivoting information stored in IPIV: factor L is stored explicitly in lower triangle of A; diagonal of D is stored on the diagonal of A; subdiagonal elements of D are stored in array E; IPIV format is the same as in *_ROOK routines, but differs from SY Bunch-Kaufman routines (e.g. *SYTRF). The factorization output of these new rook _RK routines is not compatible with the existing _ROOK routines and vice versa. This new factorization format is designed in such a way, that there is a possibility in the future to write new Bunch-Kaufman routines that conform to this new factorization format. Then the future Bunch-Kaufman routines could share solver *TRS_3,inversion *TRI_3 and condition estimator *CON_3. To convert between the factorization formats in both ways the following routines are developed: CONVERSION ROUTINES BETWEEN FACTORIZATION FORMATS DOUBLE PRECISION (symmetric indefinite matrices): new file: SRC/dsyconvf.f new file: SRC/dsyconvf_rook.f REAL (symmetric indefinite matrices): new file: SRC/csyconvf.f new file: SRC/csyconvf_rook.f COMPLEX*16 (symmetric indefinite and Hermitian indefinite matrices): new file: SRC/zsyconvf.f new file: SRC/zsyconvf_rook.f COMPLEX (symmetric indefinite and Hermitian indefinite matrices): new file: SRC/ssyconvf.f new file: SRC/ssyconvf_rook.f *SYCONVF routine converts between old Bunch-Kaufman storage format ( denote (L1,D1,IPIV1) ) that is used by *SYTRF and new rook storage format ( denote (L2,D2, IPIV2)) that is used by *SYTRF_RK *SYCONVF_ROOK routine between old rook storage format ( denote (L1,D1,IPIV2) ) that is used by *SYTRF_ROOK and new rook storage format ( denote (L2,D2, IPIV2)) that is used by *SYTRF_RK ROUTINES AND DRIVERS DOUBLE PRECISION (symmetric indefinite matrices): new file: SRC/dsytf2_rk.f BLAS2 unblocked factorization new file: SRC/dlasyf_rk.f BLAS3 auxiliary blocked partial factorization new file: SRC/dsytrf_rk.f BLAS3 blocked factorization new file: SRC/dsytrs_3.f BLAS3 solver new file: SRC/dsycon_3.f BLAS3 condition number estimator new file: SRC/dsytri_3.f BLAS3 inversion, sets the size of work array and calls *sytri_3x new file: SRC/dsytri_3x.f BLAS3 auxiliary inversion, actually computes blocked inversion new file: SRC/dsysv_rk.f BLAS3 solver driver REAL (symmetric indefinite matrices): new file: SRC/ssytf2_rk.f BLAS2 unblocked factorization new file: SRC/slasyf_rk.f BLAS3 auxiliary blocked partial factorization new file: SRC/ssytrf_rk.f BLAS3 blocked factorization new file: SRC/ssytrs_3.f BLAS3 solver new file: SRC/ssycon_3.f BLAS3 condition number estimator new file: SRC/ssytri_3.f BLAS3 inversion, sets the size of work array and calls *sytri_3x new file: SRC/ssytri_3x.f BLAS3 auxiliary inversion, actually computes blocked inversion new file: SRC/ssysv_rk.f BLAS3 solver driver COMPLEX*16 (symmetric indefinite matrices): new file: SRC/zsytf2_rk.f BLAS2 unblocked factorization new file: SRC/zlasyf_rk.f BLAS3 auxiliary blocked partial factorization new file: SRC/zsytrf_rk.f BLAS3 blocked factorization new file: SRC/zsytrs_3.f BLAS3 solver new file: SRC/zsycon_3.f BLAS3 condition number estimator new file: SRC/zsytri_3.f BLAS3 inversion, sets the size of work array and calls *sytri_3x new file: SRC/zsytri_3x.f BLAS3 auxiliary inversion, actually computes blocked inversion new file: SRC/zsysv_rk.f BLAS3 solver driver COMPLEX*16 (Hermitian indefinite matrices): new file: SRC/zhetf2_rk.f BLAS2 unblocked factorization new file: SRC/zlahef_rk.f BLAS3 auxiliary blocked partial factorization new file: SRC/zhetrf_rk.f BLAS3 blocked factorization new file: SRC/zhetrs_3.f BLAS3 solver new file: SRC/zhecon_3.f BLAS3 condition number estimator new