summaryrefslogtreecommitdiff
path: root/SRC/dggqrf.f
diff options
context:
space:
mode:
authorjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
committerjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
commitbaba851215b44ac3b60b9248eb02bcce7eb76247 (patch)
tree8c0f5c006875532a30d4409f5e94b0f310ff00a7 /SRC/dggqrf.f
downloadlapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.gz
lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.bz2
lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.zip
Move LAPACK trunk into position.
Diffstat (limited to 'SRC/dggqrf.f')
-rw-r--r--SRC/dggqrf.f211
1 files changed, 211 insertions, 0 deletions
diff --git a/SRC/dggqrf.f b/SRC/dggqrf.f
new file mode 100644
index 00000000..666dc885
--- /dev/null
+++ b/SRC/dggqrf.f
@@ -0,0 +1,211 @@
+ SUBROUTINE DGGQRF( N, M, P, A, LDA, TAUA, B, LDB, TAUB, WORK,
+ $ LWORK, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, LDB, LWORK, M, N, P
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION A( LDA, * ), B( LDB, * ), TAUA( * ), TAUB( * ),
+ $ WORK( * )
+* ..
+*
+* Purpose
+* =======
+*
+* DGGQRF computes a generalized QR factorization of an N-by-M matrix A
+* and an N-by-P matrix B:
+*
+* A = Q*R, B = Q*T*Z,
+*
+* where Q is an N-by-N orthogonal matrix, Z is a P-by-P orthogonal
+* matrix, and R and T assume one of the forms:
+*
+* if N >= M, R = ( R11 ) M , or if N < M, R = ( R11 R12 ) N,
+* ( 0 ) N-M N M-N
+* M
+*
+* where R11 is upper triangular, and
+*
+* if N <= P, T = ( 0 T12 ) N, or if N > P, T = ( T11 ) N-P,
+* P-N N ( T21 ) P
+* P
+*
+* where T12 or T21 is upper triangular.
+*
+* In particular, if B is square and nonsingular, the GQR factorization
+* of A and B implicitly gives the QR factorization of inv(B)*A:
+*
+* inv(B)*A = Z'*(inv(T)*R)
+*
+* where inv(B) denotes the inverse of the matrix B, and Z' denotes the
+* transpose of the matrix Z.
+*
+* Arguments
+* =========
+*
+* N (input) INTEGER
+* The number of rows of the matrices A and B. N >= 0.
+*
+* M (input) INTEGER
+* The number of columns of the matrix A. M >= 0.
+*
+* P (input) INTEGER
+* The number of columns of the matrix B. P >= 0.
+*
+* A (input/output) DOUBLE PRECISION array, dimension (LDA,M)
+* On entry, the N-by-M matrix A.
+* On exit, the elements on and above the diagonal of the array
+* contain the min(N,M)-by-M upper trapezoidal matrix R (R is
+* upper triangular if N >= M); the elements below the diagonal,
+* with the array TAUA, represent the orthogonal matrix Q as a
+* product of min(N,M) elementary reflectors (see Further
+* Details).
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,N).
+*
+* TAUA (output) DOUBLE PRECISION array, dimension (min(N,M))
+* The scalar factors of the elementary reflectors which
+* represent the orthogonal matrix Q (see Further Details).
+*
+* B (input/output) DOUBLE PRECISION array, dimension (LDB,P)
+* On entry, the N-by-P matrix B.
+* On exit, if N <= P, the upper triangle of the subarray
+* B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;
+* if N > P, the elements on and above the (N-P)-th subdiagonal
+* contain the N-by-P upper trapezoidal matrix T; the remaining
+* elements, with the array TAUB, represent the orthogonal
+* matrix Z as a product of elementary reflectors (see Further
+* Details).
+*
+* LDB (input) INTEGER
+* The leading dimension of the array B. LDB >= max(1,N).
+*
+* TAUB (output) DOUBLE PRECISION array, dimension (min(N,P))
+* The scalar factors of the elementary reflectors which
+* represent the orthogonal matrix Z (see Further Details).
