diff options
author | jason <jason@8a072113-8704-0410-8d35-dd094bca7971> | 2008-10-28 01:38:50 +0000 |
---|---|---|
committer | jason <jason@8a072113-8704-0410-8d35-dd094bca7971> | 2008-10-28 01:38:50 +0000 |
commit | baba851215b44ac3b60b9248eb02bcce7eb76247 (patch) | |
tree | 8c0f5c006875532a30d4409f5e94b0f310ff00a7 /SRC/dgbtf2.f | |
download | lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.gz lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.bz2 lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.zip |
Move LAPACK trunk into position.
Diffstat (limited to 'SRC/dgbtf2.f')
-rw-r--r-- | SRC/dgbtf2.f | 202 |
1 files changed, 202 insertions, 0 deletions
diff --git a/SRC/dgbtf2.f b/SRC/dgbtf2.f new file mode 100644 index 00000000..929829e8 --- /dev/null +++ b/SRC/dgbtf2.f @@ -0,0 +1,202 @@ + SUBROUTINE DGBTF2( M, N, KL, KU, AB, LDAB, IPIV, INFO ) +* +* -- LAPACK routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + INTEGER INFO, KL, KU, LDAB, M, N +* .. +* .. Array Arguments .. + INTEGER IPIV( * ) + DOUBLE PRECISION AB( LDAB, * ) +* .. +* +* Purpose +* ======= +* +* DGBTF2 computes an LU factorization of a real m-by-n band matrix A +* using partial pivoting with row interchanges. +* +* This is the unblocked version of the algorithm, calling Level 2 BLAS. +* +* Arguments +* ========= +* +* M (input) INTEGER +* The number of rows of the matrix A. M >= 0. +* +* N (input) INTEGER +* The number of columns of the matrix A. N >= 0. +* +* KL (input) INTEGER +* The number of subdiagonals within the band of A. KL >= 0. +* +* KU (input) INTEGER +* The number of superdiagonals within the band of A. KU >= 0. +* +* AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N) +* On entry, the matrix A in band storage, in rows KL+1 to +* 2*KL+KU+1; rows 1 to KL of the array need not be set. +* The j-th column of A is stored in the j-th column of the +* array AB as follows: +* AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl) +* +* On exit, details of the factorization: U is stored as an +* upper triangular band matrix with KL+KU superdiagonals in +* rows 1 to KL+KU+1, and the multipliers used during the +* factorization are stored in rows KL+KU+2 to 2*KL+KU+1. +* See below for further details. +* +* LDAB (input) INTEGER +* The leading dimension of the array AB. LDAB >= 2*KL+KU+1. +* +* IPIV (output) INTEGER array, dimension (min(M,N)) +* The pivot indices; for 1 <= i <= min(M,N), row i of the +* matrix was interchanged with row IPIV(i). +* +* INFO (output) INTEGER +* = 0: successful exit +* < 0: if INFO = -i, the i-th argument had an illegal value +* > 0: if INFO = +i, U(i,i) is exactly zero. The factorization +* has been completed, but the factor U is exactly +* singular, and division by zero will occur if it is used +* to solve a system of equations. +* +* Further Details +* =============== +* +* The band storage scheme is illustrated by the following example, when +* M = N = 6, KL = 2, KU = 1: +* +* On entry: On exit: +* +* * * * + + + * * * u14 u25 u36 +* * * + + + + * * u13 u24 u35 u46 +* * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 +* a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 +* a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 * +* a31 a42 a53 a64 * * m31 m42 m53 m64 * * +* +* Array elements marked * are not used by the routine; elements marked +* + need not be set on entry, but are required by the routine to store +* elements of U, because of fill-in resulting from the row +* interchanges. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ONE, ZERO + PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) +* .. +* .. Local Scalars .. + INTEGER I, J, JP, JU, KM, KV +* .. +* .. External Functions .. + INTEGER IDAMAX + EXTERNAL IDAMAX +* .. +* .. External Subroutines .. + EXTERNAL DGER, DSCAL, DSWAP, XERBLA +* .. +* .. Intrinsic Functions .. + INTRINSIC MAX, MIN +* .. +* .. Executable Statements .. +* +* KV is the number of superdiagonals in the factor U, allowing for +* fill-in. +* + KV = KU + KL +* +* Test the input parameters. +* + INFO = 0 + IF( M.LT.0 ) THEN + INFO = -1 + ELSE IF( N.LT.0 ) THEN + INFO = -2 + ELSE IF( KL.LT.0 ) THEN + INFO = -3 + ELSE IF( KU.LT.0 ) THEN + INFO = -4 + ELSE IF( LDAB.LT.KL+KV+1 ) THEN + INFO = -6 + END IF + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'DGBTF2', -INFO ) + RETURN + END IF +* +* Quick return if possible +* + IF( M.EQ.0 .OR. N.EQ.0 ) + $ RETURN +* +* Gaussian elimination with partial pivoting +* +* Set fill-in elements in columns KU+2 to KV to zero. +* + DO 20 J = KU + 2, MIN( KV, N ) + DO 10 I = KV - J + 2, KL + AB( I, J ) = ZERO + 10 CONTINUE + 20 CONTINUE +* +* JU is the index of the last column affected by the current stage +* of the factorization. +* + JU = 1 +* + DO 40 J = 1, MIN( M, N ) +* +* Set fill-in elements in column J+KV to zero. +* + IF( J+KV.LE.N ) THEN + DO 30 I = 1, KL + AB( I, J+KV ) = ZERO + 30 CONTINUE + END IF +* +* Find pivot and test for singularity. KM is the number of +* subdiagonal elements in the current column. +* + KM = MIN( KL, M-J ) + JP = IDAMAX( KM+1, AB( KV+1, J ), 1 ) + IPIV( J ) = JP + J - 1 + IF( AB( KV+JP, J ).NE.ZERO ) THEN + JU = MAX( JU, MIN( J+KU+JP-1, N ) ) +* +* Apply interchange to columns J to JU. +* + IF( JP.NE.1 ) + $ CALL DSWAP( JU-J+1, AB( KV+JP, J ), LDAB-1, + $ AB( KV+1, J ), LDAB-1 ) +* + IF( KM.GT.0 ) THEN +* +* Compute multipliers. +* + CALL DSCAL( KM, ONE / AB( KV+1, J ), AB( KV+2, J ), 1 ) +* +* Update trailing submatrix within the band. +* + IF( JU.GT.J ) + $ CALL DGER( KM, JU-J, -ONE, AB( KV+2, J ), 1, + $ AB( KV, J+1 ), LDAB-1, AB( KV+1, J+1 ), + $ LDAB-1 ) + END IF + ELSE +* +* If pivot is zero, set INFO to the index of the pivot +* unless a zero pivot has already been found. +* + IF( INFO.EQ.0 ) + $ INFO = J + END IF + 40 CONTINUE + RETURN +* +* End of DGBTF2 +* + END |