summaryrefslogtreecommitdiff
path: root/SRC/ssytf2_rook.f
diff options
context:
space:
mode:
authorigor175 <igor175@8a072113-8704-0410-8d35-dd094bca7971>2011-12-07 08:07:17 +0000
committerigor175 <igor175@8a072113-8704-0410-8d35-dd094bca7971>2011-12-07 08:07:17 +0000
commit73c5ccf3f84d34457a49b29d06f6149024589abc (patch)
tree3d93a215d72a59bd8c6171c3b1778b1272f8a57d /SRC/ssytf2_rook.f
parent1c5642102bcdd43a47dfd6e03a57fb9c37fb138a (diff)
downloadlapack-73c5ccf3f84d34457a49b29d06f6149024589abc.tar.gz
lapack-73c5ccf3f84d34457a49b29d06f6149024589abc.tar.bz2
lapack-73c5ccf3f84d34457a49b29d06f6149024589abc.zip
added standard precision (REAL) routines for 'rook' pivoting algorithm for symmetric indefinite matrices: slasyf_rook.f ssytri_rook.f ssytrs_rook.f ssytrf_rook.f ssysv_rook.f ssycon_rook.f ssytf2_rook.f
Diffstat (limited to 'SRC/ssytf2_rook.f')
-rw-r--r--SRC/ssytf2_rook.f815
1 files changed, 815 insertions, 0 deletions
diff --git a/SRC/ssytf2_rook.f b/SRC/ssytf2_rook.f
new file mode 100644
index 00000000..036ec2cb
--- /dev/null
+++ b/SRC/ssytf2_rook.f
@@ -0,0 +1,815 @@
+*> \brief \b SSYTF2_ROOK
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download SSYTF2_ROOK + dependencies
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssytf2_rook.f">
+*> [TGZ]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssytf2_rook.f">
+*> [ZIP]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssytf2_rook.f">
+*> [TXT]</a>
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE SSYTF2_ROOK( UPLO, N, A, LDA, IPIV, INFO )
+*
+* .. Scalar Arguments ..
+* CHARACTER UPLO
+* INTEGER INFO, LDA, N
+* ..
+* .. Array Arguments ..
+* INTEGER IPIV( * )
+* REAL A( LDA, * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> SSYTF2_ROOK computes the factorization of a real symmetric matrix A
+*> using the bounded Bunch-Kaufman ("rook") diagonal pivoting method:
+*>
+*> A = U*D*U**T or A = L*D*L**T
+*>
+*> where U (or L) is a product of permutation and unit upper (lower)
+*> triangular matrices, U**T is the transpose of U, and D is symmetric and
+*> block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
+*>
+*> This is the unblocked version of the algorithm, calling Level 2 BLAS.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] UPLO
+*> \verbatim
+*> UPLO is CHARACTER*1
+*> Specifies whether the upper or lower triangular part of the
+*> symmetric matrix A is stored:
+*> = 'U': Upper triangular
+*> = 'L': Lower triangular
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The order of the matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is REAL array, dimension (LDA,N)
+*> On entry, the symmetric matrix A. If UPLO = 'U', the leading
+*> n-by-n upper triangular part of A contains the upper
+*> triangular part of the matrix A, and the strictly lower
+*> triangular part of A is not referenced. If UPLO = 'L', the
+*> leading n-by-n lower triangular part of A contains the lower
+*> triangular part of the matrix A, and the strictly upper
+*> triangular part of A is not referenced.
+*>
+*> On exit, the block diagonal matrix D and the multipliers used
+*> to obtain the factor U or L (see below for further details).
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,N).
+*> \endverbatim
+*>
+*> \param[out] IPIV
+*> \verbatim
+*> IPIV is INTEGER array, dimension (N)
+*> Details of the interchanges and the block structure of D.
+*>
+*> If UPLO = 'U':
+*> If IPIV(k) > 0, then rows and columns k and IPIV(k)
+*> were interchanged and D(k,k) is a 1-by-1 diagonal block.
+*>
+*> If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
+*> columns k and -IPIV(k) were interchanged and rows and
+*> columns k-1 and -IPIV(k-1) were inerchaged,
+*> D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
+*>
+*> If UPLO = 'L':
+*> If IPIV(k) > 0, then rows and columns k and IPIV(k)
+*> were interchanged and D(k,k) is a 1-by-1 diagonal block.
