summaryrefslogtreecommitdiff
path: root/SRC/dgtrfs.f
diff options
context:
space:
mode:
authorjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
committerjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
commitbaba851215b44ac3b60b9248eb02bcce7eb76247 (patch)
tree8c0f5c006875532a30d4409f5e94b0f310ff00a7 /SRC/dgtrfs.f
downloadlapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.gz
lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.bz2
lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.zip
Move LAPACK trunk into position.
Diffstat (limited to 'SRC/dgtrfs.f')
-rw-r--r--SRC/dgtrfs.f361
1 files changed, 361 insertions, 0 deletions
diff --git a/SRC/dgtrfs.f b/SRC/dgtrfs.f
new file mode 100644
index 00000000..4150e294
--- /dev/null
+++ b/SRC/dgtrfs.f
@@ -0,0 +1,361 @@
+ SUBROUTINE DGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2,
+ $ IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK,
+ $ INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH.
+*
+* .. Scalar Arguments ..
+ CHARACTER TRANS
+ INTEGER INFO, LDB, LDX, N, NRHS
+* ..
+* .. Array Arguments ..
+ INTEGER IPIV( * ), IWORK( * )
+ DOUBLE PRECISION B( LDB, * ), BERR( * ), D( * ), DF( * ),
+ $ DL( * ), DLF( * ), DU( * ), DU2( * ), DUF( * ),
+ $ FERR( * ), WORK( * ), X( LDX, * )
+* ..
+*
+* Purpose
+* =======
+*
+* DGTRFS improves the computed solution to a system of linear
+* equations when the coefficient matrix is tridiagonal, and provides
+* error bounds and backward error estimates for the solution.
+*
+* Arguments
+* =========
+*
+* TRANS (input) CHARACTER*1
+* Specifies the form of the system of equations:
+* = 'N': A * X = B (No transpose)
+* = 'T': A**T * X = B (Transpose)
+* = 'C': A**H * X = B (Conjugate transpose = Transpose)
+*
+* N (input) INTEGER
+* The order of the matrix A. N >= 0.
+*
+* NRHS (input) INTEGER
+* The number of right hand sides, i.e., the number of columns
+* of the matrix B. NRHS >= 0.
+*
+* DL (input) DOUBLE PRECISION array, dimension (N-1)
+* The (n-1) subdiagonal elements of A.
+*
+* D (input) DOUBLE PRECISION array, dimension (N)
+* The diagonal elements of A.
+*
+* DU (input) DOUBLE PRECISION array, dimension (N-1)
+* The (n-1) superdiagonal elements of A.
+*
+* DLF (input) DOUBLE PRECISION array, dimension (N-1)
+* The (n-1) multipliers that define the matrix L from the
+* LU factorization of A as computed by DGTTRF.
+*
+* DF (input) DOUBLE PRECISION array, dimension (N)
+* The n diagonal elements of the upper triangular matrix U from
+* the LU factorization of A.
+*
+* DUF (input) DOUBLE PRECISION array, dimension (N-1)
+* The (n-1) elements of the first superdiagonal of U.
+*
+* DU2 (input) DOUBLE PRECISION array, dimension (N-2)
+* The (n-2) elements of the second superdiagonal of U.
+*
+* IPIV (input) INTEGER array, dimension (N)
+* The pivot indices; for 1 <= i <= n, row i of the matrix was
+* interchanged with row IPIV(i). IPIV(i) will always be either
+* i or i+1; IPIV(i) = i indicates a row interchange was not
+* required.
+*
+* B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
+* The right hand side matrix B.
+*
+* LDB (input) INTEGER
+* The leading dimension of the array B. LDB >= max(1,N).
+*
+* X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
+* On entry, the solution matrix X, as computed by DGTTRS.
+* On exit, the improved solution matrix X.
+*
+* LDX (input) INTEGER
+* The leading dimension of the array X. LDX >= max(1,N).
+*
+* FERR (output) DOUBLE PRECISION array, dimension (NRHS)
+* The estimated forward error bound for each solution vector
+* X(j) (the j-th column of the solution matrix X).
+* If XTRUE is the true solution corresponding to X(j), FERR(j)
+* is an estimated upper bound for the magnitude of the largest
+* element in (X(j) - XTRUE) divided by the magnitude of the
+* largest element in X(j). The estimate is as reliable as
+* the estimate for RCOND, and is almost always a slight
+* overestimate of the true error.
