diff options
author | julie <julielangou@users.noreply.github.com> | 2011-10-06 06:53:11 +0000 |
---|---|---|
committer | julie <julielangou@users.noreply.github.com> | 2011-10-06 06:53:11 +0000 |
commit | e1d39294aee16fa6db9ba079b14442358217db71 (patch) | |
tree | 30e5aa04c1f6596991fda5334f63dfb9b8027849 /SRC/sormlq.f | |
parent | 5fe0466a14e395641f4f8a300ecc9dcb8058081b (diff) | |
download | lapack-e1d39294aee16fa6db9ba079b14442358217db71.tar.gz lapack-e1d39294aee16fa6db9ba079b14442358217db71.tar.bz2 lapack-e1d39294aee16fa6db9ba079b14442358217db71.zip |
Integrating Doxygen in comments
Diffstat (limited to 'SRC/sormlq.f')
-rw-r--r-- | SRC/sormlq.f | 249 |
1 files changed, 165 insertions, 84 deletions
diff --git a/SRC/sormlq.f b/SRC/sormlq.f index 0bb06d2f..40931ed4 100644 --- a/SRC/sormlq.f +++ b/SRC/sormlq.f @@ -1,10 +1,173 @@ +*> \brief \b SORMLQ +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +* Definition +* ========== +* +* SUBROUTINE SORMLQ( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, +* WORK, LWORK, INFO ) +* +* .. Scalar Arguments .. +* CHARACTER SIDE, TRANS +* INTEGER INFO, K, LDA, LDC, LWORK, M, N +* .. +* .. Array Arguments .. +* REAL A( LDA, * ), C( LDC, * ), TAU( * ), +* $ WORK( * ) +* .. +* +* Purpose +* ======= +* +*>\details \b Purpose: +*>\verbatim +*> +*> SORMLQ overwrites the general real M-by-N matrix C with +*> +*> SIDE = 'L' SIDE = 'R' +*> TRANS = 'N': Q * C C * Q +*> TRANS = 'T': Q**T * C C * Q**T +*> +*> where Q is a real orthogonal matrix defined as the product of k +*> elementary reflectors +*> +*> Q = H(k) . . . H(2) H(1) +*> +*> as returned by SGELQF. Q is of order M if SIDE = 'L' and of order N +*> if SIDE = 'R'. +*> +*>\endverbatim +* +* Arguments +* ========= +* +*> \param[in] SIDE +*> \verbatim +*> SIDE is CHARACTER*1 +*> = 'L': apply Q or Q**T from the Left; +*> = 'R': apply Q or Q**T from the Right. +*> \endverbatim +*> +*> \param[in] TRANS +*> \verbatim +*> TRANS is CHARACTER*1 +*> = 'N': No transpose, apply Q; +*> = 'T': Transpose, apply Q**T. +*> \endverbatim +*> +*> \param[in] M +*> \verbatim +*> M is INTEGER +*> The number of rows of the matrix C. M >= 0. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The number of columns of the matrix C. N >= 0. +*> \endverbatim +*> +*> \param[in] K +*> \verbatim +*> K is INTEGER +*> The number of elementary reflectors whose product defines +*> the matrix Q. +*> If SIDE = 'L', M >= K >= 0; +*> if SIDE = 'R', N >= K >= 0. +*> \endverbatim +*> +*> \param[in] A +*> \verbatim +*> A is REAL array, dimension +*> (LDA,M) if SIDE = 'L', +*> (LDA,N) if SIDE = 'R' +*> The i-th row must contain the vector which defines the +*> elementary reflector H(i), for i = 1,2,...,k, as returned by +*> SGELQF in the first k rows of its array argument A. +*> A is modified by the routine but restored on exit. +*> \endverbatim +*> +*> \param[in] LDA +*> \verbatim +*> LDA is INTEGER +*> The leading dimension of the array A. LDA >= max(1,K). +*> \endverbatim +*> +*> \param[in] TAU +*> \verbatim +*> TAU is REAL array, dimension (K) +*> TAU(i) must contain the scalar factor of the elementary +*> reflector H(i), as returned by SGELQF. +*> \endverbatim +*> +*> \param[in,out] C +*> \verbatim +*> C is REAL array, dimension (LDC,N) +*> On entry, the M-by-N matrix C. +*> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. +*> \endverbatim +*> +*> \param[in] LDC +*> \verbatim +*> LDC is INTEGER +*> The leading dimension of the array C. LDC >= max(1,M). +*> \endverbatim +*> +*> \param[out] WORK +*> \verbatim +*> WORK is REAL array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. +*> \endverbatim +*> +*> \param[in] LWORK +*> \verbatim +*> LWORK is INTEGER +*> The dimension of the array WORK. +*> If