summaryrefslogtreecommitdiff
path: root/SRC/clahrd.f
diff options
context:
space:
mode:
authorjulie <julielangou@users.noreply.github.com>2015-09-19 19:22:02 +0000
committerjulie <julielangou@users.noreply.github.com>2015-09-19 19:22:02 +0000
commitc406915af2e7db298c4309ed08e6e1984a30fc4c (patch)
tree2ea820c77c9369be3c04a6c1ad6f9f4521c8dba3 /SRC/clahrd.f
parentd8ca22766e5b53d95c30f5d0a2d12c9fe5b52e4b (diff)
downloadlapack-c406915af2e7db298c4309ed08e6e1984a30fc4c.tar.gz
lapack-c406915af2e7db298c4309ed08e6e1984a30fc4c.tar.bz2
lapack-c406915af2e7db298c4309ed08e6e1984a30fc4c.zip
Adding xlahrd to DEPRECATED (problem reported by zerothi)
Diffstat (limited to 'SRC/clahrd.f')
-rw-r--r--SRC/clahrd.f294
1 files changed, 0 insertions, 294 deletions
diff --git a/SRC/clahrd.f b/SRC/clahrd.f
deleted file mode 100644
index f612744e..00000000
--- a/SRC/clahrd.f
+++ /dev/null
@@ -1,294 +0,0 @@
-*> \brief \b CLAHRD reduces the first nb columns of a general rectangular matrix A so that elements below the k-th subdiagonal are zero, and returns auxiliary matrices which are needed to apply the transformation to the unreduced part of A.
-*
-* =========== DOCUMENTATION ===========
-*
-* Online html documentation available at
-* http://www.netlib.org/lapack/explore-html/
-*
-*> \htmlonly
-*> Download CLAHRD + dependencies
-*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clahrd.f">
-*> [TGZ]</a>
-*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clahrd.f">
-*> [ZIP]</a>
-*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clahrd.f">
-*> [TXT]</a>
-*> \endhtmlonly
-*
-* Definition:
-* ===========
-*
-* SUBROUTINE CLAHRD( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )
-*
-* .. Scalar Arguments ..
-* INTEGER K, LDA, LDT, LDY, N, NB
-* ..
-* .. Array Arguments ..
-* COMPLEX A( LDA, * ), T( LDT, NB ), TAU( NB ),
-* $ Y( LDY, NB )
-* ..
-*
-*
-*> \par Purpose:
-* =============
-*>
-*> \verbatim
-*>
-*> CLAHRD reduces the first NB columns of a complex general n-by-(n-k+1)
-*> matrix A so that elements below the k-th subdiagonal are zero. The
-*> reduction is performed by a unitary similarity transformation
-*> Q**H * A * Q. The routine returns the matrices V and T which determine
-*> Q as a block reflector I - V*T*V**H, and also the matrix Y = A * V * T.
-*>
-*> This is an OBSOLETE auxiliary routine.
-*> This routine will be 'deprecated' in a future release.
-*> Please use the new routine CLAHR2 instead.
-*> \endverbatim
-*
-* Arguments:
-* ==========
-*
-*> \param[in] N
-*> \verbatim
-*> N is INTEGER
-*> The order of the matrix A.
-*> \endverbatim
-*>
-*> \param[in] K
-*> \verbatim
-*> K is INTEGER
-*> The offset for the reduction. Elements below the k-th
-*> subdiagonal in the first NB columns are reduced to zero.
-*> \endverbatim
-*>
-*> \param[in] NB
-*> \verbatim
-*> NB is INTEGER
-*> The number of columns to be reduced.
-*> \endverbatim
-*>
-*> \param[in,out] A
-*> \verbatim
-*> A is COMPLEX array, dimension (LDA,N-K+1)
-*> On entry, the n-by-(n-k+1) general matrix A.
