diff options
author | jason <jason@8a072113-8704-0410-8d35-dd094bca7971> | 2008-10-28 01:38:50 +0000 |
---|---|---|
committer | jason <jason@8a072113-8704-0410-8d35-dd094bca7971> | 2008-10-28 01:38:50 +0000 |
commit | baba851215b44ac3b60b9248eb02bcce7eb76247 (patch) | |
tree | 8c0f5c006875532a30d4409f5e94b0f310ff00a7 /SRC/cgbtrf.f | |
download | lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.gz lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.tar.bz2 lapack-baba851215b44ac3b60b9248eb02bcce7eb76247.zip |
Move LAPACK trunk into position.
Diffstat (limited to 'SRC/cgbtrf.f')
-rw-r--r-- | SRC/cgbtrf.f | 442 |
1 files changed, 442 insertions, 0 deletions
diff --git a/SRC/cgbtrf.f b/SRC/cgbtrf.f new file mode 100644 index 00000000..88758b97 --- /dev/null +++ b/SRC/cgbtrf.f @@ -0,0 +1,442 @@ + SUBROUTINE CGBTRF( M, N, KL, KU, AB, LDAB, IPIV, INFO ) +* +* -- LAPACK routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + INTEGER INFO, KL, KU, LDAB, M, N +* .. +* .. Array Arguments .. + INTEGER IPIV( * ) + COMPLEX AB( LDAB, * ) +* .. +* +* Purpose +* ======= +* +* CGBTRF computes an LU factorization of a complex m-by-n band matrix A +* using partial pivoting with row interchanges. +* +* This is the blocked version of the algorithm, calling Level 3 BLAS. +* +* Arguments +* ========= +* +* M (input) INTEGER +* The number of rows of the matrix A. M >= 0. +* +* N (input) INTEGER +* The number of columns of the matrix A. N >= 0. +* +* KL (input) INTEGER +* The number of subdiagonals within the band of A. KL >= 0. +* +* KU (input) INTEGER +* The number of superdiagonals within the band of A. KU >= 0. +* +* AB (input/output) COMPLEX array, dimension (LDAB,N) +* On entry, the matrix A in band storage, in rows KL+1 to +* 2*KL+KU+1; rows 1 to KL of the array need not be set. +* The j-th column of A is stored in the j-th column of the +* array AB as follows: +* AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl) +* +* On exit, details of the factorization: U is stored as an +* upper triangular band matrix with KL+KU superdiagonals in +* rows 1 to KL+KU+1, and the multipliers used during the +* factorization are stored in rows KL+KU+2 to 2*KL+KU+1. +* See below for further details. +* +* LDAB (input) INTEGER +* The leading dimension of the array AB. LDAB >= 2*KL+KU+1. +* +* IPIV (output) INTEGER array, dimension (min(M,N)) +* The pivot indices; for 1 <= i <= min(M,N), row i of the +* matrix was interchanged with row IPIV(i). +* +* INFO (output) INTEGER +* = 0: successful exit +* < 0: if INFO = -i, the i-th argument had an illegal value +* > 0: if INFO = +i, U(i,i) is exactly zero. The factorization +* has been completed, but the factor U is exactly +* singular, and division by zero will occur if it is used +* to solve a system of equations. +* +* Further Details +* =============== +* +* The band storage scheme is illustrated by the following example, when +* M = N = 6, KL = 2, KU = 1: +* +* On entry: On exit: +* +* * * * + + + * * * u14 u25 u36 +* * * + + + + * * u13 u24 u35 u46 +* * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 +* a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 +* a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 * +* a31 a42 a53 a64 * * m31 m42 m53 m64 * * +* +* Array elements marked * are not used by the routine; elements marked +* + need not be set on entry, but are required by the routine to store +* elements of U because of fill-in resulting from the row interchanges. +* +* ===================================================================== +* +* .. Parameters .. + COMPLEX ONE, ZERO + PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ), + $ ZERO = ( 0.0E+0, 0.0E+0 ) ) + INTEGER NBMAX, LDWORK + PARAMETER ( NBMAX = 64, LDWORK = NBMAX+1 ) +* .. +* .. Local Scalars .. + INTEGER I, I2, I3, II, IP, J, J2, J3, JB, JJ, JM, JP, + $ JU, K2, KM, KV, NB, NW + COMPLEX TEMP +* .. +* .. Local Arrays .. + COMPLEX WORK13( LDWORK, NBMAX ), + $ WORK31( LDWORK, NBMAX ) +* .. +* .. External Functions .. + INTEGER ICAMAX, ILAENV + EXTERNAL ICAMAX, ILAENV +* .. +* .. External Subroutines .. + EXTERNAL CCOPY, CGBTF2, CGEMM, CGERU, CLASWP, CSCAL, + $ CSWAP, CTRSM, XERBLA +* .. +* .. Intrinsic Functions .. + INTRINSIC MAX, MIN +* .. +* .. Executable Statements .. +* +* KV is the number of superdiagonals in the factor U, allowing for +* fill-in +* + KV = KU + KL +* +* Test the input parameters. +* + INFO = 0 + IF( M.LT.0 ) THEN + INFO = -1 + ELSE IF( N.LT.0 ) THEN + INFO = -2 + ELSE IF( KL.LT.0 ) THEN + INFO = -3 + ELSE IF( KU.LT.0 ) THEN + INFO = -4 + ELSE IF( LDAB.LT.KL+KV+1 ) THEN + INFO = -6 + END IF + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'CGBTRF', -INFO ) + RETURN + END IF +* +* Quick return if possible +* + IF( M.EQ.0 .OR. N.EQ.0 ) + $ RETURN +* +* Determine the block size for this environment +* + NB = ILAENV( 1, 'CGBTRF', ' ', M, N, KL, KU ) +* +* The block size must not exceed the limit set by the size of the +* local arrays WORK13 and WORK31. +* + NB = MIN( NB, NBMAX ) +* + IF( NB.LE.1 .OR. NB.GT.KL ) THEN +* +* Use unblocked code +* + CALL CGBTF2( M, N, KL, KU, AB, LDAB, IPIV, INFO ) + ELSE +* +* Use blocked code +* +* Zero the superdiagonal elements of the work array WORK13 +* + DO 20 J = 1, NB + DO 10 I = 1, J - 1 + WORK13( I, J ) = ZERO + 10 CONTINUE + 20 CONTINUE +* +* Zero the subdiagonal elements of the work array WORK31 +* + DO 40 J = 1, NB + DO 30 I = J + 1, NB + WORK31( I, J ) = ZERO + 30 CONTINUE + 40 CONTINUE +* +* Gaussian elimination with partial pivoting +* +* Set fill-in elements in columns KU+2 to KV to zero +* + DO 60 J = KU + 2, MIN( KV, N ) + DO 50 I = KV - J + 2, KL + AB( I, J ) = ZERO + 50 CONTINUE + 60 CONTINUE +* +* JU is the index of the last column affected by the current +* stage of the factorization +* + JU = 1 +* + DO 180 J = 1, MIN( M, N ), NB + JB = MIN( NB, MIN( M, N )-J+1 ) +* +* The active part of the matrix is partitioned +* +* A11 A12 A13 +* A21 A22 A23 +* A31 A32 A33 +* +* Here A11, A21 and A31 denote the current block of JB columns +* which is about to be factorized. The number of rows in the +* partitioning are JB, I2, I3 respectively, and the numbers +* of columns are JB, J2, J3. The superdiagonal elements of A13 +* and the subdiagonal elements of A31 lie outside the band. +* + I2 = MIN( KL-JB, M-J-JB+1 ) + I3 = MIN( JB, M-J-KL+1 ) +* +* J2 and J3 are computed after JU has been updated. +* +* Factorize the current block of JB columns +* + DO 80 JJ = J, J + JB - 1 +* +* Set fill-in elements in column JJ+KV to zero +* + IF( JJ+KV.LE.N ) THEN + DO 70 I = 1, KL + AB( I, JJ+KV ) = ZERO + 70 CONTINUE + END IF +* +* Find pivot and test for singularity. KM is the number of +* subdiagonal elements in the current column. +* + KM = MIN( KL, M-JJ ) + JP = ICAMAX( KM+1, AB( KV+1, JJ ), 1 ) + IPIV( JJ ) = JP + JJ - J + IF( AB( KV+JP, JJ ).NE.ZERO ) THEN + JU = MAX( JU, MIN( JJ+KU+JP-1, N ) ) + IF( JP.NE.1 ) THEN +* +* Apply interchange to columns J to J+JB-1 +* + IF( JP+JJ-1.LT.J+KL ) THEN +* + CALL CSWAP( JB, AB( KV+1+JJ-J, J ), LDAB-1, + $ AB( KV+JP+JJ-J, J ), LDAB-1 ) + ELSE +* +* The interchange