summaryrefslogtreecommitdiff
path: root/SRC/sormlq.f
diff options
context:
space:
mode:
authorjulie <julielangou@users.noreply.github.com>2011-10-06 06:53:11 +0000
committerjulie <julielangou@users.noreply.github.com>2011-10-06 06:53:11 +0000
commite1d39294aee16fa6db9ba079b14442358217db71 (patch)
tree30e5aa04c1f6596991fda5334f63dfb9b8027849 /SRC/sormlq.f
parent5fe0466a14e395641f4f8a300ecc9dcb8058081b (diff)
downloadlapack-e1d39294aee16fa6db9ba079b14442358217db71.tar.gz
lapack-e1d39294aee16fa6db9ba079b14442358217db71.tar.bz2
lapack-e1d39294aee16fa6db9ba079b14442358217db71.zip
Integrating Doxygen in comments
Diffstat (limited to 'SRC/sormlq.f')
-rw-r--r--SRC/sormlq.f249
1 files changed, 165 insertions, 84 deletions
diff --git a/SRC/sormlq.f b/SRC/sormlq.f
index 0bb06d2f..40931ed4 100644
--- a/SRC/sormlq.f
+++ b/SRC/sormlq.f
@@ -1,10 +1,173 @@
+*> \brief \b SORMLQ
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+* Definition
+* ==========
+*
+* SUBROUTINE SORMLQ( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
+* WORK, LWORK, INFO )
+*
+* .. Scalar Arguments ..
+* CHARACTER SIDE, TRANS
+* INTEGER INFO, K, LDA, LDC, LWORK, M, N
+* ..
+* .. Array Arguments ..
+* REAL A( LDA, * ), C( LDC, * ), TAU( * ),
+* $ WORK( * )
+* ..
+*
+* Purpose
+* =======
+*
+*>\details \b Purpose:
+*>\verbatim
+*>
+*> SORMLQ overwrites the general real M-by-N matrix C with
+*>
+*> SIDE = 'L' SIDE = 'R'
+*> TRANS = 'N': Q * C C * Q
+*> TRANS = 'T': Q**T * C C * Q**T
+*>
+*> where Q is a real orthogonal matrix defined as the product of k
+*> elementary reflectors
+*>
+*> Q = H(k) . . . H(2) H(1)
+*>
+*> as returned by SGELQF. Q is of order M if SIDE = 'L' and of order N
+*> if SIDE = 'R'.
+*>
+*>\endverbatim
+*
+* Arguments
+* =========
+*
+*> \param[in] SIDE
+*> \verbatim
+*> SIDE is CHARACTER*1
+*> = 'L': apply Q or Q**T from the Left;
+*> = 'R': apply Q or Q**T from the Right.
+*> \endverbatim
+*>
+*> \param[in] TRANS
+*> \verbatim
+*> TRANS is CHARACTER*1
+*> = 'N': No transpose, apply Q;
+*> = 'T': Transpose, apply Q**T.
+*> \endverbatim
+*>
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the matrix C. M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the matrix C. N >= 0.
+*> \endverbatim
+*>
+*> \param[in] K
+*> \verbatim
+*> K is INTEGER
+*> The number of elementary reflectors whose product defines
+*> the matrix Q.
+*> If SIDE = 'L', M >= K >= 0;
+*> if SIDE = 'R', N >= K >= 0.
+*> \endverbatim
+*>
+*> \param[in] A
+*> \verbatim
+*> A is REAL array, dimension
+*> (LDA,M) if SIDE = 'L',
+*> (LDA,N) if SIDE = 'R'
+*> The i-th row must contain the vector which defines the
+*> elementary reflector H(i), for i = 1,2,...,k, as returned by
+*> SGELQF in the first k rows of its array argument A.
+*> A is modified by the routine but restored on exit.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,K).
+*> \endverbatim
+*>
+*> \param[in] TAU
+*> \verbatim
+*> TAU is REAL array, dimension (K)
+*> TAU(i) must contain the scalar factor of the elementary
+*> reflector H(i), as returned by SGELQF.
+*> \endverbatim
+*>
+*> \param[in,out] C
+*> \verbatim
+*> C is REAL array, dimension (LDC,N)
+*> On entry, the M-by-N matrix C.
