summaryrefslogtreecommitdiff
path: root/SRC/dlaein.f
diff options
context:
space:
mode:
authorjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
committerjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
commitbaba851215b44ac3b60b9248eb02bcce7eb76247 (patch)
tree8c0f5c006875532a30d4409f5e94b0f310ff00a7 /SRC/dlaein.f
downloadlapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.gz
lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.bz2
lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.zip
Move LAPACK trunk into position.
Diffstat (limited to 'SRC/dlaein.f')
-rw-r--r--SRC/dlaein.f531
1 files changed, 531 insertions, 0 deletions
diff --git a/SRC/dlaein.f b/SRC/dlaein.f
new file mode 100644
index 00000000..9f9b5fa5
--- /dev/null
+++ b/SRC/dlaein.f
@@ -0,0 +1,531 @@
+ SUBROUTINE DLAEIN( RIGHTV, NOINIT, N, H, LDH, WR, WI, VR, VI, B,
+ $ LDB, WORK, EPS3, SMLNUM, BIGNUM, INFO )
+*
+* -- LAPACK auxiliary routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ LOGICAL NOINIT, RIGHTV
+ INTEGER INFO, LDB, LDH, N
+ DOUBLE PRECISION BIGNUM, EPS3, SMLNUM, WI, WR
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION B( LDB, * ), H( LDH, * ), VI( * ), VR( * ),
+ $ WORK( * )
+* ..
+*
+* Purpose
+* =======
+*
+* DLAEIN uses inverse iteration to find a right or left eigenvector
+* corresponding to the eigenvalue (WR,WI) of a real upper Hessenberg
+* matrix H.
+*
+* Arguments
+* =========
+*
+* RIGHTV (input) LOGICAL
+* = .TRUE. : compute right eigenvector;
+* = .FALSE.: compute left eigenvector.
+*
+* NOINIT (input) LOGICAL
+* = .TRUE. : no initial vector supplied in (VR,VI).
+* = .FALSE.: initial vector supplied in (VR,VI).
+*
+* N (input) INTEGER
+* The order of the matrix H. N >= 0.
+*
+* H (input) DOUBLE PRECISION array, dimension (LDH,N)
+* The upper Hessenberg matrix H.
+*
+* LDH (input) INTEGER
+* The leading dimension of the array H. LDH >= max(1,N).
+*
+* WR (input) DOUBLE PRECISION
+* WI (input) DOUBLE PRECISION
+* The real and imaginary parts of the eigenvalue of H whose
+* corresponding right or left eigenvector is to be computed.
+*
+* VR (input/output) DOUBLE PRECISION array, dimension (N)
+* VI (input/output) DOUBLE PRECISION array, dimension (N)
+* On entry, if NOINIT = .FALSE. and WI = 0.0, VR must contain
+* a real starting vector for inverse iteration using the real
+* eigenvalue WR; if NOINIT = .FALSE. and WI.ne.0.0, VR and VI
+* must contain the real and imaginary parts of a complex
+* starting vector for inverse iteration using the complex
+* eigenvalue (WR,WI); otherwise VR and VI need not be set.
+* On exit, if WI = 0.0 (real eigenvalue), VR contains the
+* computed real eigenvector; if WI.ne.0.0 (complex eigenvalue),
+* VR and VI contain the real and imaginary parts of the
+* computed complex eigenvector. The eigenvector is normalized
+* so that the component of largest magnitude has magnitude 1;
+* here the magnitude of a complex number (x,y) is taken to be
+* |x| + |y|.
+* VI is not referenced if WI = 0.0.
+*
+* B (workspace) DOUBLE PRECISION array, dimension (LDB,N)
+*
+* LDB (input) INTEGER
+* The leading dimension of the array B. LDB >= N+1.
+*
+* WORK (workspace) DOUBLE PRECISION array, dimension (N)
+*
+* EPS3 (input) DOUBLE PRECISION
+* A small machine-dependent value which is used to perturb
+* close eigenvalues, and to replace zero pivots.
+*
+* SMLNUM (input) DOUBLE PRECISION
+* A machine-dependent value close to the underflow threshold.
