summaryrefslogtreecommitdiff
path: root/SRC/sgeqrfp.f
diff options
context:
space:
mode:
authorjulie <julielangou@users.noreply.github.com>2011-10-06 06:53:11 +0000
committerjulie <julielangou@users.noreply.github.com>2011-10-06 06:53:11 +0000
commite1d39294aee16fa6db9ba079b14442358217db71 (patch)
tree30e5aa04c1f6596991fda5334f63dfb9b8027849 /SRC/sgeqrfp.f
parent5fe0466a14e395641f4f8a300ecc9dcb8058081b (diff)
downloadlapack-e1d39294aee16fa6db9ba079b14442358217db71.tar.gz
lapack-e1d39294aee16fa6db9ba079b14442358217db71.tar.bz2
lapack-e1d39294aee16fa6db9ba079b14442358217db71.zip
Integrating Doxygen in comments
Diffstat (limited to 'SRC/sgeqrfp.f')
-rw-r--r--SRC/sgeqrfp.f182
1 files changed, 125 insertions, 57 deletions
diff --git a/SRC/sgeqrfp.f b/SRC/sgeqrfp.f
index d9c7e434..37b19f1b 100644
--- a/SRC/sgeqrfp.f
+++ b/SRC/sgeqrfp.f
@@ -1,79 +1,147 @@
- SUBROUTINE SGEQRFP( M, N, A, LDA, TAU, WORK, LWORK, INFO )
+*> \brief \b SGEQRFP
*
-* -- LAPACK routine (version 3.3.1) --
-* -- LAPACK is a software package provided by Univ. of Tennessee, --
-* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
-* -- April 2011 --
+* =========== DOCUMENTATION ===========
*
-* .. Scalar Arguments ..
- INTEGER INFO, LDA, LWORK, M, N
-* ..
-* .. Array Arguments ..
- REAL A( LDA, * ), TAU( * ), WORK( * )
-* ..
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
*
+* Definition
+* ==========
+*
+* SUBROUTINE SGEQRFP( M, N, A, LDA, TAU, WORK, LWORK, INFO )
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, LDA, LWORK, M, N
+* ..
+* .. Array Arguments ..
+* REAL A( LDA, * ), TAU( * ), WORK( * )
+* ..
+*
* Purpose
* =======
*
-* SGEQRFP computes a QR factorization of a real M-by-N matrix A:
-* A = Q * R.
+*>\details \b Purpose:
+*>\verbatim
+*>
+*> SGEQRFP computes a QR factorization of a real M-by-N matrix A:
+*> A = Q * R.
+*>
+*>\endverbatim
*
* Arguments
* =========
*
-* M (input) INTEGER
-* The number of rows of the matrix A. M >= 0.
-*
-* N (input) INTEGER
-* The number of columns of the matrix A. N >= 0.
-*
-* A (input/output) REAL array, dimension (LDA,N)
-* On entry, the M-by-N matrix A.
-* On exit, the elements on and above the diagonal of the array
-* contain the min(M,N)-by-N upper trapezoidal matrix R (R is
-* upper triangular if m >= n); the elements below the diagonal,
-* with the array TAU, represent the orthogonal matrix Q as a
-* product of min(m,n) elementary reflectors (see Further
-* Details).
-*
-* LDA (input) INTEGER
-* The leading dimension of the array A. LDA >= max(1,M).
-*
-* TAU (output) REAL array, dimension (min(M,N))
-* The scalar factors of the elementary reflectors (see Further
-* Details).
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the matrix A. M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is REAL array, dimension (LDA,N)
+*> On entry, the M-by-N matrix A.
+*> On exit, the elements on and above the diagonal of the array
+*> contain the min(M,N)-by-N upper trapezoidal matrix R (R is
+*> upper triangular if m >= n); the elements below the diagonal,
+*> with the array TAU, represent the orthogonal matrix Q as a
+*> product of min(m,n) elementary reflectors (see Further
+*> Details).
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[out] TAU
+*> \verbatim
+*> TAU is REAL array, dimension (min(M,N))
+*> The scalar factors of the elementary reflectors (see Further
+*> Details).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is REAL array, dimension (MAX(1,LWORK))
+*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> The dimension of the array WORK. LWORK >= max(1,N).
+*> For optimum performance LWORK >= N*NB, where NB is
+*> the optimal blocksize.
+*> \endverbatim
+*> \verbatim
+*> If LWORK = -1, then a workspace query is assumed; the routine
+*> only calculates the optimal size of the WORK array, returns
+*> this value as the first entry of the WORK array, and no error
+*> message related to LWORK is issued by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> \endverbatim
+*>
+*
+* Authors
+* =======
*
-* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
-* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
*
-* LWORK (input) INTEGER
-* The dimension of the array WORK. LWORK >= max(1,N).
-* For optimum performance LWORK >= N*NB, where NB is
-* the optimal blocksize.
+*> \date November 2011
*
-* If LWORK = -1, then a workspace query is assumed; the routine
-* only calculates the optimal size of the WORK array, returns
-* this value as the first entry of the WORK array, and no error
-* message related to LWORK is issued by XERBLA.
+*> \ingroup realGEcomputational
*
-* INFO (output) INTEGER
-* = 0: successful exit
-* < 0: if INFO = -i, the i-th argument had an illegal value
*
* Further Details
* ===============
+*>\details \b Further \b Details
+*> \verbatim
+*>
+*> The matrix Q is represented as a product of elementary reflectors
+*>
+*> Q = H(1) H(2) . . . H(k), where k = min(m,n).
+*>
+*> Each H(i) has the form
+*>
+*> H(i) = I - tau * v * v**T
+*>
+*> where tau is a real scalar, and v is a real vector with
+*> v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
+*> and tau in TAU(i).
+*>
+*> \endverbatim
+*>
+* =====================================================================
+ SUBROUTINE SGEQRFP( M, N, A, LDA, TAU, WORK, LWORK, INFO )
*
-* The matrix Q is represented as a product of elementary reflectors
-*
-* Q = H(1) H(2) . . . H(k), where k = min(m,n).
-*
-* Each H(i) has the form
-*
-* H(i) = I - tau * v * v**T
+* -- LAPACK computational routine (version 3.3.1) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2011
*
-* where tau is a real scalar, and v is a real vector with
-* v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
-* and tau in TAU(i).
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, LWORK, M, N
+* ..
+* .. Array Arguments ..
+ REAL A( LDA, * ), TAU( * ), WORK( * )
+* ..
*
* =====================================================================
*