file: SRC/zhetri_3.f BLAS3 inversion, sets the size of work array and calls *sytri_3x new file: SRC/zhetri_3x.f BLAS3 auxiliary inversion, actually computes blocked inversion new file: SRC/zhesv_rk.f BLAS3 solver driver COMPLEX (symmetric indefinite matrices): new file: SRC/csytf2_rk.f BLAS2 unblocked factorization new file: SRC/clasyf_rk.f BLAS3 auxiliary blocked partial factorization new file: SRC/csytrf_rk.f BLAS3 blocked factorization new file: SRC/csytrs_3.f BLAS3 solver new file: SRC/csycon_3.f BLAS3 condition number estimator new file: SRC/csytri_3.f BLAS3 inversion, sets the size of work array and calls *sytri_3x new file: SRC/csytri_3x.f BLAS3 auxiliary inversion, actually computes blocked inversion new file: SRC/csysv_rk.f BLAS3 solver driver COMPLEX (Hermitian indefinite matrices): new file: SRC/chetf2_rk.f BLAS2 unblocked factorization new file: SRC/clahef_rk.f BLAS3 auxiliary blocked partial factorization new file: SRC/chetrf_rk.f BLAS3 blocked factorization new file: SRC/chetrs_3.f BLAS3 solver new file: SRC/checon_3.f BLAS3 condition number estimator new file: SRC/chetri_3.f BLAS3 inversion, sets the size of work array and calls *sytri_3x new file: SRC/chetri_3x.f BLAS3 auxiliary inversion, actually computes blocked inversion new file: SRC/chesv_rk.f BLAS3 solver driver MISC modified: SRC/CMakeLists.txt modified: SRC/Makefile TEST CODE modified: TESTING/LIN/CMakeLists.txt modified: TESTING/LIN/Makefile modified: TESTING/LIN/aladhd.f modified: TESTING/LIN/alaerh.f modified: TESTING/LIN/alahd.f DOUBLE PRECISION (symmetric indefinite matrices): modified: TESTING/LIN/dchkaa.f modified: TESTING/LIN/derrsy.f modified: TESTING/LIN/derrsyx.f modified: TESTING/LIN/derrvx.f modified: TESTING/LIN/derrvxx.f modified: TESTING/dtest.in new file: TESTING/LIN/dchksy_rk.f new file: TESTING/LIN/ddrvsy_rk.f new file: TESTING/LIN/dsyt01_3.f REAL (symmetric indefinite matrices): modified: TESTING/LIN/schkaa.f modified: TESTING/LIN/serrsy.f modified: TESTING/LIN/serrsyx.f modified: TESTING/LIN/serrvx.f modified: TESTING/LIN/serrvxx.f modified: TESTING/stest.in new file: TESTING/LIN/schksy_rk.f new file: TESTING/LIN/sdrvsy_rk.f new file: TESTING/LIN/ssyt01_3.f COMPLEX*16 (symmetric indefinite and Hermitian indefinite matrices): modified: TESTING/LIN/zchkaa.f modified: TESTING/LIN/zerrsy.f modified: TESTING/LIN/zerrsyx.f modified: TESTING/LIN/zerrhe.f modified: TESTING/LIN/zerrhex.f modified: TESTING/LIN/zerrvx.f modified: TESTING/LIN/zerrvxx.f modified: TESTING/ztest.in new file: TESTING/LIN/zchksy_rk.f new file: TESTING/LIN/zdrvsy_rk.f new file: TESTING/LIN/zsyt01_3.f new file: TESTING/LIN/zchkhe_rk.f new file: TESTING/LIN/zdrvhe_rk.f new file: TESTING/LIN/zhet01_3.f COMPLEX (symmetric indefinite and Hermitian indefinite matrices): modified: TESTING/LIN/cchkaa.f modified: TESTING/LIN/cerrsy.f modified: TESTING/LIN/cerrsyx.f modified: TESTING/LIN/cerrhe.f modified: TESTING/LIN/cerrhex.f modified: TESTING/LIN/cerrvx.f modified: TESTING/LIN/cerrvxx.f modified: TESTING/ctest.in new file: TESTING/LIN/cchksy_rk.f new file: TESTING/LIN/cdrvsy_rk.f new file: TESTING/LIN/csyt01_3.f new file: TESTING/LIN/cchkhe_rk.f new file: TESTING/LIN/cdrvhe_rk.f new file: TESTING/LIN/chet01_3.f
Diffstat (limited to 'SRC/ssytrf_rk.f')
-rw-r--r--SRC/ssytrf_rk.f498
1 files changed, 498 insertions, 0 deletions
diff --git a/SRC/ssytrf_rk.f b/SRC/ssytrf_rk.f
new file mode 100644
index 00000000..df608fc6
--- /dev/null
+++ b/SRC/ssytrf_rk.f
@@ -0,0 +1,498 @@
+*> \brief \b SSYTRF_RK computes the factorization of a real symmetric indefinite matrix using the bounded Bunch-Kaufman (rook) diagonal pivoting method (BLAS3 blocked algorithm).
