diff options
author | jason <jason@8a072113-8704-0410-8d35-dd094bca7971> | 2008-10-28 01:38:50 +0000 |
---|---|---|
committer | jason <jason@8a072113-8704-0410-8d35-dd094bca7971> | 2008-10-28 01:38:50 +0000 |
commit | baba851215b44ac3b60b9248eb02bcce7eb76247 (patch) | |
tree | 8c0f5c006875532a30d4409f5e94b0f310ff00a7 /SRC/dporfs.f | |
download | lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.gz lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.bz2 lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.zip |
Move LAPACK trunk into position.
Diffstat (limited to 'SRC/dporfs.f')
-rw-r--r-- | SRC/dporfs.f | 331 |
1 files changed, 331 insertions, 0 deletions
diff --git a/SRC/dporfs.f b/SRC/dporfs.f new file mode 100644 index 00000000..5a34b611 --- /dev/null +++ b/SRC/dporfs.f @@ -0,0 +1,331 @@ + SUBROUTINE DPORFS( UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X, + $ LDX, FERR, BERR, WORK, IWORK, INFO ) +* +* -- LAPACK routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH. +* +* .. Scalar Arguments .. + CHARACTER UPLO + INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS +* .. +* .. Array Arguments .. + INTEGER IWORK( * ) + DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), B( LDB, * ), + $ BERR( * ), FERR( * ), WORK( * ), X( LDX, * ) +* .. +* +* Purpose +* ======= +* +* DPORFS improves the computed solution to a system of linear +* equations when the coefficient matrix is symmetric positive definite, +* and provides error bounds and backward error estimates for the +* solution. +* +* Arguments +* ========= +* +* UPLO (input) CHARACTER*1 +* = 'U': Upper triangle of A is stored; +* = 'L': Lower triangle of A is stored. +* +* N (input) INTEGER +* The order of the matrix A. N >= 0. +* +* NRHS (input) INTEGER +* The number of right hand sides, i.e., the number of columns +* of the matrices B and X. NRHS >= 0. +* +* A (input) DOUBLE PRECISION array, dimension (LDA,N) +* The symmetric matrix A. If UPLO = 'U', the leading N-by-N +* upper triangular part of A contains the upper triangular part +* of the matrix A, and the strictly lower triangular part of A +* is not referenced. If UPLO = 'L', the leading N-by-N lower +* triangular part of A contains the lower triangular part of +* the matrix A, and the strictly upper triangular part of A is +* not referenced. +* +* LDA (input) INTEGER +* The leading dimension of the array A. LDA >= max(1,N). +* +* AF (input) DOUBLE PRECISION array, dimension (LDAF,N) +* The triangular factor U or L from the Cholesky factorization +* A = U**T*U or A = L*L**T, as computed by DPOTRF. +* +* LDAF (input) INTEGER +* The leading dimension of the array AF. LDAF >= max(1,N). +* +* B (input) DOUBLE PRECISION array, dimension (LDB,NRHS) +* The right hand side matrix B. +* +* LDB (input) INTEGER +* The leading dimension of the array B. LDB >= max(1,N). +* +* X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS) +* On entry, the solution matrix X, as computed by DPOTRS. +* On exit, the improved solution matrix X. +* +* LDX (input) INTEGER +* The leading dimension of the array X. LDX >= max(1,N). +* +* FERR (output) DOUBLE PRECISION array, dimension (NRHS) +* The estimated forward error bound for each solution vector +* X(j) (the j-th column of the solution matrix X). +* If XTRUE is the true solution corresponding to X(j), FERR(j) +* is an estimated upper bound for the magnitude of the largest +* element in (X(j) - XTRUE) divided by the magnitude of the +* largest element in X(j). The estimate is as reliable as +* the estimate for RCOND, and is almost always a slight +* overestimate of the true error. +* +* BERR (output) DOUBLE PRECISION array, dimension (NRHS) +* The componentwise relative backward error of each solution +* vector X(j) (i.e., the smallest relative change in +* any element of A or B that makes X(j) an exact solution). +* +* WORK (workspace) DOUBLE PRECISION array, dimension (3*N) +* +* IWORK (workspace) INTEGER array, dimension (N) +* +* INFO (output) INTEGER +* = 0: successful exit +* < 0: if INFO = -i, the i-th argument had an illegal value +* +* Internal Parameters +* =================== +* +* ITMAX is the maximum number of steps of iterative refinement. +* +* ===================================================================== +* +* .. Parameters .. + INTEGER ITMAX + PARAMETER ( ITMAX = 5 ) + DOUBLE PRECISION ZERO + PARAMETER ( ZERO = 0.0D+0 ) + DOUBLE PRECISION ONE + PARAMETER ( ONE = 1.0D+0 ) + DOUBLE PRECISION TWO + PARAMETER ( TWO = 2.0D+0 ) + DOUBLE PRECISION THREE + PARAMETER ( THREE = 3.0D+0 ) +* .. +* .. Local Scalars .. + LOGICAL UPPER + INTEGER COUNT, I, J, K, KASE, NZ + DOUBLE PRECISION EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK +* .. +* .. Local Arrays .. + INTEGER ISAVE( 3 ) +* .. +* .. External Subroutines .. + EXTERNAL DAXPY, DCOPY, DLACN2, DPOTRS, DSYMV, XERBLA +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, MAX +* .. +* .. External Functions .. + LOGICAL LSAME + DOUBLE PRECISION DLAMCH + EXTERNAL LSAME, DLAMCH +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + UPPER = LSAME( UPLO, 'U' ) + IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN + INFO = -1 + ELSE IF( N.LT.0 ) THEN + INFO = -2 + ELSE IF( NRHS.LT.0 ) THEN + INFO = -3 + ELSE IF( LDA.LT.MAX( 1, N ) ) THEN + INFO = -5 + ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN + INFO = -7 + ELSE IF( LDB.LT.MAX( 1, N ) ) THEN + INFO = -9 + ELSE IF( LDX.LT.MAX( 1, N ) ) THEN + INFO = -11 + END IF + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'DPORFS', -INFO ) + RETURN + END IF +* +* Quick return if possible +* + IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN + DO 10 J = 1, NRHS + FERR( J ) = ZERO + BERR( J ) = ZERO + 10 CONTINUE + RETURN + END IF +* +* NZ = maximum number of nonzero elements in each row of A, plus 1 +* + NZ = N + 1 + EPS = DLAMCH( 'Epsilon' ) + SAFMIN = DLAMCH( 'Safe minimum' ) + SAFE1 = NZ*SAFMIN + SAFE2 = SAFE1 / EPS +* +* Do for each right hand side +* + DO 140 J = 1, NRHS +* + COUNT = 1 + LSTRES = THREE + 20 CONTINUE +* +* Loop until stopping criterion is satisfied. +* +* Compute residual R = B - A * X +* + CALL DCOPY( N, B( 1, J ), 1, WORK( N+1 ), 1 ) + CALL DSYMV( UPLO, N, -ONE, A, LDA, X( 1, J ), 1, ONE, + $ WORK( N+1 ), 1 ) +* +* Compute componentwise relative backward error from formula +* +* max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) ) +* +* where abs(Z) is the componentwise absolute value of the matrix +* or vector Z. If the i-th component of the denominator is less +* than SAFE2, then SAFE1 is added to the i-th components of the +* numerator and denominator before dividing. +* + DO 30 I = 1, N + WORK( I ) = ABS( B( I, J ) ) + 30 CONTINUE +* +* Compute abs(A)*abs(X) + abs(B). +* + IF( UPPER ) THEN + DO 50 K = 1, N + S = ZERO + XK = ABS( X( K, J ) ) + DO 40 I = 1, K - 1 + WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK + S = S + ABS( A( I, K ) )*ABS( X( I, J ) ) + 40 CONTINUE + WORK( K ) = WORK( K ) + ABS( A( K, K ) )*XK + S + 50 CONTINUE + ELSE + DO 70 K = 1, N + S = ZERO + XK = ABS( X( K, J ) ) + WORK( K ) = WORK( K ) + ABS( A( K, K ) )*XK + DO 60 I = K + 1, N + WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK + S = S + ABS( A( I, K ) )*ABS( X( I, J ) ) + 60 CONTINUE + WORK( K ) = WORK( K ) + S + 70 CONTINUE + END IF + S = ZERO + DO 80 I = 1, N + IF( WORK( I ).GT.SAFE2 ) THEN + S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) ) + ELSE + S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) / + $ ( WORK( I )+SAFE1 ) ) + END IF + 80 CONTINUE + BERR( J ) = S +* +* Test stopping criterion. Continue iterating if +* 1) The residual BERR(J) is larger than machine epsilon, and +* 2) BERR(J) decreased by at least a factor of 2 during the +* last iteration, and +* 3) At most ITMAX iterations tried. +* + IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND. + $ COUNT.LE.ITMAX ) THEN +* +* Update solution and try again. +* + CALL DPOTRS( UPLO, N, 1, AF, LDAF, WORK( N+1 ), N, INFO ) + CALL DAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 ) + LSTRES = BERR( J ) + COUNT = COUNT + 1 + GO TO 20 + END IF +* +* Bound error from formula +* +* norm(X - XTRUE) / norm(X) .le. FERR = +* norm( abs(inv(A))* +* ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X) +* +* where +* norm(Z) is the magnitude of the largest component of Z +* inv(A) is the inverse of A +* abs(Z) is the componentwise absolute value of the matrix or +* vector Z +* NZ is the maximum number of nonzeros in any row of A, plus 1 +* EPS is machine epsilon +* +* The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B)) +* is incremented by SAFE1 if the i-th component of +* abs(A)*abs(X) + abs(B) is less than SAFE2. +* +* Use DLACN2 to estimate the infinity-norm of the matrix +* inv(A) * diag(W), +* where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) +* + DO 90 I = 1, N + IF( WORK( I ).GT.SAFE2 ) THEN + WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + ELSE + WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1 + END IF + 90 CONTINUE +* + KASE = 0 + 100 CONTINUE + CALL DLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ), + $ KASE, ISAVE ) + IF( KASE.NE.0 ) THEN + IF( KASE.EQ.1 ) THEN +* +* Multiply by diag(W)*inv(A'). +* + CALL DPOTRS( UPLO, N, 1, AF, LDAF, WORK( N+1 ), N, INFO ) + DO 110 I = 1, N + WORK( N+I ) = WORK( I )*WORK( N+I ) + 110 CONTINUE + ELSE IF( KASE.EQ.2 ) THEN +* +* Multiply by inv(A)*diag(W). +* + DO 120 I = 1, N + WORK( N+I ) = WORK( I )*WORK( N+I ) + 120 CONTINUE + CALL DPOTRS( UPLO, N, 1, AF, LDAF, WORK( N+1 ), N, INFO ) + END IF + GO TO 100 + END IF +* +* Normalize error. +* + LSTRES = ZERO + DO 130 I = 1, N + LSTRES = MAX( LSTRES, ABS( X( I, J ) ) ) + 130 CONTINUE + IF( LSTRES.NE.ZERO ) + $ FERR( J ) = FERR( J ) / LSTRES +* + 140 CONTINUE +* + RETURN +* +* End of DPORFS +* + END |