summaryrefslogtreecommitdiff
path: root/SRC/clatrz.f
diff options
context:
space:
mode:
authorjulie <julielangou@users.noreply.github.com>2011-10-06 06:53:11 +0000
committerjulie <julielangou@users.noreply.github.com>2011-10-06 06:53:11 +0000
commite1d39294aee16fa6db9ba079b14442358217db71 (patch)
tree30e5aa04c1f6596991fda5334f63dfb9b8027849 /SRC/clatrz.f
parent5fe0466a14e395641f4f8a300ecc9dcb8058081b (diff)
downloadlapack-e1d39294aee16fa6db9ba079b14442358217db71.tar.gz
lapack-e1d39294aee16fa6db9ba079b14442358217db71.tar.bz2
lapack-e1d39294aee16fa6db9ba079b14442358217db71.zip
Integrating Doxygen in comments
Diffstat (limited to 'SRC/clatrz.f')
-rw-r--r--SRC/clatrz.f188
1 files changed, 126 insertions, 62 deletions
diff --git a/SRC/clatrz.f b/SRC/clatrz.f
index 31713e53..bdccf4f7 100644
--- a/SRC/clatrz.f
+++ b/SRC/clatrz.f
@@ -1,84 +1,148 @@
- SUBROUTINE CLATRZ( M, N, L, A, LDA, TAU, WORK )
+*> \brief \b CLATRZ
*
-* -- LAPACK routine (version 3.3.1) --
-* -- LAPACK is a software package provided by Univ. of Tennessee, --
-* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
-* -- April 2011 --
+* =========== DOCUMENTATION ===========
*
-* .. Scalar Arguments ..
- INTEGER L, LDA, M, N
-* ..
-* .. Array Arguments ..
- COMPLEX A( LDA, * ), TAU( * ), WORK( * )
-* ..
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+* Definition
+* ==========
*
+* SUBROUTINE CLATRZ( M, N, L, A, LDA, TAU, WORK )
+*
+* .. Scalar Arguments ..
+* INTEGER L, LDA, M, N
+* ..
+* .. Array Arguments ..
+* COMPLEX A( LDA, * ), TAU( * ), WORK( * )
+* ..
+*
* Purpose
* =======
*
-* CLATRZ factors the M-by-(M+L) complex upper trapezoidal matrix
-* [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R 0 ) * Z by means
-* of unitary transformations, where Z is an (M+L)-by-(M+L) unitary
-* matrix and, R and A1 are M-by-M upper triangular matrices.
+*>\details \b Purpose:
+*>\verbatim
+*>
+*> CLATRZ factors the M-by-(M+L) complex upper trapezoidal matrix
+*> [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R 0 ) * Z by means
+*> of unitary transformations, where Z is an (M+L)-by-(M+L) unitary
+*> matrix and, R and A1 are M-by-M upper triangular matrices.
+*>
+*>\endverbatim
*
* Arguments
* =========
*
-* M (input) INTEGER
-* The number of rows of the matrix A. M >= 0.
-*
-* N (input) INTEGER
-* The number of columns of the matrix A. N >= 0.
-*
-* L (input) INTEGER
-* The number of columns of the matrix A containing the
-* meaningful part of the Householder vectors. N-M >= L >= 0.
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the matrix A. M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in] L
+*> \verbatim
+*> L is INTEGER
+*> The number of columns of the matrix A containing the
+*> meaningful part of the Householder vectors. N-M >= L >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is COMPLEX array, dimension (LDA,N)
+*> On entry, the leading M-by-N upper trapezoidal part of the
+*> array A must contain the matrix to be factorized.
+*> On exit, the leading M-by-M upper triangular part of A
+*> contains the upper triangular matrix R, and elements N-L+1 to
+*> N of the first M rows of A, with the array TAU, represent the
+*> unitary matrix Z as a product of M elementary reflectors.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[out] TAU
+*> \verbatim
+*> TAU is COMPLEX array, dimension (M)
+*> The scalar factors of the elementary reflectors.
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is COMPLEX array, dimension (M)
+*> \endverbatim
+*>
+*
+* Authors
+* =======
*
-* A (input/output) COMPLEX array, dimension (LDA,N)
-* On entry, the leading M-by-N upper trapezoidal part of the
-* array A must contain the matrix to be factorized.
-* On exit, the leading M-by-M upper triangular part of A
-* contains the upper triangular matrix R, and elements N-L+1 to
-* N of the first M rows of A, with the array TAU, represent the
-* unitary matrix Z as a product of M elementary reflectors.
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
*
-* LDA (input) INTEGER
-* The leading dimension of the array A. LDA >= max(1,M).
+*> \date November 2011
*
-* TAU (output) COMPLEX array, dimension (M)
-* The scalar factors of the elementary reflectors.
+*> \ingroup complexOTHERcomputational
*
-* WORK (workspace) COMPLEX array, dimension (M)
*
* Further Details
* ===============
+*>\details \b Further \b Details
+*> \verbatim
+*>
+*> Based on contributions by
+*> A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
+*>
+*> The factorization is obtained by Householder's method. The kth
+*> transformation matrix, Z( k ), which is used to introduce zeros into
+*> the ( m - k + 1 )th row of A, is given in the form
+*>
+*> Z( k ) = ( I 0 ),
+*> ( 0 T( k ) )
+*>
+*> where
+*>
+*> T( k ) = I - tau*u( k )*u( k )**H, u( k ) = ( 1 ),
+*> ( 0 )
+*> ( z( k ) )
+*>
+*> tau is a scalar and z( k ) is an l element vector. tau and z( k )
+*> are chosen to annihilate the elements of the kth row of A2.
+*>
+*> The scalar tau is returned in the kth element of TAU and the vector
+*> u( k ) in the kth row of A2, such that the elements of z( k ) are
+*> in a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in
+*> the upper triangular part of A1.
+*>
+*> Z is given by
+*>
+*> Z = Z( 1 ) * Z( 2 ) * ... * Z( m ).
+*>
+*> \endverbatim
+*>
+* =====================================================================
+ SUBROUTINE CLATRZ( M, N, L, A, LDA, TAU, WORK )
*
-* Based on contributions by
-* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
-*
-* The factorization is obtained by Householder's method. The kth
-* transformation matrix, Z( k ), which is used to introduce zeros into
-* the ( m - k + 1 )th row of A, is given in the form
-*
-* Z( k ) = ( I 0 ),
-* ( 0 T( k ) )
-*
-* where
-*
-* T( k ) = I - tau*u( k )*u( k )**H, u( k ) = ( 1 ),
-* ( 0 )
-* ( z( k ) )
-*
-* tau is a scalar and z( k ) is an l element vector. tau and z( k )
-* are chosen to annihilate the elements of the kth row of A2.
-*
-* The scalar tau is returned in the kth element of TAU and the vector
-* u( k ) in the kth row of A2, such that the elements of z( k ) are
-* in a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in
-* the upper triangular part of A1.
-*
-* Z is given by
+* -- LAPACK computational routine (version 3.3.1) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2011
*
-* Z = Z( 1 ) * Z( 2 ) * ... * Z( m ).
+* .. Scalar Arguments ..
+ INTEGER L, LDA, M, N
+* ..
+* .. Array Arguments ..
+ COMPLEX A( LDA, * ), TAU( * ), WORK( * )
+* ..
*
* =====================================================================
*