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download SSYTRF_RK + dependencies
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssytrf_rk.f">
+*> [TGZ]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssytrf_rk.f">
+*> [ZIP]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssytrf_rk.f">
+*> [TXT]</a>
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE SSYTRF_RK( UPLO, N, A, LDA, E, IPIV, WORK, LWORK,
+* INFO )
+*
+* .. Scalar Arguments ..
+* CHARACTER UPLO
+* INTEGER INFO, LDA, LWORK, N
+* ..
+* .. Array Arguments ..
+* INTEGER IPIV( * )
+* REAL A( LDA, * ), E ( * ), WORK( * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*> SSYTRF_RK computes the factorization of a real symmetric matrix A
+*> using the bounded Bunch-Kaufman (rook) diagonal pivoting method:
+*>
+*> A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T),
+*>
+*> where U (or L) is unit upper (or lower) triangular matrix,
+*> U**T (or L**T) is the transpose of U (or L), P is a permutation
+*> matrix, P**T is the transpose of P, and D is symmetric and block
+*> diagonal with 1-by-1 and 2-by-2 diagonal blocks.
+*>
+*> This is the blocked version of the algorithm, calling Level 3 BLAS.
+*> For more information see Further Details section.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] UPLO
+*> \verbatim
+*> UPLO is CHARACTER*1
+*> Specifies whether the upper or lower triangular part of the
+*> symmetric matrix A is stored:
+*> = 'U': Upper triangular
+*> = 'L': Lower triangular
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The order of the matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is REAL array, dimension (LDA,N)
+*> On entry, the symmetric matrix A.
+*> If UPLO = 'U': the leading N-by-N upper triangular part
+*> of A contains the upper triangular part of the matrix A,
+*> and the strictly lower triangular part of A is not
+*> referenced.
+*>
+*> If UPLO = 'L': the leading N-by-N lower triangular part
+*> of A contains the lower triangular part of the matrix A,
+*> and the strictly upper triangular part of A is not
+*> referenced.
+*>
+*> On exit, contains:
+*> a) ONLY diagonal elements of the symmetric block diagonal
+*> matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
+*> (superdiagonal (or subdiagonal) elements of D
+*> are stored on exit in array E), and
+*> b) If UPLO = 'U': factor U in the superdiagonal part of A.
+*> If UPLO = 'L': factor L in the subdiagonal part of A.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,N).
+*> \endverbatim
+*>
+*> \param[out] E
+*> \verbatim
+*> E is REAL array, dimension (N)
+*> On exit, contains the superdiagonal (or subdiagonal)
+*> elements of the symmetric block diagonal matrix D
+*> with 1-by-1 or 2-by-2 diagonal blocks, where
+*> If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
+*> If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.
+*>
+*> NOTE: For 1-by-1 diagonal block D(k), where
+*> 1 <= k <= N, the element E(k) is set to 0 in both
+*> UPLO = 'U' or UPLO = 'L' cases.