+*> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
+*> \endverbatim
+*>
+*> \param[in] LDC
+*> \verbatim
+*> LDC is INTEGER
+*> The leading dimension of the array C. LDC >= max(1,M).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is REAL array, dimension (MAX(1,LWORK))
+*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> The dimension of the array WORK.
+*> If SIDE = 'L', LWORK >= max(1,N);
+*> if SIDE = 'R', LWORK >= max(1,M).
+*> For optimum performance LWORK >= N*NB if SIDE = 'L', and
+*> LWORK >= M*NB if SIDE = 'R', where NB is the optimal
+*> blocksize.
+*> \endverbatim
+*> \verbatim
+*> If LWORK = -1, then a workspace query is assumed; the routine
+*> only calculates the optimal size of the WORK array, returns
+*> this value as the first entry of the WORK array, and no error
+*> message related to LWORK is issued by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> \endverbatim
+*>
+*
+* Authors
+* =======
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2011
+*
+*> \ingroup realOTHERcomputational
+*
+* =====================================================================
SUBROUTINE SORMLQ( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
$ WORK, LWORK, INFO )
*
-* -- LAPACK routine (version 3.3.1) --
+* -- LAPACK computational routine (version 3.3.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
-* -- April 2011 --
+* November 2011
*
* .. Scalar Arguments ..
CHARACTER SIDE, TRANS
@@ -15,88 +178,6 @@
$ WORK( * )
* ..
*
-* Purpose
-* =======
-*
-* SORMLQ overwrites the general real M-by-N matrix C with
-*
-* SIDE = 'L' SIDE = 'R'
-* TRANS = 'N': Q * C C * Q
-* TRANS = 'T': Q**T * C C * Q**T
-*
-* where Q is a real orthogonal matrix defined as the product of k
-* elementary reflectors
-*
-* Q = H(k) . . . H(2) H(1)
-*
-* as returned by SGELQF. Q is of order M if SIDE = 'L' and of order N
-* if SIDE = 'R'.
-*
-* Arguments
-* =========
-*
-* SIDE (input) CHARACTER*1
-* = 'L': apply Q or Q**T from the Left;
-* = 'R': apply Q or Q**T from the Right.
-*
-* TRANS (input) CHARACTER*1
-* = 'N': No transpose, apply Q;
-* = 'T': Transpose, apply Q**T.
-*
-* M (input) INTEGER
-* The number of rows of the matrix C. M >= 0.
-*
-* N (input) INTEGER
-* The number of columns of the matrix C. N >= 0.
-*
-* K (input) INTEGER
-* The number of elementary reflectors whose product defines
-* the matrix Q.
-* If SIDE = 'L', M >= K >= 0;
-* if SIDE = 'R', N >= K >= 0.
-*
-* A (input) REAL array, dimension
-* (LDA,M) if SIDE = 'L',
-* (LDA,N) if SIDE = 'R'
-* The i-th row must contain the vector which defines the
-* elementary reflector H(i), for i = 1,2,...,k, as returned by
-* SGELQF in the first k rows of its array argument A.
-* A is modified by the routine but restored on exit.
-*
-* LDA (input) INTEGER
-* The leading dimension of the array A. LDA >= max(1,K).
-*
-* TAU (input) REAL array, dimension (K)
-* TAU(i) must contain the scalar factor of the elementary
-* reflector H(i), as returned by SGELQF.
-*
-* C (input/output) REAL array, dimension (LDC,N)
-* On entry, the M-by-N matrix C.
-* On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
-*
-* LDC (input) INTEGER
-* The leading dimension of the array C. LDC >= max(1,M).
-*
-* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
-* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-*
-* LWORK (input) INTEGER
-* The dimension of the array WORK.
-* If SIDE = 'L', LWORK >= max(1,N);
-* if SIDE = 'R', LWORK >= max(1,M).
-* For optimum performance LWORK >= N*NB if SIDE = 'L', and
-* LWORK >= M*NB if SIDE = 'R', where NB is the optimal
-* blocksize.
-*
-* If LWORK = -1, then a workspace query is assumed; the routine
-* only calculates the optimal size of the WORK array, returns
-* this value as the first entry of the WORK array, and no error
-* message related to LWORK is issued by XERBLA.
-*
-* INFO (output) INTEGER
-* = 0: successful exit
-* < 0: if INFO = -i, the i-th argument had an illegal value
-*
* =====================================================================
*
* .. Parameters ..