+*>
+*> If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
+*> columns k and -IPIV(k) were interchanged and rows and
+*> columns k+1 and -IPIV(k+1) were inerchaged,
+*> D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -k, the k-th argument had an illegal value
+*> > 0: if INFO = k, D(k,k) is exactly zero. The factorization
+*> has been completed, but the block diagonal matrix D is
+*> exactly singular, and division by zero will occur if it
+*> is used to solve a system of equations.
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2011
+*
+*> \ingroup realSYcomputational
+*
+*> \par Further Details:
+* =====================
+*>
+*> \verbatim
+*>
+*> If UPLO = 'U', then A = U*D*U**T, where
+*> U = P(n)*U(n)* ... *P(k)U(k)* ...,
+*> i.e., U is a product of terms P(k)*U(k), where k decreases from n to
+*> 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
+*> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
+*> defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
+*> that if the diagonal block D(k) is of order s (s = 1 or 2), then
+*>
+*> ( I v 0 ) k-s
+*> U(k) = ( 0 I 0 ) s
+*> ( 0 0 I ) n-k
+*> k-s s n-k
+*>
+*> If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
+*> If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
+*> and A(k,k), and v overwrites A(1:k-2,k-1:k).
+*>
+*> If UPLO = 'L', then A = L*D*L**T, where
+*> L = P(1)*L(1)* ... *P(k)*L(k)* ...,
+*> i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
+*> n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
+*> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
+*> defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
+*> that if the diagonal block D(k) is of order s (s = 1 or 2), then
+*>
+*> ( I 0 0 ) k-1
+*> L(k) = ( 0 I 0 ) s
+*> ( 0 v I ) n-k-s+1
+*> k-1 s n-k-s+1
+*>
+*> If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
+*> If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
+*> and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
+*> \endverbatim
+*
+*> \par Contributors:
+* ==================
+*>
+*> \verbatim
+*>
+*> November 2011, Igor Kozachenko,
+*> Computer Science Division,
+*> University of California, Berkeley
+*>
+*> September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
+*> School of Mathematics,
+*> University of Manchester
+*>
+*> 01-01-96 - Based on modifications by
+*> J. Lewis, Boeing Computer Services Company
+*> A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
+*> 1-96 - Based on modifications by J. Lewis, Boeing Computer Services
+*> Company
+*> \endverbatim
+*
+* =====================================================================
+ SUBROUTINE SSYTF2_ROOK( UPLO, N, A, LDA, IPIV, INFO )
+*
+* -- LAPACK computational routine (version 3.3.1) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2011
+*
+* .. Scalar Arguments ..
+ CHARACTER UPLO
+ INTEGER INFO, LDA, N
+* ..
+* .. Array Arguments ..
+ INTEGER IPIV( * )
+ REAL A( LDA, * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ REAL ZERO, ONE
+ PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
+ REAL EIGHT, SEVTEN
+ PARAMETER ( EIGHT = 8.0E+0, SEVTEN = 17.0E+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL UPPER, DONE
+ INTEGER I, IMAX, J, JMAX, ITEMP, K, KK, KP, KSTEP,
+ $ P, II
+ REAL ABSAKK, ALPHA, COLMAX, D11, D12, D21, D22,
+ $ ROWMAX, DTEMP, T, WK, WKM1, WKP1, SFMIN
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER ISAMAX
+ REAL SLAMCH
+ EXTERNAL LSAME, ISAMAX, SLAMCH
+* ..
+* .. External Subroutines ..
+ EXTERNAL SSCAL, SSWAP, SSYR, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, MAX, SQRT
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ INFO = 0
+ UPPER = LSAME( UPLO, 'U' )
+ IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+ INFO = -4
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'SSYTF2_ROOK', -INFO )
+ RETURN
+ END IF
+*
+* Initialize ALPHA for use in choosing pivot block size.
+*
+ ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
+*
+* Compute machine safe minimum
+*
+ SFMIN = SLAMCH( 'S' )
+*
+ IF( UPPER ) THEN
+*
+* Factorize A as U*D*U**T using the upper triangle of A
+*
+* K is the main loop index, decreasing from N to 1 in steps of
+* 1 or 2
+*
+ K = N
+ 10 CONTINUE
+*
+* If K < 1, exit from loop
+*
+ IF( K.LT.1 )
+ $ GO TO 70
+ KSTEP = 1
+ P = K
+*
+* Determine rows and columns to be interchanged and whether
+* a 1-by-1 or 2-by-2 pivot block will be used
+*
+ ABSAKK = ABS( A( K, K ) )
+*
+* IMAX is the row-index of the largest off-diagonal element in
+* column K, and COLMAX is its absolute value.