+*> \endverbatim
+*>
+*> \param[out] IPIV
+*> \verbatim
+*> IPIV is INTEGER array, dimension (N)
+*> IPIV describes the permutation matrix P in the factorization
+*> of matrix A as follows. The absolute value of IPIV(k)
+*> represents the index of row and column that were
+*> interchanged with the k-th row and column. The value of UPLO
+*> describes the order in which the interchanges were applied.
+*> Also, the sign of IPIV represents the block structure of
+*> the symmetric block diagonal matrix D with 1-by-1 or 2-by-2
+*> diagonal blocks which correspond to 1 or 2 interchanges
+*> at each factorization step. For more info see Further
+*> Details section.
+*>
+*> If UPLO = 'U',
+*> ( in factorization order, k decreases from N to 1 ):
+*> a) A single positive entry IPIV(k) > 0 means:
+*> D(k,k) is a 1-by-1 diagonal block.
+*> If IPIV(k) != k, rows and columns k and IPIV(k) were
+*> interchanged in the matrix A(1:N,1:N);
+*> If IPIV(k) = k, no interchange occurred.
+*>
+*> b) A pair of consecutive negative entries
+*> IPIV(k) < 0 and IPIV(k-1) < 0 means:
+*> D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
+*> (NOTE: negative entries in IPIV appear ONLY in pairs).
+*> 1) If -IPIV(k) != k, rows and columns
+*> k and -IPIV(k) were interchanged
+*> in the matrix A(1:N,1:N).
+*> If -IPIV(k) = k, no interchange occurred.
+*> 2) If -IPIV(k-1) != k-1, rows and columns
+*> k-1 and -IPIV(k-1) were interchanged
+*> in the matrix A(1:N,1:N).
+*> If -IPIV(k-1) = k-1, no interchange occurred.
+*>
+*> c) In both cases a) and b), always ABS( IPIV(k) ) <= k.
+*>
+*> d) NOTE: Any entry IPIV(k) is always NONZERO on output.
+*>
+*> If UPLO = 'L',
+*> ( in factorization order, k increases from 1 to N ):
+*> a) A single positive entry IPIV(k) > 0 means:
+*> D(k,k) is a 1-by-1 diagonal block.
+*> If IPIV(k) != k, rows and columns k and IPIV(k) were
+*> interchanged in the matrix A(1:N,1:N).
+*> If IPIV(k) = k, no interchange occurred.
+*>
+*> b) A pair of consecutive negative entries
+*> IPIV(k) < 0 and IPIV(k+1) < 0 means:
+*> D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
+*> (NOTE: negative entries in IPIV appear ONLY in pairs).
+*> 1) If -IPIV(k) != k, rows and columns
+*> k and -IPIV(k) were interchanged
+*> in the matrix A(1:N,1:N).
+*> If -IPIV(k) = k, no interchange occurred.
+*> 2) If -IPIV(k+1) != k+1, rows and columns
+*> k-1 and -IPIV(k-1) were interchanged
+*> in the matrix A(1:N,1:N).
+*> If -IPIV(k+1) = k+1, no interchange occurred.
+*>
+*> c) In both cases a) and b), always ABS( IPIV(k) ) >= k.
+*>
+*> d) NOTE: Any entry IPIV(k) is always NONZERO on output.
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is REAL array, dimension ( MAX(1,LWORK) ).
+*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> The length of WORK. LWORK >=1. For best performance
+*> LWORK >= N*NB, where NB is the block size returned
+*> by ILAENV.
+*>
+*> If LWORK = -1, then a workspace query is assumed;
+*> the routine only calculates the optimal size of the WORK
+*> array, returns this value as the first entry of the WORK
+*> array, and no error message related to LWORK is issued
+*> by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*>
+*> < 0: If INFO = -k, the k-th argument had an illegal value
+*>
+*> > 0: If INFO = k, the matrix A is singular, because:
+*> If UPLO = 'U': column k in the upper
+*> triangular part of A contains all zeros.
+*> If UPLO = 'L': column k in the lower
+*> triangular part of A contains all zeros.