+*
+* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
+* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*
+* LWORK (input) INTEGER
+* The dimension of the array WORK. LWORK >= max(1,N,M,P).
+* For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3),
+* where NB1 is the optimal blocksize for the QR factorization
+* of an N-by-M matrix, NB2 is the optimal blocksize for the
+* RQ factorization of an N-by-P matrix, and NB3 is the optimal
+* blocksize for a call of DORMQR.
+*
+* If LWORK = -1, then a workspace query is assumed; the routine
+* only calculates the optimal size of the WORK array, returns
+* this value as the first entry of the WORK array, and no error
+* message related to LWORK is issued by XERBLA.
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value.
+*
+* Further Details
+* ===============
+*
+* The matrix Q is represented as a product of elementary reflectors
+*
+* Q = H(1) H(2) . . . H(k), where k = min(n,m).
+*
+* Each H(i) has the form
+*
+* H(i) = I - taua * v * v'
+*
+* where taua is a real scalar, and v is a real vector with
+* v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
+* and taua in TAUA(i).
+* To form Q explicitly, use LAPACK subroutine DORGQR.
+* To use Q to update another matrix, use LAPACK subroutine DORMQR.
+*
+* The matrix Z is represented as a product of elementary reflectors
+*
+* Z = H(1) H(2) . . . H(k), where k = min(n,p).
+*
+* Each H(i) has the form
+*
+* H(i) = I - taub * v * v'
+*
+* where taub is a real scalar, and v is a real vector with
+* v(p-k+i+1:p) = 0 and v(p-k+i) = 1; v(1:p-k+i-1) is stored on exit in
+* B(n-k+i,1:p-k+i-1), and taub in TAUB(i).
+* To form Z explicitly, use LAPACK subroutine DORGRQ.
+* To use Z to update another matrix, use LAPACK subroutine DORMRQ.
+*
+* =====================================================================
+*
+* .. Local Scalars ..
+ LOGICAL LQUERY
+ INTEGER LOPT, LWKOPT, NB, NB1, NB2, NB3
+* ..
+* .. External Subroutines ..
+ EXTERNAL DGEQRF, DGERQF, DORMQR, XERBLA
+* ..
+* .. External Functions ..
+ INTEGER ILAENV
+ EXTERNAL ILAENV
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC INT, MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters
+*
+ INFO = 0
+ NB1 = ILAENV( 1, 'DGEQRF', ' ', N, M, -1, -1 )
+ NB2 = ILAENV( 1, 'DGERQF', ' ', N, P, -1, -1 )
+ NB3 = ILAENV( 1, 'DORMQR', ' ', N, M, P, -1 )
+ NB = MAX( NB1, NB2, NB3 )
+ LWKOPT = MAX( N, M, P )*NB
+ WORK( 1 ) = LWKOPT
+ LQUERY = ( LWORK.EQ.-1 )
+ IF( N.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( M.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( P.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+ INFO = -5
+ ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
+ INFO = -8
+ ELSE IF( LWORK.LT.MAX( 1, N, M, P ) .AND. .NOT.LQUERY ) THEN
+ INFO = -11
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DGGQRF', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* QR factorization of N-by-M matrix A: A = Q*R
+*
+ CALL DGEQRF( N, M, A, LDA, TAUA, WORK, LWORK, INFO )
+ LOPT = WORK( 1 )
+*
+* Update B := Q'*B.
+*
+ CALL DORMQR( 'Left', 'Transpose', N, P, MIN( N, M ), A, LDA, TAUA,
+ $ B, LDB, WORK, LWORK, INFO )
+ LOPT = MAX( LOPT, INT( WORK( 1 ) ) )
+*
+* RQ factorization of N-by-P matrix B: B = T*Z.
+*
+ CALL DGERQF( N, P, B, LDB, TAUB, WORK, LWORK, INFO )
+ WORK( 1 ) = MAX( LOPT, INT( WORK( 1 ) ) )
+*
+ RETURN
+*
+* End of DGGQRF
+*
+ END