diff options
author | jason <jason@8a072113-8704-0410-8d35-dd094bca7971> | 2008-10-28 01:38:50 +0000 |
---|---|---|
committer | jason <jason@8a072113-8704-0410-8d35-dd094bca7971> | 2008-10-28 01:38:50 +0000 |
commit | baba851215b44ac3b60b9248eb02bcce7eb76247 (patch) | |
tree | 8c0f5c006875532a30d4409f5e94b0f310ff00a7 /SRC/dlags2.f | |
download | lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.gz lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.bz2 lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.zip |
Move LAPACK trunk into position.
Diffstat (limited to 'SRC/dlags2.f')
-rw-r--r-- | SRC/dlags2.f | 269 |
1 files changed, 269 insertions, 0 deletions
diff --git a/SRC/dlags2.f b/SRC/dlags2.f new file mode 100644 index 00000000..837a58e9 --- /dev/null +++ b/SRC/dlags2.f @@ -0,0 +1,269 @@ + SUBROUTINE DLAGS2( UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV, + $ SNV, CSQ, SNQ ) +* +* -- LAPACK auxiliary routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + LOGICAL UPPER + DOUBLE PRECISION A1, A2, A3, B1, B2, B3, CSQ, CSU, CSV, SNQ, + $ SNU, SNV +* .. +* +* Purpose +* ======= +* +* DLAGS2 computes 2-by-2 orthogonal matrices U, V and Q, such +* that if ( UPPER ) then +* +* U'*A*Q = U'*( A1 A2 )*Q = ( x 0 ) +* ( 0 A3 ) ( x x ) +* and +* V'*B*Q = V'*( B1 B2 )*Q = ( x 0 ) +* ( 0 B3 ) ( x x ) +* +* or if ( .NOT.UPPER ) then +* +* U'*A*Q = U'*( A1 0 )*Q = ( x x ) +* ( A2 A3 ) ( 0 x ) +* and +* V'*B*Q = V'*( B1 0 )*Q = ( x x ) +* ( B2 B3 ) ( 0 x ) +* +* The rows of the transformed A and B are parallel, where +* +* U = ( CSU SNU ), V = ( CSV SNV ), Q = ( CSQ SNQ ) +* ( -SNU CSU ) ( -SNV CSV ) ( -SNQ CSQ ) +* +* Z' denotes the transpose of Z. +* +* +* Arguments +* ========= +* +* UPPER (input) LOGICAL +* = .TRUE.: the input matrices A and B are upper triangular. +* = .FALSE.: the input matrices A and B are lower triangular. +* +* A1 (input) DOUBLE PRECISION +* A2 (input) DOUBLE PRECISION +* A3 (input) DOUBLE PRECISION +* On entry, A1, A2 and A3 are elements of the input 2-by-2 +* upper (lower) triangular matrix A. +* +* B1 (input) DOUBLE PRECISION +* B2 (input) DOUBLE PRECISION +* B3 (input) DOUBLE PRECISION +* On entry, B1, B2 and B3 are elements of the input 2-by-2 +* upper (lower) triangular matrix B. +* +* CSU (output) DOUBLE PRECISION +* SNU (output) DOUBLE PRECISION +* The desired orthogonal matrix U. +* +* CSV (output) DOUBLE PRECISION +* SNV (output) DOUBLE PRECISION +* The desired orthogonal matrix V. +* +* CSQ (output) DOUBLE PRECISION +* SNQ (output) DOUBLE PRECISION +* The desired orthogonal matrix Q. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ZERO + PARAMETER ( ZERO = 0.0D+0 ) +* .. +* .. Local Scalars .. + DOUBLE PRECISION A, AUA11, AUA12, AUA21, AUA22, AVB11, AVB12, + $ AVB21, AVB22, B, C, CSL, CSR, D, R, S1, S2, + $ SNL, SNR, UA11, UA11R, UA12, UA21, UA22, UA22R, + $ VB11, VB11R, VB12, VB21, VB22, VB22R +* .. +* .. External Subroutines .. + EXTERNAL DLARTG, DLASV2 +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS +* .. +* .. Executable Statements .. +* + IF( UPPER ) THEN +* +* Input matrices A and B are upper triangular matrices +* +* Form matrix C = A*adj(B) = ( a b ) +* ( 0 d ) +* + A = A1*B3 + D = A3*B1 + B = A2*B1 - A1*B2 +* +* The SVD of real 2-by-2 triangular C +* +* ( CSL -SNL )*( A B )*( CSR SNR ) = ( R 0 ) +* ( SNL CSL ) ( 0 D ) ( -SNR CSR ) ( 0 T ) +* + CALL DLASV2( A, B, D, S1, S2, SNR, CSR, SNL, CSL ) +* + IF( ABS( CSL ).GE.ABS( SNL ) .OR. ABS( CSR ).GE.ABS( SNR ) ) + $ THEN +* +* Compute the (1,1) and (1,2) elements of U'*A and V'*B, +* and (1,2) element of |U|'*|A| and |V|'*|B|. +* + UA11R = CSL*A1 + UA12 = CSL*A2 + SNL*A3 +* + VB11R = CSR*B1 + VB12 = CSR*B2 + SNR*B3 +* + AUA12 = ABS( CSL )*ABS( A2 ) + ABS( SNL )*ABS( A3 ) + AVB12 = ABS( CSR )*ABS( B2 ) + ABS( SNR )*ABS( B3 ) +* +* zero (1,2) elements of U'*A and V'*B +* + IF( ( ABS( UA11R )+ABS( UA12 ) ).NE.ZERO ) THEN + IF( AUA12 / ( ABS( UA11R )+ABS( UA12 ) ).LE.AVB12 / + $ ( ABS( VB11R )+ABS( VB12 ) ) ) THEN + CALL DLARTG( -UA11R, UA12, CSQ, SNQ, R ) + ELSE + CALL DLARTG( -VB11R, VB12, CSQ, SNQ, R ) + END IF + ELSE + CALL DLARTG( -VB11R, VB12, CSQ, SNQ, R ) + END IF +* + CSU = CSL + SNU = -SNL + CSV = CSR + SNV = -SNR +* + ELSE +* +* Compute the (2,1) and (2,2) elements of U'*A and V'*B, +* and (2,2) element of |U|'*|A| and |V|'*|B|. +* + UA21 = -SNL*A1 + UA22 = -SNL*A2 + CSL*A3 +* + VB21 = -SNR*B1 + VB22 = -SNR*B2 + CSR*B3 +* + AUA22 = ABS( SNL )*ABS( A2 ) + ABS( CSL )*ABS( A3 ) + AVB22 = ABS( SNR )*ABS( B2 ) + ABS( CSR )*ABS( B3 ) +* +* zero (2,2) elements of U'*A and V'*B, and then swap. +* + IF( ( ABS( UA21 )+ABS( UA22 ) ).NE.ZERO ) THEN + IF( AUA22 / ( ABS( UA21 )+ABS( UA22 ) ).LE.AVB22 / + $ ( ABS( VB21 )+ABS( VB22 ) ) ) THEN + CALL DLARTG( -UA21, UA22, CSQ, SNQ, R ) + ELSE + CALL DLARTG( -VB21, VB22, CSQ, SNQ, R ) + END IF + ELSE + CALL DLARTG( -VB21, VB22, CSQ, SNQ, R ) + END IF +* + CSU = SNL + SNU = CSL + CSV = SNR + SNV = CSR +* + END IF +* + ELSE +* +* Input matrices A and B are lower triangular matrices +* +* Form matrix C = A*adj(B) = ( a 0 ) +* ( c d ) +* + A = A1*B3 + D = A3*B1 + C = A2*B3 - A3*B2 +* +* The SVD of real 2-by-2 triangular C +* +* ( CSL -SNL )*( A 0 )*( CSR SNR ) = ( R 0 ) +* ( SNL CSL ) ( C D ) ( -SNR CSR ) ( 0 T ) +* + CALL DLASV2( A, C, D, S1, S2, SNR, CSR, SNL, CSL ) +* + IF( ABS( CSR ).GE.ABS( SNR ) .OR. ABS( CSL ).GE.ABS( SNL ) ) + $ THEN +* +* Compute the (2,1) and (2,2) elements of U'*A and V'*B, +* and (2,1) element of |U|'*|A| and |V|'*|B|. +* + UA21 = -SNR*A1 + CSR*A2 + UA22R = CSR*A3 +* + VB21 = -SNL*B1 + CSL*B2 + VB22R = CSL*B3 +* + AUA21 = ABS( SNR )*ABS( A1 ) + ABS( CSR )*ABS( A2 ) + AVB21 = ABS( SNL )*ABS( B1 ) + ABS( CSL )*ABS( B2 ) +* +* zero (2,1) elements of U'*A and V'*B. +* + IF( ( ABS( UA21 )+ABS( UA22R ) ).NE.ZERO ) THEN + IF( AUA21 / ( ABS( UA21 )+ABS( UA22R ) ).LE.AVB21 / + $ ( ABS( VB21 )+ABS( VB22R ) ) ) THEN + CALL DLARTG( UA22R, UA21, CSQ, SNQ, R ) + ELSE + CALL DLARTG( VB22R, VB21, CSQ, SNQ, R ) + END IF + ELSE + CALL DLARTG( VB22R, VB21, CSQ, SNQ, R ) + END IF +* + CSU = CSR + SNU = -SNR + CSV = CSL + SNV = -SNL +* + ELSE +* +* Compute the (1,1) and (1,2) elements of U'*A and V'*B, +* and (1,1) element of |U|'*|A| and |V|'*|B|. +* + UA11 = CSR*A1 + SNR*A2 + UA12 = SNR*A3 +* + VB11 = CSL*B1 + SNL*B2 + VB12 = SNL*B3 +* + AUA11 = ABS( CSR )*ABS( A1 ) + ABS( SNR )*ABS( A2 ) + AVB11 = ABS( CSL )*ABS( B1 ) + ABS( SNL )*ABS( B2 ) +* +* zero (1,1) elements of U'*A and V'*B, and then swap. +* + IF( ( ABS( UA11 )+ABS( UA12 ) ).NE.ZERO ) THEN + IF( AUA11 / ( ABS( UA11 )+ABS( UA12 ) ).LE.AVB11 / + $ ( ABS( VB11 )+ABS( VB12 ) ) ) THEN + CALL DLARTG( UA12, UA11, CSQ, SNQ, R ) + ELSE + CALL DLARTG( VB12, VB11, CSQ, SNQ, R ) + END IF + ELSE + CALL DLARTG( VB12, VB11, CSQ, SNQ, R ) + END IF +* + CSU = SNR + SNU = CSR + CSV = SNL + SNV = CSL +* + END IF +* + END IF +* + RETURN +* +* End of DLAGS2 +* + END |