+*
+* BIGNUM (input) DOUBLE PRECISION
+* A machine-dependent value close to the overflow threshold.
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* = 1: inverse iteration did not converge; VR is set to the
+* last iterate, and so is VI if WI.ne.0.0.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE, TENTH
+ PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TENTH = 1.0D-1 )
+* ..
+* .. Local Scalars ..
+ CHARACTER NORMIN, TRANS
+ INTEGER I, I1, I2, I3, IERR, ITS, J
+ DOUBLE PRECISION ABSBII, ABSBJJ, EI, EJ, GROWTO, NORM, NRMSML,
+ $ REC, ROOTN, SCALE, TEMP, VCRIT, VMAX, VNORM, W,
+ $ W1, X, XI, XR, Y
+* ..
+* .. External Functions ..
+ INTEGER IDAMAX
+ DOUBLE PRECISION DASUM, DLAPY2, DNRM2
+ EXTERNAL IDAMAX, DASUM, DLAPY2, DNRM2
+* ..
+* .. External Subroutines ..
+ EXTERNAL DLADIV, DLATRS, DSCAL
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, DBLE, MAX, SQRT
+* ..
+* .. Executable Statements ..
+*
+ INFO = 0
+*
+* GROWTO is the threshold used in the acceptance test for an
+* eigenvector.
+*
+ ROOTN = SQRT( DBLE( N ) )
+ GROWTO = TENTH / ROOTN
+ NRMSML = MAX( ONE, EPS3*ROOTN )*SMLNUM
+*
+* Form B = H - (WR,WI)*I (except that the subdiagonal elements and
+* the imaginary parts of the diagonal elements are not stored).
+*
+ DO 20 J = 1, N
+ DO 10 I = 1, J - 1
+ B( I, J ) = H( I, J )
+ 10 CONTINUE
+ B( J, J ) = H( J, J ) - WR
+ 20 CONTINUE
+*
+ IF( WI.EQ.ZERO ) THEN
+*
+* Real eigenvalue.
+*
+ IF( NOINIT ) THEN
+*
+* Set initial vector.
+*
+ DO 30 I = 1, N
+ VR( I ) = EPS3
+ 30 CONTINUE
+ ELSE
+*
+* Scale supplied initial vector.
+*
+ VNORM = DNRM2( N, VR, 1 )
+ CALL DSCAL( N, ( EPS3*ROOTN ) / MAX( VNORM, NRMSML ), VR,
+ $ 1 )
+ END IF
+*
+ IF( RIGHTV ) THEN
+*
+* LU decomposition with partial pivoting of B, replacing zero
+* pivots by EPS3.
+*
+ DO 60 I = 1, N - 1
+ EI = H( I+1, I )
+ IF( ABS( B( I, I ) ).LT.ABS( EI ) ) THEN
+*
+* Interchange rows and eliminate.
+*
+ X = B( I, I ) / EI
+ B( I, I ) = EI
+ DO 40 J = I + 1, N
+ TEMP = B( I+1, J )
+ B( I+1, J ) = B( I, J ) - X*TEMP
+ B( I, J ) = TEMP
+ 40 CONTINUE
+ ELSE
+*
+* Eliminate without interchange.
+*
+ IF( B( I, I ).EQ.ZERO )
+ $ B( I, I ) = EPS3
+ X = EI / B( I, I )
+ IF( X.NE.ZERO ) THEN
+ DO 50 J = I + 1, N
+ B( I+1, J ) = B( I+1, J ) - X*B( I, J )
+ 50 CONTINUE
+ END IF
+ END IF
+ 60 CONTINUE
+ IF( B( N, N ).EQ.ZERO )
+ $ B( N, N ) = EPS3
+*
+ TRANS = 'N'
+*
+ ELSE
+*
+* UL decomposition with partial pivoting of B, replacing zero
+* pivots by EPS3.
+*
+ DO 90 J = N, 2, -1
+ EJ = H( J, J-1 )
+ IF( ABS( B( J, J ) ).LT.ABS( EJ ) ) THEN
+*
+* Interchange columns and eliminate.