+* Determine both COLMAX and IMAX.
+*
+ IF( K.GT.1 ) THEN
+ IMAX = ISAMAX( K-1, A( 1, K ), 1 )
+ COLMAX = ABS( A( IMAX, K ) )
+ ELSE
+ COLMAX = ZERO
+ END IF
+*
+ IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) ) THEN
+*
+* Column K is zero: set INFO and continue
+*
+ IF( INFO.EQ.0 )
+ $ INFO = K
+ KP = K
+ ELSE
+*
+* Test for interchange
+*
+* Equivalent to testing for (used to handle NaN and Inf)
+* ABSAKK.GE.ALPHA*COLMAX
+*
+ IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
+*
+* no interchange,
+* use 1-by-1 pivot block
+*
+ KP = K
+ ELSE
+*
+ DONE = .FALSE.
+*
+* Loop until pivot found
+*
+ 12 CONTINUE
+*
+* Begin pivot search loop body
+*
+* JMAX is the column-index of the largest off-diagonal
+* element in row IMAX, and ROWMAX is its absolute value
+* Determine only ROWMAX.
+*
+ IF( IMAX.NE.K ) THEN
+ JMAX = IMAX + ISAMAX( K-IMAX, A( IMAX, IMAX+1 ),
+ $ LDA )
+ ROWMAX = ABS( A( IMAX, JMAX ) )
+ ELSE
+ ROWMAX = ZERO
+ END IF
+*
+ IF( IMAX.GT.1 ) THEN
+ ITEMP = ISAMAX( IMAX-1, A( 1, IMAX ), 1 )
+ DTEMP = ABS( A( ITEMP, IMAX ) )
+ IF( DTEMP.GT.ROWMAX ) THEN
+ ROWMAX = DTEMP
+ JMAX = ITEMP
+ END IF
+ END IF
+*
+* Equivalent to testing for (used to handle NaN and Inf)
+* ABS( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX
+*
+ IF( .NOT.( ABS( A( IMAX, IMAX ) ).LT.ALPHA*ROWMAX ) )
+ $ THEN
+*
+* interchange rows and columns K and IMAX,
+* use 1-by-1 pivot block
+*
+ KP = IMAX
+ DONE = .TRUE.
+*
+* Equivalent to testing for ROWMAX .EQ. COLMAX,
+* used to handle NaN and Inf
+*
+ ELSE IF( ( P.EQ.JMAX ).OR.( ROWMAX.LE.COLMAX ) ) THEN
+*
+* interchange rows and columns K+1 and IMAX,
+* use 2-by-2 pivot block
+*
+ KP = IMAX
+ KSTEP = 2
+ DONE = .TRUE.
+ ELSE
+*
+* Pivot NOT found, set variables and repeat
+*
+ P = IMAX
+ COLMAX = ROWMAX
+ IMAX = JMAX
+ END IF
+*
+* End pivot search loop body
+*
+ IF( .NOT. DONE ) GOTO 12
+*
+ END IF
+*
+* Swap TWO rows and TWO columns
+*
+* First swap
+*
+ IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
+*
+* Interchange rows and column K and P in the leading
+* submatrix A(1:k,1:k) if we have a 2-by-2 pivot
+*
+ IF( P.GT.1 )
+ $ CALL SSWAP( P-1, A( 1, K ), 1, A( 1, P ), 1 )
+ IF( P.LT.(K-1) )
+ $ CALL SSWAP( K-P-1, A( P+1, K ), 1, A( P, P+1 ),
+ $ LDA )
+ T = A( K, K )
+ A( K, K ) = A( P, P )
+ A( P, P ) = T
+ END IF
+*
+* Second swap
+*
+ KK = K - KSTEP + 1
+ IF( KP.NE.KK ) THEN
+*
+* Interchange rows and columns KK and KP in the leading
+* submatrix A(1:k,1:k)
+*
+ IF( KP.GT.1 )
+ $ CALL SSWAP( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
+ IF( ( KK.GT.1 ) .AND. ( KP.LT.(KK-1) ) )
+ $ CALL SSWAP( KK-KP-1, A( KP+1, KK ), 1, A( KP, KP+1 ),
+ $ LDA )
+ T = A( KK, KK )
+ A( KK, KK ) = A( KP, KP )
+ A( KP, KP ) = T
