summaryrefslogtreecommitdiff
path: root/SRC/chbevx.f
diff options
context:
space:
mode:
authorjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
committerjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
commitbaba851215b44ac3b60b9248eb02bcce7eb76247 (patch)
tree8c0f5c006875532a30d4409f5e94b0f310ff00a7 /SRC/chbevx.f
downloadlapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.gz
lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.bz2
lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.zip
Move LAPACK trunk into position.
Diffstat (limited to 'SRC/chbevx.f')
-rw-r--r--SRC/chbevx.f421
1 files changed, 421 insertions, 0 deletions
diff --git a/SRC/chbevx.f b/SRC/chbevx.f
new file mode 100644
index 00000000..19abc5c5
--- /dev/null
+++ b/SRC/chbevx.f
@@ -0,0 +1,421 @@
+ SUBROUTINE CHBEVX( JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q, LDQ, VL,
+ $ VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK,
+ $ IWORK, IFAIL, INFO )
+*
+* -- LAPACK driver routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER JOBZ, RANGE, UPLO
+ INTEGER IL, INFO, IU, KD, LDAB, LDQ, LDZ, M, N
+ REAL ABSTOL, VL, VU
+* ..
+* .. Array Arguments ..
+ INTEGER IFAIL( * ), IWORK( * )
+ REAL RWORK( * ), W( * )
+ COMPLEX AB( LDAB, * ), Q( LDQ, * ), WORK( * ),
+ $ Z( LDZ, * )
+* ..
+*
+* Purpose
+* =======
+*
+* CHBEVX computes selected eigenvalues and, optionally, eigenvectors
+* of a complex Hermitian band matrix A. Eigenvalues and eigenvectors
+* can be selected by specifying either a range of values or a range of
+* indices for the desired eigenvalues.
+*
+* Arguments
+* =========
+*
+* JOBZ (input) CHARACTER*1
+* = 'N': Compute eigenvalues only;
+* = 'V': Compute eigenvalues and eigenvectors.
+*
+* RANGE (input) CHARACTER*1
+* = 'A': all eigenvalues will be found;
+* = 'V': all eigenvalues in the half-open interval (VL,VU]
+* will be found;
+* = 'I': the IL-th through IU-th eigenvalues will be found.
+*
+* UPLO (input) CHARACTER*1
+* = 'U': Upper triangle of A is stored;
+* = 'L': Lower triangle of A is stored.
+*
+* N (input) INTEGER
+* The order of the matrix A. N >= 0.
+*
+* KD (input) INTEGER
+* The number of superdiagonals of the matrix A if UPLO = 'U',
+* or the number of subdiagonals if UPLO = 'L'. KD >= 0.
+*
+* AB (input/output) COMPLEX array, dimension (LDAB, N)
+* On entry, the upper or lower triangle of the Hermitian band
+* matrix A, stored in the first KD+1 rows of the array. The
+* j-th column of A is stored in the j-th column of the array AB
+* as follows:
+* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
+* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
+*
+* On exit, AB is overwritten by values generated during the
+* reduction to tridiagonal form.
+*
+* LDAB (input) INTEGER
+* The leading dimension of the array AB. LDAB >= KD + 1.
+*
+* Q (output) COMPLEX array, dimension (LDQ, N)
+* If JOBZ = 'V', the N-by-N unitary matrix used in the
+* reduction to tridiagonal form.
+* If JOBZ = 'N', the array Q is not referenced.
+*
+* LDQ (input) INTEGER
+* The leading dimension of the array Q. If JOBZ = 'V', then
+* LDQ >= max(1,N).
+*
+* VL (input) REAL
+* VU (input) REAL
+* If RANGE='V', the lower and upper bounds of the interval to
+* be searched for eigenvalues. VL < VU.
+* Not referenced if RANGE = 'A' or 'I'.
+*
+* IL (input) INTEGER
+* IU (input) INTEGER
+* If RANGE='I', the indices (in ascending order) of the
+* smallest and largest eigenvalues to be returned.
+* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
+* Not referenced if RANGE = 'A' or 'V'.
+*
+* ABSTOL (input) REAL
+* The absolute error tolerance for the eigenvalues.
+* An approximate eigenvalue is accepted as converged
+* when it is determined to lie in an interval [a,b]
+* of width less than or equal to
+*
+* ABSTOL + EPS * max( |a|,|b| ) ,
+*
+* where EPS is the machine precision. If ABSTOL is less than
+* or equal to zero, then EPS*|T| will be used in its place,
+* where |T| is the 1-norm of the tridiagonal matrix obtained
+* by reducing AB to tridiagonal form.
+*
+* Eigenvalues will be computed most accurately when ABSTOL is
+* set to twice the underflow threshold 2*SLAMCH('S'), not zero.
+* If this routine returns with INFO>0, indicating that some
+* eigenvectors did not converge, try setting ABSTOL to
+* 2*SLAMCH('S').
+*
+* See "Computing Small Singular Values of Bidiagonal Matrices
+* with Guaranteed High Relative Accuracy," by Demmel and
+* Kahan, LAPACK Working Note #3.
+*
+* M (output) INTEGER
+* The total number of eigenvalues found. 0 <= M <= N.
+* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
+*
+* W (output) REAL array, dimension (N)
+* The first M elements contain the selected eigenvalues in
+* ascending order.
+*
+* Z (output) COMPLEX array, dimension (LDZ, max(1,M))
+* If JOBZ = 'V', then if INFO = 0, the first M columns of Z
+* contain the orthonormal eigenvectors of the matrix A
+* corresponding to the selected eigenvalues, with the i-th
+* column of Z holding the eigenvector associated with W(i).
+* If an eigenvector fails to converge, then that column of Z
+* contains the latest approximation to the eigenvector, and the
+* index of the eigenvector is returned in IFAIL.
+* If JOBZ = 'N', then Z is not referenced.
+* Note: the user must ensure that at least max(1,M) columns are
+* supplied in the array Z; if RANGE = 'V', the exact value of M
+* is not known in advance and an upper bound must be used.
+*
+* LDZ (input) INTEGER
+* The leading dimension of the array Z. LDZ >= 1, and if
+* JOBZ = 'V', LDZ >= max(1,N).
+*
+* WORK (workspace) COMPLEX array, dimension (N)
+*
+* RWORK (workspace) REAL array, dimension (7*N)
+*
+* IWORK (workspace) INTEGER array, dimension (5*N)
+*
+* IFAIL (output) INTEGER array, dimension (N)
+* If JOBZ = 'V', then if INFO = 0, the first M elements of
+* IFAIL are zero. If INFO > 0, then IFAIL contains the
+* indices of the eigenvectors that failed to converge.
+* If JOBZ = 'N', then IFAIL is not referenced.
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value
+* > 0: if INFO = i, then i eigenvectors failed to converge.
+* Their indices are stored in array IFAIL.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ REAL ZERO, ONE
+ PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
+ COMPLEX CZERO, CONE
+ PARAMETER ( CZERO = ( 0.0E0, 0.0E0 ),
+ $ CONE = ( 1.0E0, 0.0E0 ) )
+* ..
+* .. Local Scalars ..
+ LOGICAL ALLEIG, INDEIG, LOWER, TEST, VALEIG, WANTZ
+ CHARACTER ORDER
+ INTEGER I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
+ $ INDISP, INDIWK, INDRWK, INDWRK, ISCALE, ITMP1,
+ $ J, JJ, NSPLIT
+ REAL ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
+ $ SIGMA, SMLNUM, TMP1, VLL, VUU
+ COMPLEX CTMP1
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ REAL CLANHB, SLAMCH
+ EXTERNAL LSAME, CLANHB, SLAMCH
+* ..
+* .. External Subroutines ..
