summaryrefslogtreecommitdiff
path: root/SRC/sgtsvx.f
diff options
context:
space:
mode:
authorjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
committerjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
commitbaba851215b44ac3b60b9248eb02bcce7eb76247 (patch)
tree8c0f5c006875532a30d4409f5e94b0f310ff00a7 /SRC/sgtsvx.f
downloadlapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.gz
lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.bz2
lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.zip
Move LAPACK trunk into position.
Diffstat (limited to 'SRC/sgtsvx.f')
-rw-r--r--SRC/sgtsvx.f291
1 files changed, 291 insertions, 0 deletions
diff --git a/SRC/sgtsvx.f b/SRC/sgtsvx.f
new file mode 100644
index 00000000..61e4b48b
--- /dev/null
+++ b/SRC/sgtsvx.f
@@ -0,0 +1,291 @@
+ SUBROUTINE SGTSVX( FACT, TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF,
+ $ DU2, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR,
+ $ WORK, IWORK, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER FACT, TRANS
+ INTEGER INFO, LDB, LDX, N, NRHS
+ REAL RCOND
+* ..
+* .. Array Arguments ..
+ INTEGER IPIV( * ), IWORK( * )
+ REAL B( LDB, * ), BERR( * ), D( * ), DF( * ),
+ $ DL( * ), DLF( * ), DU( * ), DU2( * ), DUF( * ),
+ $ FERR( * ), WORK( * ), X( LDX, * )
+* ..
+*
+* Purpose
+* =======
+*
+* SGTSVX uses the LU factorization to compute the solution to a real
+* system of linear equations A * X = B or A**T * X = B,
+* where A is a tridiagonal matrix of order N and X and B are N-by-NRHS
+* matrices.
+*
+* Error bounds on the solution and a condition estimate are also
+* provided.
+*
+* Description
+* ===========
+*
+* The following steps are performed:
+*
+* 1. If FACT = 'N', the LU decomposition is used to factor the matrix A
+* as A = L * U, where L is a product of permutation and unit lower
+* bidiagonal matrices and U is upper triangular with nonzeros in
+* only the main diagonal and first two superdiagonals.
+*
+* 2. If some U(i,i)=0, so that U is exactly singular, then the routine
+* returns with INFO = i. Otherwise, the factored form of A is used
+* to estimate the condition number of the matrix A. If the
+* reciprocal of the condition number is less than machine precision,
+* INFO = N+1 is returned as a warning, but the routine still goes on
+* to solve for X and compute error bounds as described below.
+*
+* 3. The system of equations is solved for X using the factored form
+* of A.
+*
+* 4. Iterative refinement is applied to improve the computed solution
+* matrix and calculate error bounds and backward error estimates
+* for it.
+*
+* Arguments
+* =========
+*
+* FACT (input) CHARACTER*1
+* Specifies whether or not the factored form of A has been
+* supplied on entry.
+* = 'F': DLF, DF, DUF, DU2, and IPIV contain the factored
+* form of A; DL, D, DU, DLF, DF, DUF, DU2 and IPIV
+* will not be modified.
+* = 'N': The matrix will be copied to DLF, DF, and DUF
+* and factored.
+*
+* TRANS (input) CHARACTER*1
+* Specifies the form of the system of equations:
+* = 'N': A * X = B (No transpose)
+* = 'T': A**T * X = B (Transpose)
+* = 'C': A**H * X = B (Conjugate transpose = Transpose)
+*
+* N (input) INTEGER
+* The order of the matrix A. N >= 0.
+*
+* NRHS (input) INTEGER
+* The number of right hand sides, i.e., the number of columns
+* of the matrix B. NRHS >= 0.
+*
+* DL (input) REAL array, dimension (N-1)
+* The (n-1) subdiagonal elements of A.
+*
+* D (input) REAL array, dimension (N)
+* The n diagonal elements of A.
+*
+* DU (input) REAL array, dimension (N-1)
+* The (n-1) superdiagonal elements of A.
+*
+* DLF (input or output) REAL array, dimension (N-1)
+* If FACT = 'F', then DLF is an input argument and on entry
+* contains the (n-1) multipliers that define the matrix L from
+* the LU factorization of A as computed by SGTTRF.
+*
+* If FACT = 'N', then DLF is an output argument and on exit
+* contains the (n-1) multipliers that define the matrix L from
+* the LU factorization of A.
+*
+* DF (input or output) REAL array, dimension (N)
+* If FACT = 'F', then DF is an input argument and on entry
+* contains the n diagonal elements of the upper triangular
+* matrix U from the LU factorization of A.
+*
+* If FACT = 'N', then DF is an output argument and on exit
+* contains the n diagonal elements of the upper triangular
+* matrix U from the LU factorization of A.
+*
+* DUF (input or output) REAL array, dimension (N-1)
+* If FACT = 'F', then DUF is an input argument and on entry
+* contains the (n-1) elements of the first superdiagonal of U.
+*
+* If FACT = 'N', then DUF is an output argument and on exit
+* contains the (n-1) elements of the first superdiagonal of U.
+*
+* DU2 (input or output) REAL array, dimension (N-2)
+* If FACT = 'F', then DU2 is an input argument and on entry
+* contains the (n-2) elements of the second superdiagonal of
+* U.
+*
+* If FACT = 'N', then DU2 is an output argument and on exit
+* contains the (n-2) elements of the second superdiagonal of
+* U.