+ IF( KSTEP.EQ.2 ) THEN
+ T = A( K-1, K )
+ A( K-1, K ) = A( KP, K )
+ A( KP, K ) = T
+ END IF
+ END IF
+*
+* Update the leading submatrix
+*
+ IF( KSTEP.EQ.1 ) THEN
+*
+* 1-by-1 pivot block D(k): column k now holds
+*
+* W(k) = U(k)*D(k)
+*
+* where U(k) is the k-th column of U
+*
+ IF( K.GT.1 ) THEN
+*
+* Perform a rank-1 update of A(1:k-1,1:k-1) and
+* store U(k) in column k
+*
+ IF( ABS( A( K, K ) ).GE.SFMIN ) THEN
+*
+* Perform a rank-1 update of A(1:k-1,1:k-1) as
+* A := A - U(k)*D(k)*U(k)**T
+* = A - W(k)*1/D(k)*W(k)**T
+*
+ D11 = ONE / A( K, K )
+ CALL SSYR( UPLO, K-1, -D11, A( 1, K ), 1, A, LDA )
+*
+* Store U(k) in column k
+*
+ CALL SSCAL( K-1, D11, A( 1, K ), 1 )
+ ELSE
+*
+* Store L(k) in column K
+*
+ D11 = A( K, K )
+ DO 16 II = 1, K - 1
+ A( II, K ) = A( II, K ) / D11
+ 16 CONTINUE
+*
+* Perform a rank-1 update of A(k+1:n,k+1:n) as
+* A := A - U(k)*D(k)*U(k)**T
+* = A - W(k)*(1/D(k))*W(k)**T
+* = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T
+*
+ CALL SSYR( UPLO, K-1, -D11, A( 1, K ), 1, A, LDA )
+ END IF
+ END IF
+*
+ ELSE
+*
+* 2-by-2 pivot block D(k): columns k and k-1 now hold
+*
+* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
+*
+* where U(k) and U(k-1) are the k-th and (k-1)-th columns
+* of U
+*
+* Perform a rank-2 update of A(1:k-2,1:k-2) as
+*
+* A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T
+* = A - ( ( A(k-1)A(k) )*inv(D(k)) ) * ( A(k-1)A(k) )**T
+*
+* and store L(k) and L(k+1) in columns k and k+1
+*
+ IF( K.GT.2 ) THEN
+*
+ D12 = A( K-1, K )
+ D22 = A( K-1, K-1 ) / D12
+ D11 = A( K, K ) / D12
+ T = ONE / ( D11*D22-ONE )
+*
+ DO 30 J = K - 2, 1, -1
+*
+ WKM1 = T*( D11*A( J, K-1 )-A( J, K ) )
+ WK = T*( D22*A( J, K )-A( J, K-1 ) )
+*
+ DO 20 I = J, 1, -1
+ A( I, J ) = A( I, J ) - (A( I, K ) / D12 )*WK -
+ $ ( A( I, K-1 ) / D12 )*WKM1
+ 20 CONTINUE
+*
+* Store U(k) and U(k-1) in cols k and k-1 for row J
+*
+ A( J, K ) = WK / D12
+ A( J, K-1 ) = WKM1 / D12
+*
+ 30 CONTINUE
+*
+ END IF
+*
+ END IF
+ END IF
+*
+* Store details of the interchanges in IPIV
+*
+ IF( KSTEP.EQ.1 ) THEN
+ IPIV( K ) = KP
+ ELSE
+ IPIV( K ) = -P
+ IPIV( K-1 ) = -KP
+ END IF
+*
+* Decrease K and return to the start of the main loop
+*
+ K = K - KSTEP
+ GO TO 10
+*
+ ELSE
+*
+* Factorize A as L*D*L**T using the lower triangle of A
+*
+* K is the main loop index, increasing from 1 to N in steps of
+* 1 or 2
+*
+ K = 1
+ 40 CONTINUE
+*
+* If K > N, exit from loop
+*
+ IF( K.GT.N )
+ $ GO TO 70
+ KSTEP = 1
+ P = K
+*
+* Determine rows and columns to be interchanged and whether
+* a 1-by-1 or 2-by-2 pivot block will be used
+*
+ ABSAKK = ABS( A( K, K ) )
+*
+* IMAX is the row-index of the largest off-diagonal element in
+* column K, and COLMAX is its absolute value.
