summaryrefslogtreecommitdiff
path: root/SRC/slaed7.f
diff options
context:
space:
mode:
authorjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
committerjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
commitbaba851215b44ac3b60b9248eb02bcce7eb76247 (patch)
tree8c0f5c006875532a30d4409f5e94b0f310ff00a7 /SRC/slaed7.f
downloadlapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.gz
lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.bz2
lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.zip
Move LAPACK trunk into position.
Diffstat (limited to 'SRC/slaed7.f')
-rw-r--r--SRC/slaed7.f287
1 files changed, 287 insertions, 0 deletions
diff --git a/SRC/slaed7.f b/SRC/slaed7.f
new file mode 100644
index 00000000..f8979c80
--- /dev/null
+++ b/SRC/slaed7.f
@@ -0,0 +1,287 @@
+ SUBROUTINE SLAED7( ICOMPQ, N, QSIZ, TLVLS, CURLVL, CURPBM, D, Q,
+ $ LDQ, INDXQ, RHO, CUTPNT, QSTORE, QPTR, PRMPTR,
+ $ PERM, GIVPTR, GIVCOL, GIVNUM, WORK, IWORK,
+ $ INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ INTEGER CURLVL, CURPBM, CUTPNT, ICOMPQ, INFO, LDQ, N,
+ $ QSIZ, TLVLS
+ REAL RHO
+* ..
+* .. Array Arguments ..
+ INTEGER GIVCOL( 2, * ), GIVPTR( * ), INDXQ( * ),
+ $ IWORK( * ), PERM( * ), PRMPTR( * ), QPTR( * )
+ REAL D( * ), GIVNUM( 2, * ), Q( LDQ, * ),
+ $ QSTORE( * ), WORK( * )
+* ..
+*
+* Purpose
+* =======
+*
+* SLAED7 computes the updated eigensystem of a diagonal
+* matrix after modification by a rank-one symmetric matrix. This
+* routine is used only for the eigenproblem which requires all
+* eigenvalues and optionally eigenvectors of a dense symmetric matrix
+* that has been reduced to tridiagonal form. SLAED1 handles
+* the case in which all eigenvalues and eigenvectors of a symmetric
+* tridiagonal matrix are desired.
+*
+* T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out)
+*
+* where Z = Q'u, u is a vector of length N with ones in the
+* CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.
+*
+* The eigenvectors of the original matrix are stored in Q, and the
+* eigenvalues are in D. The algorithm consists of three stages:
+*
+* The first stage consists of deflating the size of the problem
+* when there are multiple eigenvalues or if there is a zero in
+* the Z vector. For each such occurence the dimension of the
+* secular equation problem is reduced by one. This stage is
+* performed by the routine SLAED8.
+*
+* The second stage consists of calculating the updated
+* eigenvalues. This is done by finding the roots of the secular
+* equation via the routine SLAED4 (as called by SLAED9).
+* This routine also calculates the eigenvectors of the current
+* problem.
+*
+* The final stage consists of computing the updated eigenvectors
+* directly using the updated eigenvalues. The eigenvectors for
+* the current problem are multiplied with the eigenvectors from
+* the overall problem.
+*
+* Arguments
+* =========
+*
+* ICOMPQ (input) INTEGER
+* = 0: Compute eigenvalues only.
+* = 1: Compute eigenvectors of original dense symmetric matrix
+* also. On entry, Q contains the orthogonal matrix used
+* to reduce the original matrix to tridiagonal form.
+*
+* N (input) INTEGER
+* The dimension of the symmetric tridiagonal matrix. N >= 0.
+*
+* QSIZ (input) INTEGER
+* The dimension of the orthogonal matrix used to reduce
+* the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1.
+*
+* TLVLS (input) INTEGER
+* The total number of merging levels in the overall divide and
+* conquer tree.
+*
+* CURLVL (input) INTEGER
+* The current level in the overall merge routine,
+* 0 <= CURLVL <= TLVLS.
