summaryrefslogtreecommitdiff
path: root/SRC/dgbtf2.f
diff options
context:
space:
mode:
authorjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
committerjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
commitbaba851215b44ac3b60b9248eb02bcce7eb76247 (patch)
tree8c0f5c006875532a30d4409f5e94b0f310ff00a7 /SRC/dgbtf2.f
downloadlapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.gz
lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.bz2
lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.zip
Move LAPACK trunk into position.
Diffstat (limited to 'SRC/dgbtf2.f')
-rw-r--r--SRC/dgbtf2.f202
1 files changed, 202 insertions, 0 deletions
diff --git a/SRC/dgbtf2.f b/SRC/dgbtf2.f
new file mode 100644
index 00000000..929829e8
--- /dev/null
+++ b/SRC/dgbtf2.f
@@ -0,0 +1,202 @@
+ SUBROUTINE DGBTF2( M, N, KL, KU, AB, LDAB, IPIV, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, KL, KU, LDAB, M, N
+* ..
+* .. Array Arguments ..
+ INTEGER IPIV( * )
+ DOUBLE PRECISION AB( LDAB, * )
+* ..
+*
+* Purpose
+* =======
+*
+* DGBTF2 computes an LU factorization of a real m-by-n band matrix A
+* using partial pivoting with row interchanges.
+*
+* This is the unblocked version of the algorithm, calling Level 2 BLAS.
+*
+* Arguments
+* =========
+*
+* M (input) INTEGER
+* The number of rows of the matrix A. M >= 0.
+*
+* N (input) INTEGER
+* The number of columns of the matrix A. N >= 0.
+*
+* KL (input) INTEGER
+* The number of subdiagonals within the band of A. KL >= 0.
+*
+* KU (input) INTEGER
+* The number of superdiagonals within the band of A. KU >= 0.
+*
+* AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
+* On entry, the matrix A in band storage, in rows KL+1 to
+* 2*KL+KU+1; rows 1 to KL of the array need not be set.
+* The j-th column of A is stored in the j-th column of the
+* array AB as follows:
+* AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
+*
+* On exit, details of the factorization: U is stored as an
+* upper triangular band matrix with KL+KU superdiagonals in
+* rows 1 to KL+KU+1, and the multipliers used during the
+* factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
+* See below for further details.
+*
+* LDAB (input) INTEGER
+* The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
+*
+* IPIV (output) INTEGER array, dimension (min(M,N))
+* The pivot indices; for 1 <= i <= min(M,N), row i of the
+* matrix was interchanged with row IPIV(i).
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value
+* > 0: if INFO = +i, U(i,i) is exactly zero. The factorization
+* has been completed, but the factor U is exactly
+* singular, and division by zero will occur if it is used
+* to solve a system of equations.
+*
+* Further Details
+* ===============
+*
+* The band storage scheme is illustrated by the following example, when
+* M = N = 6, KL = 2, KU = 1:
+*
+* On entry: On exit:
+*
+* * * * + + + * * * u14 u25 u36
+* * * + + + + * * u13 u24 u35 u46
+* * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
+* a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
+* a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 *
+* a31 a42 a53 a64 * * m31 m42 m53 m64 * *
+*
+* Array elements marked * are not used by the routine; elements marked
+* + need not be set on entry, but are required by the routine to store
+* elements of U, because of fill-in resulting from the row
+* interchanges.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ONE, ZERO
+ PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
+* ..
+* .. Local Scalars ..
+ INTEGER I, J, JP, JU, KM, KV
+* ..
+* .. External Functions ..
+ INTEGER IDAMAX
+ EXTERNAL IDAMAX
+* ..
+* .. External Subroutines ..
+ EXTERNAL DGER, DSCAL, DSWAP, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* KV is the number of superdiagonals in the factor U, allowing for
+* fill-in.
+*
+ KV = KU + KL
+*
+* Test the input parameters.
+*
+ INFO = 0
+ IF( M.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( KL.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( KU.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( LDAB.LT.KL+KV+1 ) THEN
+ INFO = -6
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DGBTF2', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( M.EQ.0 .OR. N.EQ.0 )
+ $ RETURN
+*
+* Gaussian elimination with partial pivoting
+*
+* Set fill-in elements in columns KU+2 to KV to zero.
+*
+ DO 20 J = KU + 2, MIN( KV, N )
+ DO 10 I = KV - J + 2, KL
+ AB( I, J ) = ZERO
+ 10 CONTINUE
+ 20 CONTINUE
+*
+* JU is the index of the last column affected by the current stage
+* of the factorization.
+*
+ JU = 1
+*
+ DO 40 J = 1, MIN( M, N )
+*
+* Set fill-in elements in column J+KV to zero.
+*
+ IF( J+KV.LE.N ) THEN
+ DO 30 I = 1, KL
+ AB( I, J+KV ) = ZERO
+ 30 CONTINUE
+ END IF
+*
+* Find pivot and test for singularity. KM is the number of
+* subdiagonal elements in the current column.
+*
+ KM = MIN( KL, M-J )
+ JP = IDAMAX( KM+1, AB( KV+1, J ), 1 )
+ IPIV( J ) = JP + J - 1
+ IF( AB( KV+JP, J ).NE.ZERO ) THEN
+ JU = MAX( JU, MIN( J+KU+JP-1, N ) )
+*
+* Apply interchange to columns J to JU.
+*
+ IF( JP.NE.1 )
+ $ CALL DSWAP( JU-J+1, AB( KV+JP, J ), LDAB-1,
+ $ AB( KV+1, J ), LDAB-1 )
+*
+ IF( KM.GT.0 ) THEN
+*
+* Compute multipliers.
+*
+ CALL DSCAL( KM, ONE / AB( KV+1, J ), AB( KV+2, J ), 1 )
+*
+* Update trailing submatrix within the band.
+*
+ IF( JU.GT.J )
+ $ CALL DGER( KM, JU-J, -ONE, AB( KV+2, J ), 1,
+ $ AB( KV, J+1 ), LDAB-1, AB( KV+1, J+1 ),
+ $ LDAB-1 )
+ END IF
+ ELSE
+*
+* If pivot is zero, set INFO to the index of the pivot
+* unless a zero pivot has already been found.
+*
+ IF( INFO.EQ.0 )
+ $ INFO = J
+ END IF
+ 40 CONTINUE
+ RETURN
+*
+* End of DGBTF2
+*
+ END