+*>
+*> Therefore D(k,k) is exactly zero, and superdiagonal
+*> elements of column k of U (or subdiagonal elements of
+*> column k of L ) are all zeros. The factorization has
+*> been completed, but the block diagonal matrix D is
+*> exactly singular, and division by zero will occur if
+*> it is used to solve a system of equations.
+*>
+*> NOTE: INFO only stores the first occurrence of
+*> a singularity, any subsequent occurrence of singularity
+*> is not stored in INFO even though the factorization
+*> always completes.
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2016
+*
+*> \ingroup singleSYcomputational
+*
+*> \par Further Details:
+* =====================
+*>
+*> \verbatim
+*> TODO: put correct description
+*> \endverbatim
+*
+*> \par Contributors:
+* ==================
+*>
+*> \verbatim
+*>
+*> November 2016, Igor Kozachenko,
+*> Computer Science Division,
+*> University of California, Berkeley
+*>
+*> September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
+*> School of Mathematics,
+*> University of Manchester
+*>
+*> \endverbatim
+*
+* =====================================================================
+ SUBROUTINE SSYTRF_RK( UPLO, N, A, LDA, E, IPIV, WORK, LWORK,
+ $ INFO )
+*
+* -- LAPACK computational routine (version 3.7.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2016
+*
+* .. Scalar Arguments ..
+ CHARACTER UPLO
+ INTEGER INFO, LDA, LWORK, N
+* ..
+* .. Array Arguments ..
+ INTEGER IPIV( * )
+ REAL A( LDA, * ), E( * ), WORK( * )
+* ..
+*
+* =====================================================================
+*
+* .. Local Scalars ..
+ LOGICAL LQUERY, UPPER
+ INTEGER I, IINFO, IP, IWS, K, KB, LDWORK, LWKOPT,
+ $ NB, NBMIN
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER ILAENV
+ EXTERNAL LSAME, ILAENV
+* ..
+* .. External Subroutines ..
+ EXTERNAL SLASYF_RK, SSYTF2_RK, SSWAP, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, MAX
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ INFO = 0
+ UPPER = LSAME( UPLO, 'U' )
+ LQUERY = ( LWORK.EQ.-1 )
+ IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+ INFO = -4
+ ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
+ INFO = -8
+ END IF
+*
+ IF( INFO.EQ.0 ) THEN
+*
+* Determine the block size
+*
+ NB = ILAENV( 1, 'SSYTRF_RK', UPLO, N, -1, -1, -1 )
+ LWKOPT = N*NB
+ WORK( 1 ) = LWKOPT
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'SSYTRF_RK', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+ NBMIN = 2
+ LDWORK = N
+ IF( NB.GT.1 .AND. NB.LT.N ) THEN
+ IWS = LDWORK*NB
+ IF( LWORK.LT.IWS ) THEN
+ NB = MAX( LWORK / LDWORK, 1 )
+ NBMIN = MAX( 2, ILAENV( 2, 'SSYTRF_RK',
+ $ UPLO, N, -1, -1, -1 ) )
+ END IF
+ ELSE
+ IWS = 1
+ END IF
+ IF( NB.LT.NBMIN )
+ $ NB = N
+*
+ IF( UPPER ) THEN
+*
+* Factorize A as U*D*U**T using the upper triangle of A
+*
+* K is the main loop index, decreasing from N to 1 in steps of
+* KB, where KB is the number of columns factorized by SLASYF_RK;
+* KB is either NB or NB-1, or K for the last block
+*
+ K = N
+ 10 CONTINUE
+*
+* If K < 1, exit from loop
+*
+ IF( K.LT.1 )
+ $ GO TO 15
+*
+ IF( K.GT.NB ) THEN
+*
+* Factorize columns k-kb+1:k of A and use blocked code to
+* update columns 1:k-kb
+*
+ CALL SLASYF_RK( UPLO, K, NB, KB, A, LDA, E,
+ $ IPIV, WORK, LDWORK, IINFO )
+ ELSE
+*
+* Use unblocked code to factorize columns 1:k of A
+*
+ CALL SSYTF2_RK( UPLO, K, A, LDA, E, IPIV, IINFO )
+ KB = K
+ END IF
+*
+* Set INFO on the first occurrence of a zero pivot
+*
+ IF( INFO.EQ.0 .AND. IINFO.GT.0 )
+ $ INFO = IINFO
+*
+* No need to adjust IPIV
+*
+*
+* Apply permutations to the leading panel 1:k-1
+*
+* Read IPIV from the last block factored, i.e.