-*> On exit, the elements on and above the k-th subdiagonal in
-*> the first NB columns are overwritten with the corresponding
-*> elements of the reduced matrix; the elements below the k-th
-*> subdiagonal, with the array TAU, represent the matrix Q as a
-*> product of elementary reflectors. The other columns of A are
-*> unchanged. See Further Details.
-*> \endverbatim
-*>
-*> \param[in] LDA
-*> \verbatim
-*> LDA is INTEGER
-*> The leading dimension of the array A. LDA >= max(1,N).
-*> \endverbatim
-*>
-*> \param[out] TAU
-*> \verbatim
-*> TAU is COMPLEX array, dimension (NB)
-*> The scalar factors of the elementary reflectors. See Further
-*> Details.
-*> \endverbatim
-*>
-*> \param[out] T
-*> \verbatim
-*> T is COMPLEX array, dimension (LDT,NB)
-*> The upper triangular matrix T.
-*> \endverbatim
-*>
-*> \param[in] LDT
-*> \verbatim
-*> LDT is INTEGER
-*> The leading dimension of the array T. LDT >= NB.
-*> \endverbatim
-*>
-*> \param[out] Y
-*> \verbatim
-*> Y is COMPLEX array, dimension (LDY,NB)
-*> The n-by-nb matrix Y.
-*> \endverbatim
-*>
-*> \param[in] LDY
-*> \verbatim
-*> LDY is INTEGER
-*> The leading dimension of the array Y. LDY >= max(1,N).
-*> \endverbatim
-*
-* Authors:
-* ========
-*
-*> \author Univ. of Tennessee
-*> \author Univ. of California Berkeley
-*> \author Univ. of Colorado Denver
-*> \author NAG Ltd.
-*
-*> \date September 2012
-*
-*> \ingroup complexOTHERauxiliary
-*
-*> \par Further Details:
-* =====================
-*>
-*> \verbatim
-*>
-*> The matrix Q is represented as a product of nb elementary reflectors
-*>
-*> Q = H(1) H(2) . . . H(nb).
-*>
-*> Each H(i) has the form
-*>
-*> H(i) = I - tau * v * v**H
-*>
-*> where tau is a complex scalar, and v is a complex vector with
-*> v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
-*> A(i+k+1:n,i), and tau in TAU(i).
-*>
-*> The elements of the vectors v together form the (n-k+1)-by-nb matrix
-*> V which is needed, with T and Y, to apply the transformation to the
-*> unreduced part of the matrix, using an update of the form:
-*> A := (I - V*T*V**H) * (A - Y*V**H).
-*>
-*> The contents of A on exit are illustrated by the following example
-*> with n = 7, k = 3 and nb = 2:
-*>
-*> ( a h a a a )
-*> ( a h a a a )
-*> ( a h a a a )
-*> ( h h a a a )
-*> ( v1 h a a a )
-*> ( v1 v2 a a a )
-*> ( v1 v2 a a a )
-*>
-*> where a denotes an element of the original matrix A, h denotes a
-*> modified element of the upper Hessenberg matrix H, and vi denotes an
-*> element of the vector defining H(i).
-*> \endverbatim
-*>
-* =====================================================================
- SUBROUTINE CLAHRD( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )
-*
-* -- LAPACK auxiliary routine (version 3.4.2) --
-* -- LAPACK is a software package provided by Univ. of Tennessee, --
-* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
-* September 2012
-*
-* .. Scalar Arguments ..
- INTEGER K, LDA, LDT, LDY, N, NB
-* ..
-* .. Array Arguments ..
- COMPLEX A( LDA, * ), T( LDT, NB ), TAU( NB ),
- $ Y( LDY, NB )
-* ..
-*
-* =====================================================================
-*
-* .. Parameters ..
- COMPLEX ZERO, ONE
- PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ),
- $ ONE = ( 1.0E+0, 0.0E+0 ) )
-* ..
-* .. Local Scalars ..
- INTEGER I
- COMPLEX EI
-* ..
-* .. External Subroutines ..