+ EXTERNAL CCOPY, CGEMV, CHBTRD, CLACPY, CLASCL, CSTEIN,
+ $ CSTEQR, CSWAP, SCOPY, SSCAL, SSTEBZ, SSTERF,
+ $ XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX, MIN, REAL, SQRT
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ WANTZ = LSAME( JOBZ, 'V' )
+ ALLEIG = LSAME( RANGE, 'A' )
+ VALEIG = LSAME( RANGE, 'V' )
+ INDEIG = LSAME( RANGE, 'I' )
+ LOWER = LSAME( UPLO, 'L' )
+*
+ INFO = 0
+ IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
+ INFO = -1
+ ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
+ INFO = -2
+ ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
+ INFO = -3
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( KD.LT.0 ) THEN
+ INFO = -5
+ ELSE IF( LDAB.LT.KD+1 ) THEN
+ INFO = -7
+ ELSE IF( WANTZ .AND. LDQ.LT.MAX( 1, N ) ) THEN
+ INFO = -9
+ ELSE
+ IF( VALEIG ) THEN
+ IF( N.GT.0 .AND. VU.LE.VL )
+ $ INFO = -11
+ ELSE IF( INDEIG ) THEN
+ IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
+ INFO = -12
+ ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
+ INFO = -13
+ END IF
+ END IF
+ END IF
+ IF( INFO.EQ.0 ) THEN
+ IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
+ $ INFO = -18
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'CHBEVX', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ M = 0
+ IF( N.EQ.0 )
+ $ RETURN
+*
+ IF( N.EQ.1 ) THEN
+ M = 1
+ IF( LOWER ) THEN
+ CTMP1 = AB( 1, 1 )
+ ELSE
+ CTMP1 = AB( KD+1, 1 )
+ END IF
+ TMP1 = REAL( CTMP1 )
+ IF( VALEIG ) THEN
+ IF( .NOT.( VL.LT.TMP1 .AND. VU.GE.TMP1 ) )
+ $ M = 0
+ END IF
+ IF( M.EQ.1 ) THEN
+ W( 1 ) = CTMP1
+ IF( WANTZ )
+ $ Z( 1, 1 ) = CONE
+ END IF
+ RETURN
+ END IF
+*
+* Get machine constants.
+*
+ SAFMIN = SLAMCH( 'Safe minimum' )
+ EPS = SLAMCH( 'Precision' )
+ SMLNUM = SAFMIN / EPS
+ BIGNUM = ONE / SMLNUM
+ RMIN = SQRT( SMLNUM )
+ RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
+*
+* Scale matrix to allowable range, if necessary.
+*
+ ISCALE = 0
+ ABSTLL = ABSTOL
+ IF ( VALEIG ) THEN
+ VLL = VL
+ VUU = VU
+ ELSE
+ VLL = ZERO
+ VUU = ZERO
+ ENDIF
+ ANRM = CLANHB( 'M', UPLO, N, KD, AB, LDAB, RWORK )
+ IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
+ ISCALE = 1
+ SIGMA = RMIN / ANRM
+ ELSE IF( ANRM.GT.RMAX ) THEN
+ ISCALE = 1
+ SIGMA = RMAX / ANRM
+ END IF
+ IF( ISCALE.EQ.1 ) THEN
+ IF( LOWER ) THEN
+ CALL CLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
+ ELSE
+ CALL CLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
+ END IF
+ IF( ABSTOL.GT.0 )
+ $ ABSTLL = ABSTOL*SIGMA
+ IF( VALEIG ) THEN
+ VLL = VL*SIGMA
+ VUU = VU*SIGMA
+ END IF
+ END IF
+*
+* Call CHBTRD to reduce Hermitian band matrix to tridiagonal form.
