diff options
author | julie <julielangou@users.noreply.github.com> | 2011-10-06 06:53:11 +0000 |
---|---|---|
committer | julie <julielangou@users.noreply.github.com> | 2011-10-06 06:53:11 +0000 |
commit | e1d39294aee16fa6db9ba079b14442358217db71 (patch) | |
tree | 30e5aa04c1f6596991fda5334f63dfb9b8027849 /SRC/sgtcon.f | |
parent | 5fe0466a14e395641f4f8a300ecc9dcb8058081b (diff) | |
download | lapack-e1d39294aee16fa6db9ba079b14442358217db71.tar.gz lapack-e1d39294aee16fa6db9ba079b14442358217db71.tar.bz2 lapack-e1d39294aee16fa6db9ba079b14442358217db71.zip |
Integrating Doxygen in comments
Diffstat (limited to 'SRC/sgtcon.f')
-rw-r--r-- | SRC/sgtcon.f | 202 |
1 files changed, 139 insertions, 63 deletions
diff --git a/SRC/sgtcon.f b/SRC/sgtcon.f index 316b842a..a6790d56 100644 --- a/SRC/sgtcon.f +++ b/SRC/sgtcon.f @@ -1,12 +1,147 @@ +*> \brief \b SGTCON +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +* Definition +* ========== +* +* SUBROUTINE SGTCON( NORM, N, DL, D, DU, DU2, IPIV, ANORM, RCOND, +* WORK, IWORK, INFO ) +* +* .. Scalar Arguments .. +* CHARACTER NORM +* INTEGER INFO, N +* REAL ANORM, RCOND +* .. +* .. Array Arguments .. +* INTEGER IPIV( * ), IWORK( * ) +* REAL D( * ), DL( * ), DU( * ), DU2( * ), WORK( * ) +* .. +* +* Purpose +* ======= +* +*>\details \b Purpose: +*>\verbatim +*> +*> SGTCON estimates the reciprocal of the condition number of a real +*> tridiagonal matrix A using the LU factorization as computed by +*> SGTTRF. +*> +*> An estimate is obtained for norm(inv(A)), and the reciprocal of the +*> condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). +*> +*>\endverbatim +* +* Arguments +* ========= +* +*> \param[in] NORM +*> \verbatim +*> NORM is CHARACTER*1 +*> Specifies whether the 1-norm condition number or the +*> infinity-norm condition number is required: +*> = '1' or 'O': 1-norm; +*> = 'I': Infinity-norm. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The order of the matrix A. N >= 0. +*> \endverbatim +*> +*> \param[in] DL +*> \verbatim +*> DL is REAL array, dimension (N-1) +*> The (n-1) multipliers that define the matrix L from the +*> LU factorization of A as computed by SGTTRF. +*> \endverbatim +*> +*> \param[in] D +*> \verbatim +*> D is REAL array, dimension (N) +*> The n diagonal elements of the upper triangular matrix U from +*> the LU factorization of A. +*> \endverbatim +*> +*> \param[in] DU +*> \verbatim +*> DU is REAL array, dimension (N-1) +*> The (n-1) elements of the first superdiagonal of U. +*> \endverbatim +*> +*> \param[in] DU2 +*> \verbatim +*> DU2 is REAL array, dimension (N-2) +*> The (n-2) elements of the second superdiagonal of U. +*> \endverbatim +*> +*> \param[in] IPIV +*> \verbatim +*> IPIV is INTEGER array, dimension (N) +*> The pivot indices; for 1 <= i <= n, row i of the matrix was +*> interchanged with row IPIV(i). IPIV(i) will always be either +*> i or i+1; IPIV(i) = i indicates a row interchange was not +*> required. +*> \endverbatim +*> +*> \param[in] ANORM +*> \verbatim +*> ANORM is REAL +*> If NORM = '1' or 'O', the 1-norm of the original matrix A. +*> If NORM = 'I', the infinity-norm of the original matrix A. +*> \endverbatim +*> +*> \param[out] RCOND +*> \verbatim +*> RCOND is REAL +*> The reciprocal of the condition number of the matrix A, +*> computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an +*> estimate of the 1-norm of inv(A) computed in this routine. +*> \endverbatim +*> +*> \param[out] WORK +*> \verbatim +*> WORK is REAL array, dimension (2*N) +*> \endverbatim +*> +*> \param[out] IWORK +*> \verbatim +*> IWORK is INTEGER array, dimension (N) +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> = 0: successful exit +*> < 0: if INFO = -i, the i-th argument had an illegal value +*> \endverbatim +*> +* +* Authors +* ======= +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup realOTHERcomputational +* +* ===================================================================== SUBROUTINE SGTCON( NORM, N, DL, D, DU, DU2, IPIV, ANORM, RCOND, $ WORK, IWORK, INFO ) * -* -- LAPACK routine (version 3.3.1) -- +* -- LAPACK computational routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* -- April 2011 -- -* -* Modified to call SLACN2 in place of SLACON, 7 Feb 03, SJH. +* November 2011 * * .. Scalar Arguments .. CHARACTER NORM @@ -18,65 +153,6 @@ REAL D( * ), DL( * ), DU( * ), DU2( * ), WORK( * ) * .. * -* Purpose -* ======= -* -* SGTCON estimates the reciprocal of the condition number of a real -* tridiagonal matrix A using the LU factorization as computed by -* SGTTRF. -* -* An estimate is obtained for norm(inv(A)), and the reciprocal of the -* condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). -* -* Arguments -* ========= -* -* NORM (input) CHARACTER*1 -* Specifies whether the 1-norm condition number or the -* infinity-norm condition number is required: -* = '1' or 'O': 1-norm; -* = 'I': Infinity-norm. -* -* N (input) INTEGER -* The order of the matrix A. N >= 0. -* -* DL (input) REAL array, dimension (N-1) -* The (n-1) multipliers that define the matrix L from the -* LU factorization of A as computed by SGTTRF. -* -* D (input) REAL array, dimension (N) -* The n diagonal elements of the upper triangular matrix U from -* the LU factorization of A. -* -* DU (input) REAL array, dimension (N-1) -* The (n-1) elements of the first superdiagonal of U. -* -* DU2 (input) REAL array, dimension (N-2) -* The (n-2) elements of the second superdiagonal of U. -* -* IPIV (input) INTEGER array, dimension (N) -* The pivot indices; for 1 <= i <= n, row i of the matrix was -* interchanged with row IPIV(i). IPIV(i) will always be either -* i or i+1; IPIV(i) = i indicates a row interchange was not -* required. -* -* ANORM (input) REAL -* If NORM = '1' or 'O', the 1-norm of the original matrix A. -* If NORM = 'I', the infinity-norm of the original matrix A. -* -* RCOND (output) REAL -* The reciprocal of the condition number of the matrix A, -* computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an -* estimate of the 1-norm of inv(A) computed in this routine. -* -* WORK (workspace) REAL array, dimension (2*N) -* -* IWORK (workspace) INTEGER array, dimension (N) -* -* INFO (output) INTEGER -* = 0: successful exit -* < 0: if INFO = -i, the i-th argument had an illegal value -* * ===================================================================== * * .. Parameters .. |