+*
+* BERR (output) DOUBLE PRECISION array, dimension (NRHS)
+* The componentwise relative backward error of each solution
+* vector X(j) (i.e., the smallest relative change in
+* any element of A or B that makes X(j) an exact solution).
+*
+* WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
+*
+* IWORK (workspace) INTEGER array, dimension (N)
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value
+*
+* Internal Parameters
+* ===================
+*
+* ITMAX is the maximum number of steps of iterative refinement.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ INTEGER ITMAX
+ PARAMETER ( ITMAX = 5 )
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
+ DOUBLE PRECISION TWO
+ PARAMETER ( TWO = 2.0D+0 )
+ DOUBLE PRECISION THREE
+ PARAMETER ( THREE = 3.0D+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL NOTRAN
+ CHARACTER TRANSN, TRANST
+ INTEGER COUNT, I, J, KASE, NZ
+ DOUBLE PRECISION EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN
+* ..
+* .. Local Arrays ..
+ INTEGER ISAVE( 3 )
+* ..
+* .. External Subroutines ..
+ EXTERNAL DAXPY, DCOPY, DGTTRS, DLACN2, DLAGTM, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, MAX
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ DOUBLE PRECISION DLAMCH
+ EXTERNAL LSAME, DLAMCH
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ INFO = 0
+ NOTRAN = LSAME( TRANS, 'N' )
+ IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
+ $ LSAME( TRANS, 'C' ) ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( NRHS.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
+ INFO = -13
+ ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
+ INFO = -15
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DGTRFS', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
+ DO 10 J = 1, NRHS
+ FERR( J ) = ZERO
+ BERR( J ) = ZERO
+ 10 CONTINUE
+ RETURN
+ END IF
+*
+ IF( NOTRAN ) THEN
+ TRANSN = 'N'
+ TRANST = 'T'
+ ELSE
+ TRANSN = 'T'
+ TRANST = 'N'
+ END IF
+*
+* NZ = maximum number of nonzero elements in each row of A, plus 1
+*
+ NZ = 4
+ EPS = DLAMCH( 'Epsilon' )
+ SAFMIN = DLAMCH( 'Safe minimum' )
+ SAFE1 = NZ*SAFMIN
+ SAFE2 = SAFE1 / EPS
+*
+* Do for each right hand side
+*
+ DO 110 J = 1, NRHS
+*
+ COUNT = 1
+ LSTRES = THREE
+ 20 CONTINUE
+*
+* Loop until stopping criterion is satisfied.
+*
+* Compute residual R = B - op(A) * X,
+* where op(A) = A, A**T, or A**H, depending on TRANS.
+*
+ CALL DCOPY( N, B( 1, J ), 1, WORK( N+1 ), 1 )
+ CALL DLAGTM( TRANS, N, 1, -ONE, DL, D, DU, X( 1, J ), LDX, ONE,
+ $ WORK( N+1 ), N )
+*
+* Compute abs(op(A))*abs(x) + abs(b) for use in the backward
+* error bound.
+*
+ IF( NOTRAN ) THEN
+ IF( N.EQ.1 ) THEN
+ WORK( 1 ) = ABS( B( 1, J ) ) + ABS( D( 1 )*X( 1, J ) )
+ ELSE
+ WORK( 1 ) = ABS( B( 1, J ) ) + ABS( D( 1 )*X( 1, J ) ) +
+ $ ABS( DU( 1 )*X( 2, J ) )
+ DO 30 I = 2, N - 1
+ WORK( I ) = ABS( B( I, J ) ) +
+ $ ABS( DL( I-1 )*X( I-1, J ) ) +
+ $ ABS( D( I )*X( I, J ) ) +
+ $ ABS( DU( I )*X( I+1, J ) )
+ 30 CONTINUE
+ WORK( N ) = ABS( B( N, J ) ) +
+ $ ABS( DL( N-1 )*X( N-1, J ) ) +
+ $ ABS( D( N )*X( N, J ) )
+ END IF
+ ELSE
+ IF( N.EQ.1 ) THEN
+ WORK( 1 ) = ABS( B( 1, J ) ) + ABS( D( 1 )*X( 1, J ) )
+ ELSE
+ WORK( 1 ) = ABS( B( 1, J ) ) + ABS( D( 1 )*X( 1, J ) ) +
+ $ ABS( DL( 1 )*X( 2, J ) )
+ DO 40 I = 2, N - 1
+ WORK( I ) = ABS( B( I, J ) ) +
+ $ ABS( DU( I-1 )*X( I-1, J ) ) +
+ $ ABS( D( I )*X( I, J ) ) +
+ $ ABS( DL( I )*X( I+1, J ) )
+ 40 CONTINUE
+ WORK( N ) = ABS( B( N, J ) ) +
+ $ ABS( DU( N-1 )*X( N-1, J ) ) +
+ $ ABS( D( N )*X( N, J ) )
+ END IF
+ END IF
+*
+* Compute componentwise relative backward error from formula
+*
+* max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
+*
+* where abs(Z) is the componentwise absolute value of the matrix
+* or vector Z. If the i-th component of the denominator is less
+* than SAFE2, then SAFE1 is added to the i-th components of the
+* numerator and denominator before dividing.
