summaryrefslogtreecommitdiff
path: root/SRC/clatrz.f
diff options
context:
space:
mode:
authorjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
committerjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
commitbaba851215b44ac3b60b9248eb02bcce7eb76247 (patch)
tree8c0f5c006875532a30d4409f5e94b0f310ff00a7 /SRC/clatrz.f
downloadlapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.gz
lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.bz2
lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.zip
Move LAPACK trunk into position.
Diffstat (limited to 'SRC/clatrz.f')
-rw-r--r--SRC/clatrz.f133
1 files changed, 133 insertions, 0 deletions
diff --git a/SRC/clatrz.f b/SRC/clatrz.f
new file mode 100644
index 00000000..829fa63b
--- /dev/null
+++ b/SRC/clatrz.f
@@ -0,0 +1,133 @@
+ SUBROUTINE CLATRZ( M, N, L, A, LDA, TAU, WORK )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ INTEGER L, LDA, M, N
+* ..
+* .. Array Arguments ..
+ COMPLEX A( LDA, * ), TAU( * ), WORK( * )
+* ..
+*
+* Purpose
+* =======
+*
+* CLATRZ factors the M-by-(M+L) complex upper trapezoidal matrix
+* [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R 0 ) * Z by means
+* of unitary transformations, where Z is an (M+L)-by-(M+L) unitary
+* matrix and, R and A1 are M-by-M upper triangular matrices.
+*
+* Arguments
+* =========
+*
+* M (input) INTEGER
+* The number of rows of the matrix A. M >= 0.
+*
+* N (input) INTEGER
+* The number of columns of the matrix A. N >= 0.
+*
+* L (input) INTEGER
+* The number of columns of the matrix A containing the
+* meaningful part of the Householder vectors. N-M >= L >= 0.
+*
+* A (input/output) COMPLEX array, dimension (LDA,N)
+* On entry, the leading M-by-N upper trapezoidal part of the
+* array A must contain the matrix to be factorized.
+* On exit, the leading M-by-M upper triangular part of A
+* contains the upper triangular matrix R, and elements N-L+1 to
+* N of the first M rows of A, with the array TAU, represent the
+* unitary matrix Z as a product of M elementary reflectors.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,M).
+*
+* TAU (output) COMPLEX array, dimension (M)
+* The scalar factors of the elementary reflectors.
+*
+* WORK (workspace) COMPLEX array, dimension (M)
+*
+* Further Details
+* ===============
+*
+* Based on contributions by
+* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
+*
+* The factorization is obtained by Householder's method. The kth
+* transformation matrix, Z( k ), which is used to introduce zeros into
+* the ( m - k + 1 )th row of A, is given in the form
+*
+* Z( k ) = ( I 0 ),
+* ( 0 T( k ) )
+*
+* where
+*
+* T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ),
+* ( 0 )
+* ( z( k ) )
+*
+* tau is a scalar and z( k ) is an l element vector. tau and z( k )
+* are chosen to annihilate the elements of the kth row of A2.
+*
+* The scalar tau is returned in the kth element of TAU and the vector
+* u( k ) in the kth row of A2, such that the elements of z( k ) are
+* in a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in
+* the upper triangular part of A1.
+*
+* Z is given by
+*
+* Z = Z( 1 ) * Z( 2 ) * ... * Z( m ).
+*
+* =====================================================================
+*
+* .. Parameters ..
+ COMPLEX ZERO
+ PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
+* ..
+* .. Local Scalars ..
+ INTEGER I
+ COMPLEX ALPHA
+* ..
+* .. External Subroutines ..
+ EXTERNAL CLACGV, CLARFG, CLARZ
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC CONJG
+* ..
+* .. Executable Statements ..
+*
+* Quick return if possible
+*
+ IF( M.EQ.0 ) THEN
+ RETURN
+ ELSE IF( M.EQ.N ) THEN
+ DO 10 I = 1, N
+ TAU( I ) = ZERO
+ 10 CONTINUE
+ RETURN
+ END IF
+*
+ DO 20 I = M, 1, -1
+*
+* Generate elementary reflector H(i) to annihilate
+* [ A(i,i) A(i,n-l+1:n) ]
+*
+ CALL CLACGV( L, A( I, N-L+1 ), LDA )
+ ALPHA = CONJG( A( I, I ) )
+ CALL CLARFG( L+1, ALPHA, A( I, N-L+1 ), LDA, TAU( I ) )
+ TAU( I ) = CONJG( TAU( I ) )
+*
+* Apply H(i) to A(1:i-1,i:n) from the right
+*
+ CALL CLARZ( 'Right', I-1, N-I+1, L, A( I, N-L+1 ), LDA,
+ $ CONJG( TAU( I ) ), A( 1, I ), LDA, WORK )
+ A( I, I ) = CONJG( ALPHA )
+*
+ 20 CONTINUE
+*
+ RETURN
+*
+* End of CLATRZ
+*
+ END