+* Determine both COLMAX and IMAX.
+*
+ IF( K.LT.N ) THEN
+ IMAX = K + ISAMAX( N-K, A( K+1, K ), 1 )
+ COLMAX = ABS( A( IMAX, K ) )
+ ELSE
+ COLMAX = ZERO
+ END IF
+*
+ IF( ( MAX( ABSAKK, COLMAX ).EQ.ZERO ) ) THEN
+*
+* Column K is zero: set INFO and continue
+*
+ IF( INFO.EQ.0 )
+ $ INFO = K
+ KP = K
+ ELSE
+*
+* Test for interchange
+*
+* Equivalent to testing for (used to handle NaN and Inf)
+* ABSAKK.GE.ALPHA*COLMAX
+*
+ IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
+*
+* no interchange, use 1-by-1 pivot block
+*
+ KP = K
+ ELSE
+*
+ DONE = .FALSE.
+*
+* Loop until pivot found
+*
+ 42 CONTINUE
+*
+* Begin pivot search loop body
+*
+* JMAX is the column-index of the largest off-diagonal
+* element in row IMAX, and ROWMAX is its absolute value.
+* Determine both ROWMAX and JMAX.
+*
+ IF( IMAX.NE.K ) THEN
+ JMAX = K - 1 + ISAMAX( IMAX-K, A( IMAX, K ), LDA )
+ ROWMAX = ABS( A( IMAX, JMAX ) )
+ ELSE
+ ROWMAX = ZERO
+ END IF
+*
+ IF( IMAX.LT.N ) THEN
+ ITEMP = IMAX + ISAMAX( N-IMAX, A( IMAX+1, IMAX ),
+ $ 1 )
+ DTEMP = ABS( A( ITEMP, IMAX ) )
+ IF( DTEMP.GT.ROWMAX ) THEN
+ ROWMAX = DTEMP
+ JMAX = ITEMP
+ END IF
+ END IF
+*
+* Equivalent to testing for (used to handle NaN and Inf)
+* ABS( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX
+*
+ IF( .NOT.( ABS( A( IMAX, IMAX ) ).LT.ALPHA*ROWMAX ) )
+ $ THEN
+*
+* interchange rows and columns K and IMAX,
+* use 1-by-1 pivot block
+*
+ KP = IMAX
+ DONE = .TRUE.
+*
+* Equivalent to testing for ROWMAX .EQ. COLMAX,
+* used to handle NaN and Inf
+*
+ ELSE IF( ( P.EQ.JMAX ).OR.( ROWMAX.LE.COLMAX ) ) THEN
+*
+* interchange rows and columns K+1 and IMAX,
+* use 2-by-2 pivot block
+*
+ KP = IMAX
+ KSTEP = 2
+ DONE = .TRUE.
+ ELSE
+*
+* Pivot NOT found, set variables and repeat
+*
+ P = IMAX
+ COLMAX = ROWMAX
+ IMAX = JMAX
+ END IF
+*
+* End pivot search loop body
+*
+ IF( .NOT. DONE ) GOTO 42
+*
+ END IF
+*
+* Swap TWO rows and TWO columns
+*
+* First swap
+*
+ IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
+*
+* Interchange rows and column K and P in the trailing
+* submatrix A(k:n,k:n) if we have a 2-by-2 pivot
+*
+ IF( P.LT.N )
+ $ CALL SSWAP( N-P, A( P+1, K ), 1, A( P+1, P ), 1 )
+ IF( P.GT.(K+1) )
+ $ CALL SSWAP( P-K-1, A( K+1, K ), 1, A( P, K+1 ), LDA )
+ T = A( K, K )
+ A( K, K ) = A( P, P )
+ A( P, P ) = T
+ END IF
+*
+* Second swap
+*
+ KK = K + KSTEP - 1
+ IF( KP.NE.KK ) THEN
+*
+* Interchange rows and columns KK and KP in the trailing
+* submatrix A(k:n,k:n)
+*
+ IF( KP.LT.N )
+ $ CALL SSWAP( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
+ IF( ( KK.LT.N ) .AND. ( KP.GT.(KK+1) ) )