- EXTERNAL CAXPY, CCOPY, CGEMV, CLACGV, CLARFG, CSCAL,
- $ CTRMV
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC MIN
-* ..
-* .. Executable Statements ..
-*
-* Quick return if possible
-*
- IF( N.LE.1 )
- $ RETURN
-*
- DO 10 I = 1, NB
- IF( I.GT.1 ) THEN
-*
-* Update A(1:n,i)
-*
-* Compute i-th column of A - Y * V**H
-*
- CALL CLACGV( I-1, A( K+I-1, 1 ), LDA )
- CALL CGEMV( 'No transpose', N, I-1, -ONE, Y, LDY,
- $ A( K+I-1, 1 ), LDA, ONE, A( 1, I ), 1 )
- CALL CLACGV( I-1, A( K+I-1, 1 ), LDA )
-*
-* Apply I - V * T**H * V**H to this column (call it b) from the
-* left, using the last column of T as workspace
-*
-* Let V = ( V1 ) and b = ( b1 ) (first I-1 rows)
-* ( V2 ) ( b2 )
-*
-* where V1 is unit lower triangular
-*
-* w := V1**H * b1
-*
- CALL CCOPY( I-1, A( K+1, I ), 1, T( 1, NB ), 1 )
- CALL CTRMV( 'Lower', 'Conjugate transpose', 'Unit', I-1,
- $ A( K+1, 1 ), LDA, T( 1, NB ), 1 )
-*
-* w := w + V2**H *b2
-*
- CALL CGEMV( 'Conjugate transpose', N-K-I+1, I-1, ONE,
- $ A( K+I, 1 ), LDA, A( K+I, I ), 1, ONE,
- $ T( 1, NB ), 1 )
-*
-* w := T**H *w
-*
- CALL CTRMV( 'Upper', 'Conjugate transpose', 'Non-unit', I-1,
- $ T, LDT, T( 1, NB ), 1 )
-*
-* b2 := b2 - V2*w
-*
- CALL CGEMV( 'No transpose', N-K-I+1, I-1, -ONE, A( K+I, 1 ),
- $ LDA, T( 1, NB ), 1, ONE, A( K+I, I ), 1 )
-*
-* b1 := b1 - V1*w
-*
- CALL CTRMV( 'Lower', 'No transpose', 'Unit', I-1,
- $ A( K+1, 1 ), LDA, T( 1, NB ), 1 )
- CALL CAXPY( I-1, -ONE, T( 1, NB ), 1, A( K+1, I ), 1 )
-*
- A( K+I-1, I-1 ) = EI
- END IF
-*
-* Generate the elementary reflector H(i) to annihilate
-* A(k+i+1:n,i)
-*
- EI = A( K+I, I )
- CALL CLARFG( N-K-I+1, EI, A( MIN( K+I+1, N ), I ), 1,
- $ TAU( I ) )
- A( K+I, I ) = ONE
-*
-* Compute Y(1:n,i)
-*
- CALL CGEMV( 'No transpose', N, N-K-I+1, ONE, A( 1, I+1 ), LDA,
- $ A( K+I, I ), 1, ZERO, Y( 1, I ), 1 )
- CALL CGEMV( 'Conjugate transpose', N-K-I+1, I-1, ONE,
- $ A( K+I, 1 ), LDA, A( K+I, I ), 1, ZERO, T( 1, I ),
- $ 1 )
- CALL CGEMV( 'No transpose', N, I-1, -ONE, Y, LDY, T( 1, I ), 1,
- $ ONE, Y( 1, I ), 1 )
- CALL CSCAL( N, TAU( I ), Y( 1, I ), 1 )
-*
-* Compute T(1:i,i)
-*
- CALL CSCAL( I-1, -TAU( I ), T( 1, I ), 1 )
- CALL CTRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T, LDT,
- $ T( 1, I ), 1 )
- T( I, I ) = TAU( I )
-*
- 10 CONTINUE
- A( K+NB, NB ) = EI
-*
- RETURN
-*
-* End of CLAHRD
-*
- END