+* indices k-kb+1:k and apply row permutations to the
+* last k+1 colunms k+1:N after that block
+* (We can do the simple loop over IPIV with decrement -1,
+* since the ABS value of IPIV( I ) represents the row index
+* of the interchange with row i in both 1x1 and 2x2 pivot cases)
+*
+ IF( K.LT.N ) THEN
+ DO I = K, ( K - KB + 1 ), -1
+ IP = ABS( IPIV( I ) )
+ IF( IP.NE.I ) THEN
+ CALL SSWAP( N-K, A( I, K+1 ), LDA,
+ $ A( IP, K+1 ), LDA )
+ END IF
+ END DO
+ END IF
+*
+* Decrease K and return to the start of the main loop
+*
+ K = K - KB
+ GO TO 10
+*
+* This label is the exit from main loop over K decreasing
+* from N to 1 in steps of KB
+*
+ 15 CONTINUE
+*
+ ELSE
+*
+* Factorize A as L*D*L**T using the lower triangle of A
+*
+* K is the main loop index, increasing from 1 to N in steps of
+* KB, where KB is the number of columns factorized by SLASYF_RK;
+* KB is either NB or NB-1, or N-K+1 for the last block
+*
+ K = 1
+ 20 CONTINUE
+*
+* If K > N, exit from loop
+*
+ IF( K.GT.N )
+ $ GO TO 35
+*
+ IF( K.LE.N-NB ) THEN
+*
+* Factorize columns k:k+kb-1 of A and use blocked code to
+* update columns k+kb:n
+*
+ CALL SLASYF_RK( UPLO, N-K+1, NB, KB, A( K, K ), LDA, E( K ),
+ $ IPIV( K ), WORK, LDWORK, IINFO )
+
+
+ ELSE
+*
+* Use unblocked code to factorize columns k:n of A
+*
+ CALL SSYTF2_RK( UPLO, N-K+1, A( K, K ), LDA, E( K ),
+ $ IPIV( K ), IINFO )
+ KB = N - K + 1
+*
+ END IF
+*
+* Set INFO on the first occurrence of a zero pivot
+*
+ IF( INFO.EQ.0 .AND. IINFO.GT.0 )
+ $ INFO = IINFO + K - 1
+*
+* Adjust IPIV
+*
+ DO I = K, K + KB - 1
+ IF( IPIV( I ).GT.0 ) THEN
+ IPIV( I ) = IPIV( I ) + K - 1
+ ELSE
+ IPIV( I ) = IPIV( I ) - K + 1
+ END IF
+ END DO
+*
+* Apply permutations to the leading panel 1:k-1
+*
+* Read IPIV from the last block factored, i.e.
+* indices k:k+kb-1 and apply row permutations to the
+* first k-1 colunms 1:k-1 before that block
+* (We can do the simple loop over IPIV with increment 1,
+* since the ABS value of IPIV( I ) represents the row index
+* of the interchange with row i in both 1x1 and 2x2 pivot cases)
+*
+ IF( K.GT.1 ) THEN
+ DO I = K, ( K + KB - 1 ), 1
+ IP = ABS( IPIV( I ) )
+ IF( IP.NE.I ) THEN
+ CALL SSWAP( K-1, A( I, 1 ), LDA,
+ $ A( IP, 1 ), LDA )
+ END IF
+ END DO
+ END IF
+*
+* Increase K and return to the start of the main loop
+*
+ K = K + KB
+ GO TO 20
+*
+* This label is the exit from main loop over K increasing
+* from 1 to N in steps of KB
+*
+ 35 CONTINUE
+*
+* End Lower
+*
+ END IF
+*
+ WORK( 1 ) = LWKOPT
+ RETURN
+*
+* End of SSYTRF_RK
+*
+ END