+ $ CALL SSWAP( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
+ $ LDA )
+ T = A( KK, KK )
+ A( KK, KK ) = A( KP, KP )
+ A( KP, KP ) = T
+ IF( KSTEP.EQ.2 ) THEN
+ T = A( K+1, K )
+ A( K+1, K ) = A( KP, K )
+ A( KP, K ) = T
+ END IF
+ END IF
+*
+* Update the trailing submatrix
+*
+ IF( KSTEP.EQ.1 ) THEN
+*
+* 1-by-1 pivot block D(k): column k now holds
+*
+* W(k) = L(k)*D(k)
+*
+* where L(k) is the k-th column of L
+*
+ IF( K.LT.N ) THEN
+*
+* Perform a rank-1 update of A(k+1:n,k+1:n) and
+* store L(k) in column k
+*
+ IF( ABS( A( K, K ) ).GE.SFMIN ) THEN
+*
+* Perform a rank-1 update of A(k+1:n,k+1:n) as
+* A := A - L(k)*D(k)*L(k)**T
+* = A - W(k)*(1/D(k))*W(k)**T
+*
+ D11 = ONE / A( K, K )
+ CALL SSYR( UPLO, N-K, -D11, A( K+1, K ), 1,
+ $ A( K+1, K+1 ), LDA )
+*
+* Store L(k) in column k
+*
+ CALL SSCAL( N-K, D11, A( K+1, K ), 1 )
+ ELSE
+*
+* Store L(k) in column k
+*
+ D11 = A( K, K )
+ DO 46 II = K + 1, N
+ A( II, K ) = A( II, K ) / D11
+ 46 CONTINUE
+*
+* Perform a rank-1 update of A(k+1:n,k+1:n) as
+* A := A - L(k)*D(k)*L(k)**T
+* = A - W(k)*(1/D(k))*W(k)**T
+* = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T
+*
+ CALL SSYR( UPLO, N-K, -D11, A( K+1, K ), 1,
+ $ A( K+1, K+1 ), LDA )
+ END IF
+ END IF
+*
+ ELSE
+*
+* 2-by-2 pivot block D(k): columns k and k+1 now hold
+*
+* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
+*
+* where L(k) and L(k+1) are the k-th and (k+1)-th columns
+* of L
+*
+*
+* Perform a rank-2 update of A(k+2:n,k+2:n) as
+*
+* A := A - ( L(k) L(k+1) ) * D(k) * ( L(k) L(k+1) )**T
+* = A - ( ( A(k)A(k+1) )*inv(D(k) ) * ( A(k)A(k+1) )**T
+*
+* and store L(k) and L(k+1) in columns k and k+1
+*
+ IF( K.LT.N-1 ) THEN
+*
+ D21 = A( K+1, K )
+ D11 = A( K+1, K+1 ) / D21
+ D22 = A( K, K ) / D21
+ T = ONE / ( D11*D22-ONE )
+*
+ DO 60 J = K + 2, N
+*
+* Compute D21 * ( W(k)W(k+1) ) * inv(D(k)) for row J
+*
+ WK = T*( D11*A( J, K )-A( J, K+1 ) )
+ WKP1 = T*( D22*A( J, K+1 )-A( J, K ) )
+*
+* Perform a rank-2 update of A(k+2:n,k+2:n)
+*
+ DO 50 I = J, N
+ A( I, J ) = A( I, J ) - ( A( I, K ) / D21 )*WK -
+ $ ( A( I, K+1 ) / D21 )*WKP1
+ 50 CONTINUE
+*
+* Store L(k) and L(k+1) in cols k and k+1 for row J
+*
+ A( J, K ) = WK / D21
+ A( J, K+1 ) = WKP1 / D21
+*
+ 60 CONTINUE
+*
+ END IF
+*
+ END IF
+ END IF
+*
+* Store details of the interchanges in IPIV
+*
+ IF( KSTEP.EQ.1 ) THEN
+ IPIV( K ) = KP
+ ELSE
+ IPIV( K ) = -P
+ IPIV( K+1 ) = -KP
+ END IF
+*
+* Increase K and return to the start of the main loop
+*
+ K = K + KSTEP
+ GO TO 40
+*
+ END IF
+*
+ 70 CONTINUE
+*
+ RETURN
+*
+* End of SSYTF2_ROOK
+*
+ END