+*
+ INDD = 1
+ INDE = INDD + N
+ INDRWK = INDE + N
+ INDWRK = 1
+ CALL CHBTRD( JOBZ, UPLO, N, KD, AB, LDAB, RWORK( INDD ),
+ $ RWORK( INDE ), Q, LDQ, WORK( INDWRK ), IINFO )
+*
+* If all eigenvalues are desired and ABSTOL is less than or equal
+* to zero, then call SSTERF or CSTEQR. If this fails for some
+* eigenvalue, then try SSTEBZ.
+*
+ TEST = .FALSE.
+ IF (INDEIG) THEN
+ IF (IL.EQ.1 .AND. IU.EQ.N) THEN
+ TEST = .TRUE.
+ END IF
+ END IF
+ IF ((ALLEIG .OR. TEST) .AND. (ABSTOL.LE.ZERO)) THEN
+ CALL SCOPY( N, RWORK( INDD ), 1, W, 1 )
+ INDEE = INDRWK + 2*N
+ IF( .NOT.WANTZ ) THEN
+ CALL SCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
+ CALL SSTERF( N, W, RWORK( INDEE ), INFO )
+ ELSE
+ CALL CLACPY( 'A', N, N, Q, LDQ, Z, LDZ )
+ CALL SCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
+ CALL CSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
+ $ RWORK( INDRWK ), INFO )
+ IF( INFO.EQ.0 ) THEN
+ DO 10 I = 1, N
+ IFAIL( I ) = 0
+ 10 CONTINUE
+ END IF
+ END IF
+ IF( INFO.EQ.0 ) THEN
+ M = N
+ GO TO 30
+ END IF
+ INFO = 0
+ END IF
+*
+* Otherwise, call SSTEBZ and, if eigenvectors are desired, CSTEIN.
+*
+ IF( WANTZ ) THEN
+ ORDER = 'B'
+ ELSE
+ ORDER = 'E'
+ END IF
+ INDIBL = 1
+ INDISP = INDIBL + N
+ INDIWK = INDISP + N
+ CALL SSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
+ $ RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
+ $ IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
+ $ IWORK( INDIWK ), INFO )
+*
+ IF( WANTZ ) THEN
+ CALL CSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
+ $ IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
+ $ RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
+*
+* Apply unitary matrix used in reduction to tridiagonal
+* form to eigenvectors returned by CSTEIN.
+*
+ DO 20 J = 1, M
+ CALL CCOPY( N, Z( 1, J ), 1, WORK( 1 ), 1 )
+ CALL CGEMV( 'N', N, N, CONE, Q, LDQ, WORK, 1, CZERO,
+ $ Z( 1, J ), 1 )
+ 20 CONTINUE
+ END IF
+*
+* If matrix was scaled, then rescale eigenvalues appropriately.
+*
+ 30 CONTINUE
+ IF( ISCALE.EQ.1 ) THEN
+ IF( INFO.EQ.0 ) THEN
+ IMAX = M
+ ELSE
+ IMAX = INFO - 1
+ END IF
+ CALL SSCAL( IMAX, ONE / SIGMA, W, 1 )
+ END IF
+*
+* If eigenvalues are not in order, then sort them, along with
+* eigenvectors.
+*
+ IF( WANTZ ) THEN
+ DO 50 J = 1, M - 1
+ I = 0
+ TMP1 = W( J )
+ DO 40 JJ = J + 1, M
+ IF( W( JJ ).LT.TMP1 ) THEN
+ I = JJ
+ TMP1 = W( JJ )
+ END IF
+ 40 CONTINUE
+*
+ IF( I.NE.0 ) THEN
+ ITMP1 = IWORK( INDIBL+I-1 )
+ W( I ) = W( J )
+ IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
+ W( J ) = TMP1
+ IWORK( INDIBL+J-1 ) = ITMP1
+ CALL CSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
+ IF( INFO.NE.0 ) THEN
+ ITMP1 = IFAIL( I )
+ IFAIL( I ) = IFAIL( J )
+ IFAIL( J ) = ITMP1
+ END IF
+ END IF
+ 50 CONTINUE
+ END IF
+*
+ RETURN
+*
+* End of CHBEVX
+*
+ END