+*
+* CURPBM (input) INTEGER
+* The current problem in the current level in the overall
+* merge routine (counting from upper left to lower right).
+*
+* D (input/output) REAL array, dimension (N)
+* On entry, the eigenvalues of the rank-1-perturbed matrix.
+* On exit, the eigenvalues of the repaired matrix.
+*
+* Q (input/output) REAL array, dimension (LDQ, N)
+* On entry, the eigenvectors of the rank-1-perturbed matrix.
+* On exit, the eigenvectors of the repaired tridiagonal matrix.
+*
+* LDQ (input) INTEGER
+* The leading dimension of the array Q. LDQ >= max(1,N).
+*
+* INDXQ (output) INTEGER array, dimension (N)
+* The permutation which will reintegrate the subproblem just
+* solved back into sorted order, i.e., D( INDXQ( I = 1, N ) )
+* will be in ascending order.
+*
+* RHO (input) REAL
+* The subdiagonal element used to create the rank-1
+* modification.
+*
+* CUTPNT (input) INTEGER
+* Contains the location of the last eigenvalue in the leading
+* sub-matrix. min(1,N) <= CUTPNT <= N.
+*
+* QSTORE (input/output) REAL array, dimension (N**2+1)
+* Stores eigenvectors of submatrices encountered during
+* divide and conquer, packed together. QPTR points to
+* beginning of the submatrices.
+*
+* QPTR (input/output) INTEGER array, dimension (N+2)
+* List of indices pointing to beginning of submatrices stored
+* in QSTORE. The submatrices are numbered starting at the
+* bottom left of the divide and conquer tree, from left to
+* right and bottom to top.
+*
+* PRMPTR (input) INTEGER array, dimension (N lg N)
+* Contains a list of pointers which indicate where in PERM a
+* level's permutation is stored. PRMPTR(i+1) - PRMPTR(i)
+* indicates the size of the permutation and also the size of
+* the full, non-deflated problem.
+*
+* PERM (input) INTEGER array, dimension (N lg N)
+* Contains the permutations (from deflation and sorting) to be
+* applied to each eigenblock.
+*
+* GIVPTR (input) INTEGER array, dimension (N lg N)
+* Contains a list of pointers which indicate where in GIVCOL a
+* level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i)
+* indicates the number of Givens rotations.
+*
+* GIVCOL (input) INTEGER array, dimension (2, N lg N)
+* Each pair of numbers indicates a pair of columns to take place
+* in a Givens rotation.
+*
+* GIVNUM (input) REAL array, dimension (2, N lg N)
+* Each number indicates the S value to be used in the
+* corresponding Givens rotation.
+*
+* WORK (workspace) REAL array, dimension (3*N+QSIZ*N)
+*
+* IWORK (workspace) INTEGER array, dimension (4*N)
+*
+* INFO (output) INTEGER
+* = 0: successful exit.
+* < 0: if INFO = -i, the i-th argument had an illegal value.
+* > 0: if INFO = 1, an eigenvalue did not converge
+*
+* Further Details
+* ===============
+*
+* Based on contributions by
+* Jeff Rutter, Computer Science Division, University of California
+* at Berkeley, USA
+*
+* =====================================================================
+*
+* .. Parameters ..
+ REAL ONE, ZERO
+ PARAMETER ( ONE = 1.0E0, ZERO = 0.0E0 )
+* ..
+* .. Local Scalars ..
+ INTEGER COLTYP, CURR, I, IDLMDA, INDX, INDXC, INDXP,
+ $ IQ2, IS, IW, IZ, K, LDQ2, N1, N2, PTR
+* ..
+* .. External Subroutines ..