+*
+* IPIV (input or output) INTEGER array, dimension (N)
+* If FACT = 'F', then IPIV is an input argument and on entry
+* contains the pivot indices from the LU factorization of A as
+* computed by SGTTRF.
+*
+* If FACT = 'N', then IPIV is an output argument and on exit
+* contains the pivot indices from the LU factorization of A;
+* row i of the matrix was interchanged with row IPIV(i).
+* IPIV(i) will always be either i or i+1; IPIV(i) = i indicates
+* a row interchange was not required.
+*
+* B (input) REAL array, dimension (LDB,NRHS)
+* The N-by-NRHS right hand side matrix B.
+*
+* LDB (input) INTEGER
+* The leading dimension of the array B. LDB >= max(1,N).
+*
+* X (output) REAL array, dimension (LDX,NRHS)
+* If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
+*
+* LDX (input) INTEGER
+* The leading dimension of the array X. LDX >= max(1,N).
+*
+* RCOND (output) REAL
+* The estimate of the reciprocal condition number of the matrix
+* A. If RCOND is less than the machine precision (in
+* particular, if RCOND = 0), the matrix is singular to working
+* precision. This condition is indicated by a return code of
+* INFO > 0.
+*
+* FERR (output) REAL array, dimension (NRHS)
+* The estimated forward error bound for each solution vector
+* X(j) (the j-th column of the solution matrix X).
+* If XTRUE is the true solution corresponding to X(j), FERR(j)
+* is an estimated upper bound for the magnitude of the largest
+* element in (X(j) - XTRUE) divided by the magnitude of the
+* largest element in X(j). The estimate is as reliable as
+* the estimate for RCOND, and is almost always a slight
+* overestimate of the true error.
+*
+* BERR (output) REAL array, dimension (NRHS)
+* The componentwise relative backward error of each solution
+* vector X(j) (i.e., the smallest relative change in
+* any element of A or B that makes X(j) an exact solution).
+*
+* WORK (workspace) REAL array, dimension (3*N)
+*
+* IWORK (workspace) INTEGER array, dimension (N)
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value
+* > 0: if INFO = i, and i is
+* <= N: U(i,i) is exactly zero. The factorization
+* has not been completed unless i = N, but the
+* factor U is exactly singular, so the solution
+* and error bounds could not be computed.
+* RCOND = 0 is returned.
+* = N+1: U is nonsingular, but RCOND is less than machine
+* precision, meaning that the matrix is singular
+* to working precision. Nevertheless, the
+* solution and error bounds are computed because
+* there are a number of situations where the
+* computed solution can be more accurate than the
+* value of RCOND would suggest.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ REAL ZERO
+ PARAMETER ( ZERO = 0.0E+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL NOFACT, NOTRAN
+ CHARACTER NORM
+ REAL ANORM
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ REAL SLAMCH, SLANGT
+ EXTERNAL LSAME, SLAMCH, SLANGT
+* ..
+* .. External Subroutines ..
+ EXTERNAL SCOPY, SGTCON, SGTRFS, SGTTRF, SGTTRS, SLACPY,
+ $ XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX
+* ..
+* .. Executable Statements ..
+*
+ INFO = 0
+ NOFACT = LSAME( FACT, 'N' )
+ NOTRAN = LSAME( TRANS, 'N' )
+ IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
+ INFO = -1
+ ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
+ $ LSAME( TRANS, 'C' ) ) THEN
+ INFO = -2
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( NRHS.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
+ INFO = -14
+ ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
+ INFO = -16
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'SGTSVX', -INFO )
+ RETURN
+ END IF
+*
+ IF( NOFACT ) THEN
+*
+* Compute the LU factorization of A.
+*
+ CALL SCOPY( N, D, 1, DF, 1 )
+ IF( N.GT.1 ) THEN
+ CALL SCOPY( N-1, DL, 1, DLF, 1 )
+ CALL SCOPY( N-1, DU, 1, DUF, 1 )
+ END IF
+ CALL SGTTRF( N, DLF, DF, DUF, DU2, IPIV, INFO )
+*
+* Return if INFO is non-zero.
+*
+ IF( INFO.GT.0 )THEN
+ RCOND = ZERO
+ RETURN
+ END IF
+ END IF
+*
+* Compute the norm of the matrix A.
+*
+ IF( NOTRAN ) THEN
+ NORM = '1'
+ ELSE
+ NORM = 'I'
+ END IF
+ ANORM = SLANGT( NORM, N, DL, D, DU )
+*
+* Compute the reciprocal of the condition number of A.
+*
+ CALL SGTCON( NORM, N, DLF, DF, DUF, DU2, IPIV, ANORM, RCOND, WORK,
+ $ IWORK, INFO )
+*
+* Compute the solution vectors X.
+*
+ CALL SLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
+ CALL SGTTRS( TRANS, N, NRHS, DLF, DF, DUF, DU2, IPIV, X, LDX,
+ $ INFO )
+*
+* Use iterative refinement to improve the computed solutions and
+* compute error bounds and backward error estimates for them.
+*
+ CALL SGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2, IPIV,
+ $ B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
+*
+* Set INFO = N+1 if the matrix is singular to working precision.
+*
+ IF( RCOND.LT.SLAMCH( 'Epsilon' ) )
+ $ INFO = N + 1
+*
+ RETURN
+*
+* End of SGTSVX
+*
+ END