+*
+ X = B( J, J ) / EJ
+ B( J, J ) = EJ
+ DO 70 I = 1, J - 1
+ TEMP = B( I, J-1 )
+ B( I, J-1 ) = B( I, J ) - X*TEMP
+ B( I, J ) = TEMP
+ 70 CONTINUE
+ ELSE
+*
+* Eliminate without interchange.
+*
+ IF( B( J, J ).EQ.ZERO )
+ $ B( J, J ) = EPS3
+ X = EJ / B( J, J )
+ IF( X.NE.ZERO ) THEN
+ DO 80 I = 1, J - 1
+ B( I, J-1 ) = B( I, J-1 ) - X*B( I, J )
+ 80 CONTINUE
+ END IF
+ END IF
+ 90 CONTINUE
+ IF( B( 1, 1 ).EQ.ZERO )
+ $ B( 1, 1 ) = EPS3
+*
+ TRANS = 'T'
+*
+ END IF
+*
+ NORMIN = 'N'
+ DO 110 ITS = 1, N
+*
+* Solve U*x = scale*v for a right eigenvector
+* or U'*x = scale*v for a left eigenvector,
+* overwriting x on v.
+*
+ CALL DLATRS( 'Upper', TRANS, 'Nonunit', NORMIN, N, B, LDB,
+ $ VR, SCALE, WORK, IERR )
+ NORMIN = 'Y'
+*
+* Test for sufficient growth in the norm of v.
+*
+ VNORM = DASUM( N, VR, 1 )
+ IF( VNORM.GE.GROWTO*SCALE )
+ $ GO TO 120
+*
+* Choose new orthogonal starting vector and try again.
+*
+ TEMP = EPS3 / ( ROOTN+ONE )
+ VR( 1 ) = EPS3
+ DO 100 I = 2, N
+ VR( I ) = TEMP
+ 100 CONTINUE
+ VR( N-ITS+1 ) = VR( N-ITS+1 ) - EPS3*ROOTN
+ 110 CONTINUE
+*
+* Failure to find eigenvector in N iterations.
+*
+ INFO = 1
+*
+ 120 CONTINUE
+*
+* Normalize eigenvector.
+*
+ I = IDAMAX( N, VR, 1 )
+ CALL DSCAL( N, ONE / ABS( VR( I ) ), VR, 1 )
+ ELSE
+*
+* Complex eigenvalue.
+*
+ IF( NOINIT ) THEN
+*
+* Set initial vector.
+*
+ DO 130 I = 1, N
+ VR( I ) = EPS3
+ VI( I ) = ZERO
+ 130 CONTINUE
+ ELSE
+*
+* Scale supplied initial vector.
+*
+ NORM = DLAPY2( DNRM2( N, VR, 1 ), DNRM2( N, VI, 1 ) )
+ REC = ( EPS3*ROOTN ) / MAX( NORM, NRMSML )
+ CALL DSCAL( N, REC, VR, 1 )
+ CALL DSCAL( N, REC, VI, 1 )
+ END IF
+*
+ IF( RIGHTV ) THEN
+*
+* LU decomposition with partial pivoting of B, replacing zero
+* pivots by EPS3.
+*
+* The imaginary part of the (i,j)-th element of U is stored in
+* B(j+1,i).
+*
+ B( 2, 1 ) = -WI
+ DO 140 I = 2, N
+ B( I+1, 1 ) = ZERO
+ 140 CONTINUE
+*
+ DO 170 I = 1, N - 1
+ ABSBII = DLAPY2( B( I, I ), B( I+1, I ) )
+ EI = H( I+1, I )
+ IF( ABSBII.LT.ABS( EI ) ) THEN
+*
+* Interchange rows and eliminate.
+*
+ XR = B( I, I ) / EI
+ XI = B( I+1, I ) / EI
+ B( I, I ) = EI
+ B( I+1, I ) = ZERO
+ DO 150 J = I + 1, N
+ TEMP = B( I+1, J )
+ B( I+1, J ) = B( I, J ) - XR*TEMP
+ B( J+1, I+1 ) = B( J+1, I ) - XI*TEMP
+ B( I, J ) = TEMP
+ B( J+1, I ) = ZERO
+ 150 CONTINUE
+ B( I+2, I ) = -WI
+ B( I+1, I+1 ) = B( I+1, I+1 ) - XI*WI
+ B( I+2, I+1 ) = B( I+2, I+1 ) + XR*WI
+ ELSE
+*
+* Eliminate without interchanging rows.