+*
+ S = ZERO
+ DO 50 I = 1, N
+ IF( WORK( I ).GT.SAFE2 ) THEN
+ S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
+ ELSE
+ S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
+ $ ( WORK( I )+SAFE1 ) )
+ END IF
+ 50 CONTINUE
+ BERR( J ) = S
+*
+* Test stopping criterion. Continue iterating if
+* 1) The residual BERR(J) is larger than machine epsilon, and
+* 2) BERR(J) decreased by at least a factor of 2 during the
+* last iteration, and
+* 3) At most ITMAX iterations tried.
+*
+ IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
+ $ COUNT.LE.ITMAX ) THEN
+*
+* Update solution and try again.
+*
+ CALL DGTTRS( TRANS, N, 1, DLF, DF, DUF, DU2, IPIV,
+ $ WORK( N+1 ), N, INFO )
+ CALL DAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
+ LSTRES = BERR( J )
+ COUNT = COUNT + 1
+ GO TO 20
+ END IF
+*
+* Bound error from formula
+*
+* norm(X - XTRUE) / norm(X) .le. FERR =
+* norm( abs(inv(op(A)))*
+* ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
+*
+* where
+* norm(Z) is the magnitude of the largest component of Z
+* inv(op(A)) is the inverse of op(A)
+* abs(Z) is the componentwise absolute value of the matrix or
+* vector Z
+* NZ is the maximum number of nonzeros in any row of A, plus 1
+* EPS is machine epsilon
+*
+* The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
+* is incremented by SAFE1 if the i-th component of
+* abs(op(A))*abs(X) + abs(B) is less than SAFE2.
+*
+* Use DLACN2 to estimate the infinity-norm of the matrix
+* inv(op(A)) * diag(W),
+* where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
+*
+ DO 60 I = 1, N
+ IF( WORK( I ).GT.SAFE2 ) THEN
+ WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
+ ELSE
+ WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
+ END IF
+ 60 CONTINUE
+*
+ KASE = 0
+ 70 CONTINUE
+ CALL DLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
+ $ KASE, ISAVE )
+ IF( KASE.NE.0 ) THEN
+ IF( KASE.EQ.1 ) THEN
+*
+* Multiply by diag(W)*inv(op(A)**T).
+*
+ CALL DGTTRS( TRANST, N, 1, DLF, DF, DUF, DU2, IPIV,
+ $ WORK( N+1 ), N, INFO )
+ DO 80 I = 1, N
+ WORK( N+I ) = WORK( I )*WORK( N+I )
+ 80 CONTINUE
+ ELSE
+*
+* Multiply by inv(op(A))*diag(W).
+*
+ DO 90 I = 1, N
+ WORK( N+I ) = WORK( I )*WORK( N+I )
+ 90 CONTINUE
+ CALL DGTTRS( TRANSN, N, 1, DLF, DF, DUF, DU2, IPIV,
+ $ WORK( N+1 ), N, INFO )
+ END IF
+ GO TO 70
+ END IF
+*
+* Normalize error.
+*
+ LSTRES = ZERO
+ DO 100 I = 1, N
+ LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
+ 100 CONTINUE
+ IF( LSTRES.NE.ZERO )
+ $ FERR( J ) = FERR( J ) / LSTRES
+*
+ 110 CONTINUE
+*
+ RETURN
+*
+* End of DGTRFS
+*
+ END