+ EXTERNAL SGEMM, SLAED8, SLAED9, SLAEDA, SLAMRG, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ INFO = 0
+*
+ IF( ICOMPQ.LT.0 .OR. ICOMPQ.GT.1 ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( ICOMPQ.EQ.1 .AND. QSIZ.LT.N ) THEN
+ INFO = -4
+ ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
+ INFO = -9
+ ELSE IF( MIN( 1, N ).GT.CUTPNT .OR. N.LT.CUTPNT ) THEN
+ INFO = -12
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'SLAED7', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( N.EQ.0 )
+ $ RETURN
+*
+* The following values are for bookkeeping purposes only. They are
+* integer pointers which indicate the portion of the workspace
+* used by a particular array in SLAED8 and SLAED9.
+*
+ IF( ICOMPQ.EQ.1 ) THEN
+ LDQ2 = QSIZ
+ ELSE
+ LDQ2 = N
+ END IF
+*
+ IZ = 1
+ IDLMDA = IZ + N
+ IW = IDLMDA + N
+ IQ2 = IW + N
+ IS = IQ2 + N*LDQ2
+*
+ INDX = 1
+ INDXC = INDX + N
+ COLTYP = INDXC + N
+ INDXP = COLTYP + N
+*
+* Form the z-vector which consists of the last row of Q_1 and the
+* first row of Q_2.
+*
+ PTR = 1 + 2**TLVLS
+ DO 10 I = 1, CURLVL - 1
+ PTR = PTR + 2**( TLVLS-I )
+ 10 CONTINUE
+ CURR = PTR + CURPBM
+ CALL SLAEDA( N, TLVLS, CURLVL, CURPBM, PRMPTR, PERM, GIVPTR,
+ $ GIVCOL, GIVNUM, QSTORE, QPTR, WORK( IZ ),
+ $ WORK( IZ+N ), INFO )
+*
+* When solving the final problem, we no longer need the stored data,
+* so we will overwrite the data from this level onto the previously
+* used storage space.
+*
+ IF( CURLVL.EQ.TLVLS ) THEN
+ QPTR( CURR ) = 1
+ PRMPTR( CURR ) = 1
+ GIVPTR( CURR ) = 1
+ END IF
+*
+* Sort and Deflate eigenvalues.
+*
+ CALL SLAED8( ICOMPQ, K, N, QSIZ, D, Q, LDQ, INDXQ, RHO, CUTPNT,
+ $ WORK( IZ ), WORK( IDLMDA ), WORK( IQ2 ), LDQ2,
+ $ WORK( IW ), PERM( PRMPTR( CURR ) ), GIVPTR( CURR+1 ),
+ $ GIVCOL( 1, GIVPTR( CURR ) ),
+ $ GIVNUM( 1, GIVPTR( CURR ) ), IWORK( INDXP ),
+ $ IWORK( INDX ), INFO )
+ PRMPTR( CURR+1 ) = PRMPTR( CURR ) + N
+ GIVPTR( CURR+1 ) = GIVPTR( CURR+1 ) + GIVPTR( CURR )
+*
+* Solve Secular Equation.
+*
+ IF( K.NE.0 ) THEN
+ CALL SLAED9( K, 1, K, N, D, WORK( IS ), K, RHO, WORK( IDLMDA ),
+ $ WORK( IW ), QSTORE( QPTR( CURR ) ), K, INFO )
+ IF( INFO.NE.0 )
+ $ GO TO 30
+ IF( ICOMPQ.EQ.1 ) THEN
+ CALL SGEMM( 'N', 'N', QSIZ, K, K, ONE, WORK( IQ2 ), LDQ2,
+ $ QSTORE( QPTR( CURR ) ), K, ZERO, Q, LDQ )
+ END IF
+ QPTR( CURR+1 ) = QPTR( CURR ) + K**2
+*
+* Prepare the INDXQ sorting permutation.
+*
+ N1 = K
+ N2 = N - K
+ CALL SLAMRG( N1, N2, D, 1, -1, INDXQ )
+ ELSE
+ QPTR( CURR+1 ) = QPTR( CURR )
+ DO 20 I = 1, N
+ INDXQ( I ) = I
+ 20 CONTINUE
+ END IF
+*
+ 30 CONTINUE
+ RETURN
+*
+* End of SLAED7
+*
+ END