+*
+ IF( ABSBII.EQ.ZERO ) THEN
+ B( I, I ) = EPS3
+ B( I+1, I ) = ZERO
+ ABSBII = EPS3
+ END IF
+ EI = ( EI / ABSBII ) / ABSBII
+ XR = B( I, I )*EI
+ XI = -B( I+1, I )*EI
+ DO 160 J = I + 1, N
+ B( I+1, J ) = B( I+1, J ) - XR*B( I, J ) +
+ $ XI*B( J+1, I )
+ B( J+1, I+1 ) = -XR*B( J+1, I ) - XI*B( I, J )
+ 160 CONTINUE
+ B( I+2, I+1 ) = B( I+2, I+1 ) - WI
+ END IF
+*
+* Compute 1-norm of offdiagonal elements of i-th row.
+*
+ WORK( I ) = DASUM( N-I, B( I, I+1 ), LDB ) +
+ $ DASUM( N-I, B( I+2, I ), 1 )
+ 170 CONTINUE
+ IF( B( N, N ).EQ.ZERO .AND. B( N+1, N ).EQ.ZERO )
+ $ B( N, N ) = EPS3
+ WORK( N ) = ZERO
+*
+ I1 = N
+ I2 = 1
+ I3 = -1
+ ELSE
+*
+* UL decomposition with partial pivoting of conjg(B),
+* replacing zero pivots by EPS3.
+*
+* The imaginary part of the (i,j)-th element of U is stored in
+* B(j+1,i).
+*
+ B( N+1, N ) = WI
+ DO 180 J = 1, N - 1
+ B( N+1, J ) = ZERO
+ 180 CONTINUE
+*
+ DO 210 J = N, 2, -1
+ EJ = H( J, J-1 )
+ ABSBJJ = DLAPY2( B( J, J ), B( J+1, J ) )
+ IF( ABSBJJ.LT.ABS( EJ ) ) THEN
+*
+* Interchange columns and eliminate
+*
+ XR = B( J, J ) / EJ
+ XI = B( J+1, J ) / EJ
+ B( J, J ) = EJ
+ B( J+1, J ) = ZERO
+ DO 190 I = 1, J - 1
+ TEMP = B( I, J-1 )
+ B( I, J-1 ) = B( I, J ) - XR*TEMP
+ B( J, I ) = B( J+1, I ) - XI*TEMP
+ B( I, J ) = TEMP
+ B( J+1, I ) = ZERO
+ 190 CONTINUE
+ B( J+1, J-1 ) = WI
+ B( J-1, J-1 ) = B( J-1, J-1 ) + XI*WI
+ B( J, J-1 ) = B( J, J-1 ) - XR*WI
+ ELSE
+*
+* Eliminate without interchange.
+*
+ IF( ABSBJJ.EQ.ZERO ) THEN
+ B( J, J ) = EPS3
+ B( J+1, J ) = ZERO
+ ABSBJJ = EPS3
+ END IF
+ EJ = ( EJ / ABSBJJ ) / ABSBJJ
+ XR = B( J, J )*EJ
+ XI = -B( J+1, J )*EJ
+ DO 200 I = 1, J - 1
+ B( I, J-1 ) = B( I, J-1 ) - XR*B( I, J ) +
+ $ XI*B( J+1, I )
+ B( J, I ) = -XR*B( J+1, I ) - XI*B( I, J )
+ 200 CONTINUE
+ B( J, J-1 ) = B( J, J-1 ) + WI
+ END IF
+*
+* Compute 1-norm of offdiagonal elements of j-th column.
+*
+ WORK( J ) = DASUM( J-1, B( 1, J ), 1 ) +
+ $ DASUM( J-1, B( J+1, 1 ), LDB )
+ 210 CONTINUE
+ IF( B( 1, 1 ).EQ.ZERO .AND. B( 2, 1 ).EQ.ZERO )
+ $ B( 1, 1 ) = EPS3
+ WORK( 1 ) = ZERO
+*
+ I1 = 1
+ I2 = N
+ I3 = 1
+ END IF
+*
+ DO 270 ITS = 1, N
+ SCALE = ONE
+ VMAX = ONE
+ VCRIT = BIGNUM
+*
+* Solve U*(xr,xi) = scale*(vr,vi) for a right eigenvector,
+* or U'*(xr,xi) = scale*(vr,vi) for a left eigenvector,
+* overwriting (xr,xi) on (vr,vi).