SIDE = 'L', LWORK >= max(1,N); +*> if SIDE = 'R', LWORK >= max(1,M). +*> For optimum performance LWORK >= N*NB if SIDE = 'L', and +*> LWORK >= M*NB if SIDE = 'R', where NB is the optimal +*> blocksize. +*> \endverbatim +*> \verbatim +*> If LWORK = -1, then a workspace query is assumed; the routine +*> only calculates the optimal size of the WORK array, returns +*> this value as the first entry of the WORK array, and no error +*> message related to LWORK is issued by XERBLA. +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> = 0: successful exit +*> < 0: if INFO = -i, the i-th argument had an illegal value +*> \endverbatim +*> +* +* Authors +* ======= +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup realOTHERcomputational +* +* ===================================================================== SUBROUTINE SORMLQ( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, $ WORK, LWORK, INFO ) * -* -- LAPACK routine (version 3.3.1) -- +* -- LAPACK computational routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* -- April 2011 -- +* November 2011 * * .. Scalar Arguments .. CHARACTER SIDE, TRANS @@ -15,88 +178,6 @@ $ WORK( * ) * .. * -* Purpose -* ======= -* -* SORMLQ overwrites the general real M-by-N matrix C with -* -* SIDE = 'L' SIDE = 'R' -* TRANS = 'N': Q * C C * Q -* TRANS = 'T': Q**T * C C * Q**T -* -* where Q is a real orthogonal matrix defined as the product of k -* elementary reflectors -* -* Q = H(k) . . . H(2) H(1) -* -* as returned by SGELQF. Q is of order M if SIDE = 'L' and of order N -* if SIDE = 'R'. -* -* Arguments -* ========= -* -* SIDE (input) CHARACTER*1 -* = 'L': apply Q or Q**T from the Left; -* = 'R': apply Q or Q**T from the Right. -* -* TRANS (input) CHARACTER*1 -* = 'N': No transpose, apply Q; -* = 'T': Transpose, apply Q**T. -* -* M (input) INTEGER -* The number of rows of the matrix C. M >= 0. -* -* N (input) INTEGER -* The number of columns of the matrix C. N >= 0. -* -* K (input) INTEGER -* The number of elementary reflectors whose product defines -* the matrix Q. -* If SIDE = 'L', M >= K >= 0; -* if SIDE = 'R', N >= K >= 0. -* -* A (input) REAL array, dimension -* (LDA,M) if SIDE = 'L', -* (LDA,N) if SIDE = 'R' -* The i-th row must contain the vector which defines the -* elementary reflector H(i), for i = 1,2,...,k, as returned by -* SGELQF in the first k rows of its array argument A. -* A is modified by the routine but restored on exit. -* -* LDA (input) INTEGER -* The leading dimension of the array A. LDA >= max(1,K). -* -* TAU (input) REAL array, dimension (K) -* TAU(i) must contain the scalar factor of the elementary -* reflector H(i), as returned by SGELQF. -* -* C (input/output) REAL array, dimension (LDC,N) -* On entry, the M-by-N matrix C. -* On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. -* -* LDC (input) INTEGER -* The leading dimension of the array C. LDC >= max(1,M). -* -* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) -* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. -* -* LWORK (input) INTEGER -* The dimension of the array WORK. -* If SIDE = 'L', LWORK >= max(1,N); -* if SIDE = 'R', LWORK >= max(1,M). -* For optimum performance LWORK >= N*NB if SIDE = 'L', and -* LWORK >= M*NB if SIDE = 'R', where NB is the optimal -* blocksize. -* -* If LWORK = -1, then a workspace query is assumed; the routine -* only calculates the optimal size of the WORK array, returns -* this value as the first entry of the WORK array, and no error -* message related to LWORK is issued by XERBLA. -* -* INFO (output) INTEGER -* = 0: successful exit -* < 0: if INFO = -i, the i-th argument had an illegal value -* * ===================================================================== * * .. Parameters .. |