summaryrefslogtreecommitdiff
path: root/SRC/dpbtrs.f
diff options
context:
space:
mode:
authorjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
committerjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
commitbaba851215b44ac3b60b9248eb02bcce7eb76247 (patch)
tree8c0f5c006875532a30d4409f5e94b0f310ff00a7 /SRC/dpbtrs.f
downloadlapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.gz
lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.bz2
lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.zip
Move LAPACK trunk into position.
Diffstat (limited to 'SRC/dpbtrs.f')
-rw-r--r--SRC/dpbtrs.f145
1 files changed, 145 insertions, 0 deletions
diff --git a/SRC/dpbtrs.f b/SRC/dpbtrs.f
new file mode 100644
index 00000000..76b086a4
--- /dev/null
+++ b/SRC/dpbtrs.f
@@ -0,0 +1,145 @@
+ SUBROUTINE DPBTRS( UPLO, N, KD, NRHS, AB, LDAB, B, LDB, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER UPLO
+ INTEGER INFO, KD, LDAB, LDB, N, NRHS
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION AB( LDAB, * ), B( LDB, * )
+* ..
+*
+* Purpose
+* =======
+*
+* DPBTRS solves a system of linear equations A*X = B with a symmetric
+* positive definite band matrix A using the Cholesky factorization
+* A = U**T*U or A = L*L**T computed by DPBTRF.
+*
+* Arguments
+* =========
+*
+* UPLO (input) CHARACTER*1
+* = 'U': Upper triangular factor stored in AB;
+* = 'L': Lower triangular factor stored in AB.
+*
+* N (input) INTEGER
+* The order of the matrix A. N >= 0.
+*
+* KD (input) INTEGER
+* The number of superdiagonals of the matrix A if UPLO = 'U',
+* or the number of subdiagonals if UPLO = 'L'. KD >= 0.
+*
+* NRHS (input) INTEGER
+* The number of right hand sides, i.e., the number of columns
+* of the matrix B. NRHS >= 0.
+*
+* AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
+* The triangular factor U or L from the Cholesky factorization
+* A = U**T*U or A = L*L**T of the band matrix A, stored in the
+* first KD+1 rows of the array. The j-th column of U or L is
+* stored in the j-th column of the array AB as follows:
+* if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j;
+* if UPLO ='L', AB(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd).
+*
+* LDAB (input) INTEGER
+* The leading dimension of the array AB. LDAB >= KD+1.
+*
+* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
+* On entry, the right hand side matrix B.
+* On exit, the solution matrix X.
+*
+* LDB (input) INTEGER
+* The leading dimension of the array B. LDB >= max(1,N).
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value
+*
+* =====================================================================
+*
+* .. Local Scalars ..
+ LOGICAL UPPER
+ INTEGER J
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. External Subroutines ..
+ EXTERNAL DTBSV, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ INFO = 0
+ UPPER = LSAME( UPLO, 'U' )
+ IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( KD.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( NRHS.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( LDAB.LT.KD+1 ) THEN
+ INFO = -6
+ ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
+ INFO = -8
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DPBTRS', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( N.EQ.0 .OR. NRHS.EQ.0 )
+ $ RETURN
+*
+ IF( UPPER ) THEN
+*
+* Solve A*X = B where A = U'*U.
+*
+ DO 10 J = 1, NRHS
+*
+* Solve U'*X = B, overwriting B with X.
+*
+ CALL DTBSV( 'Upper', 'Transpose', 'Non-unit', N, KD, AB,
+ $ LDAB, B( 1, J ), 1 )
+*
+* Solve U*X = B, overwriting B with X.
+*
+ CALL DTBSV( 'Upper', 'No transpose', 'Non-unit', N, KD, AB,
+ $ LDAB, B( 1, J ), 1 )
+ 10 CONTINUE
+ ELSE
+*
+* Solve A*X = B where A = L*L'.
+*
+ DO 20 J = 1, NRHS
+*
+* Solve L*X = B, overwriting B with X.
+*
+ CALL DTBSV( 'Lower', 'No transpose', 'Non-unit', N, KD, AB,
+ $ LDAB, B( 1, J ), 1 )
+*
+* Solve L'*X = B, overwriting B with X.
+*
+ CALL DTBSV( 'Lower', 'Transpose', 'Non-unit', N, KD, AB,
+ $ LDAB, B( 1, J ), 1 )
+ 20 CONTINUE
+ END IF
+*
+ RETURN
+*
+* End of DPBTRS
+*
+ END