+*
+ DO 250 I = I1, I2, I3
+*
+ IF( WORK( I ).GT.VCRIT ) THEN
+ REC = ONE / VMAX
+ CALL DSCAL( N, REC, VR, 1 )
+ CALL DSCAL( N, REC, VI, 1 )
+ SCALE = SCALE*REC
+ VMAX = ONE
+ VCRIT = BIGNUM
+ END IF
+*
+ XR = VR( I )
+ XI = VI( I )
+ IF( RIGHTV ) THEN
+ DO 220 J = I + 1, N
+ XR = XR - B( I, J )*VR( J ) + B( J+1, I )*VI( J )
+ XI = XI - B( I, J )*VI( J ) - B( J+1, I )*VR( J )
+ 220 CONTINUE
+ ELSE
+ DO 230 J = 1, I - 1
+ XR = XR - B( J, I )*VR( J ) + B( I+1, J )*VI( J )
+ XI = XI - B( J, I )*VI( J ) - B( I+1, J )*VR( J )
+ 230 CONTINUE
+ END IF
+*
+ W = ABS( B( I, I ) ) + ABS( B( I+1, I ) )
+ IF( W.GT.SMLNUM ) THEN
+ IF( W.LT.ONE ) THEN
+ W1 = ABS( XR ) + ABS( XI )
+ IF( W1.GT.W*BIGNUM ) THEN
+ REC = ONE / W1
+ CALL DSCAL( N, REC, VR, 1 )
+ CALL DSCAL( N, REC, VI, 1 )
+ XR = VR( I )
+ XI = VI( I )
+ SCALE = SCALE*REC
+ VMAX = VMAX*REC
+ END IF
+ END IF
+*
+* Divide by diagonal element of B.
+*
+ CALL DLADIV( XR, XI, B( I, I ), B( I+1, I ), VR( I ),
+ $ VI( I ) )
+ VMAX = MAX( ABS( VR( I ) )+ABS( VI( I ) ), VMAX )
+ VCRIT = BIGNUM / VMAX
+ ELSE
+ DO 240 J = 1, N
+ VR( J ) = ZERO
+ VI( J ) = ZERO
+ 240 CONTINUE
+ VR( I ) = ONE
+ VI( I ) = ONE
+ SCALE = ZERO
+ VMAX = ONE
+ VCRIT = BIGNUM
+ END IF
+ 250 CONTINUE
+*
+* Test for sufficient growth in the norm of (VR,VI).
+*
+ VNORM = DASUM( N, VR, 1 ) + DASUM( N, VI, 1 )
+ IF( VNORM.GE.GROWTO*SCALE )
+ $ GO TO 280
+*
+* Choose a new orthogonal starting vector and try again.
+*
+ Y = EPS3 / ( ROOTN+ONE )
+ VR( 1 ) = EPS3
+ VI( 1 ) = ZERO
+*
+ DO 260 I = 2, N
+ VR( I ) = Y
+ VI( I ) = ZERO
+ 260 CONTINUE
+ VR( N-ITS+1 ) = VR( N-ITS+1 ) - EPS3*ROOTN
+ 270 CONTINUE
+*
+* Failure to find eigenvector in N iterations
+*
+ INFO = 1
+*
+ 280 CONTINUE
+*
+* Normalize eigenvector.
+*
+ VNORM = ZERO
+ DO 290 I = 1, N
+ VNORM = MAX( VNORM, ABS( VR( I ) )+ABS( VI( I ) ) )
+ 290 CONTINUE
+ CALL DSCAL( N, ONE / VNORM, VR, 1 )
+ CALL DSCAL( N, ONE / VNORM, VI, 1 )
+*
+ END IF
+*
+ RETURN
+*
+* End of DLAEIN
+*
+ END