affects columns J to JJ-1 of A31 +* which are stored in the work array WORK31 +* + CALL CSWAP( JJ-J, AB( KV+1+JJ-J, J ), LDAB-1, + $ WORK31( JP+JJ-J-KL, 1 ), LDWORK ) + CALL CSWAP( J+JB-JJ, AB( KV+1, JJ ), LDAB-1, + $ AB( KV+JP, JJ ), LDAB-1 ) + END IF + END IF +* +* Compute multipliers +* + CALL CSCAL( KM, ONE / AB( KV+1, JJ ), AB( KV+2, JJ ), + $ 1 ) +* +* Update trailing submatrix within the band and within +* the current block. JM is the index of the last column +* which needs to be updated. +* + JM = MIN( JU, J+JB-1 ) + IF( JM.GT.JJ ) + $ CALL CGERU( KM, JM-JJ, -ONE, AB( KV+2, JJ ), 1, + $ AB( KV, JJ+1 ), LDAB-1, + $ AB( KV+1, JJ+1 ), LDAB-1 ) + ELSE +* +* If pivot is zero, set INFO to the index of the pivot +* unless a zero pivot has already been found. +* + IF( INFO.EQ.0 ) + $ INFO = JJ + END IF +* +* Copy current column of A31 into the work array WORK31 +* + NW = MIN( JJ-J+1, I3 ) + IF( NW.GT.0 ) + $ CALL CCOPY( NW, AB( KV+KL+1-JJ+J, JJ ), 1, + $ WORK31( 1, JJ-J+1 ), 1 ) + 80 CONTINUE + IF( J+JB.LE.N ) THEN +* +* Apply the row interchanges to the other blocks. +* + J2 = MIN( JU-J+1, KV ) - JB + J3 = MAX( 0, JU-J-KV+1 ) +* +* Use CLASWP to apply the row interchanges to A12, A22, and +* A32. +* + CALL CLASWP( J2, AB( KV+1-JB, J+JB ), LDAB-1, 1, JB, + $ IPIV( J ), 1 ) +* +* Adjust the pivot indices. +* + DO 90 I = J, J + JB - 1 + IPIV( I ) = IPIV( I ) + J - 1 + 90 CONTINUE +* +* Apply the row interchanges to A13, A23, and A33 +* columnwise. +* + K2 = J - 1 + JB + J2 + DO 110 I = 1, J3 + JJ = K2 + I + DO 100 II = J + I - 1, J + JB - 1 + IP = IPIV( II ) + IF( IP.NE.II ) THEN + TEMP = AB( KV+1+II-JJ, JJ ) + AB( KV+1+II-JJ, JJ ) = AB( KV+1+IP-JJ, JJ ) + AB( KV+1+IP-JJ, JJ ) = TEMP + END IF + 100 CONTINUE + 110 CONTINUE +* +* Update the relevant part of the trailing submatrix +* + IF( J2.GT.0 ) THEN +* +* Update A12 +* + CALL CTRSM( 'Left', 'Lower', 'No transpose', 'Unit', + $ JB, J2, ONE, AB( KV+1, J ), LDAB-1, + $ AB( KV+1-JB, J+JB ), LDAB-1 ) +* + IF( I2.GT.0 ) THEN +* +* Update A22 +* + CALL CGEMM( 'No transpose', 'No transpose', I2, J2, + $ JB, -ONE, AB( KV+1+JB, J ), LDAB-1, + $ AB( KV+1-JB, J+JB ), LDAB-1, ONE, + $ AB( KV+1, J+JB ), LDAB-1 ) + END IF +* + IF( I3.GT.0 ) THEN +* +* Update A32 +* + CALL CGEMM( 'No transpose', 'No transpose', I3, J2, + $ JB, -ONE, WORK31, LDWORK, + $ AB( KV+1-JB, J+JB ), LDAB-1, ONE, + $ AB( KV+KL+1-JB, J+JB ), LDAB-1 ) + END IF + END IF +* + IF( J3.GT.0 ) THEN +* +* Copy the lower triangle of A13 into the work array +* WORK13 +* + DO 130 JJ = 1, J3 + DO 120 II = JJ, JB + WORK13( II, JJ ) = AB( II-JJ+1, JJ+J+KV-1 ) + 120 CONTINUE + 130 CONTINUE +* +* Update A13 in the work array +* + CALL CTRSM( 'Left', 'Lower', 'No transpose', 'Unit', + $ JB, J3, ONE, AB( KV+1, J ), LDAB-1, + $ WORK13, LDWORK ) +* + IF( I2.GT.0 ) THEN +* +* Update A23 +* + CALL CGEMM( 'No transpose', 'No transpose', I2, J3, + $ JB, -ONE, AB( KV+1+JB, J ), LDAB-1, + $ WORK13, LDWORK, ONE, AB( 1+JB, J+KV ), + $ LDAB-1 ) + END IF +* + IF( I3.GT.0 ) THEN +* +* Update A33 +* + CALL CGEMM( 'No transpose', 'No transpose', I3, J3, + $ JB, -ONE, WORK31, LDWORK, WORK13, + $ LDWORK, ONE, AB( 1+KL, J+KV ), LDAB-1 ) + END IF +* +* Copy the lower triangle of A13 back into place +* + DO 150 JJ = 1, J3 + DO 140 II = JJ, JB + AB( II-JJ+1, JJ+J+KV-1 ) = WORK13( II, JJ ) + 140 CONTINUE + 150 CONTINUE + END IF + ELSE +* +* Adjust the pivot indices. +* + DO 160 I = J, J + JB - 1 + IPIV( I ) = IPIV( I ) + J - 1 + 160 CONTINUE + END IF +* +* Partially undo the interchanges in the current block to +* restore the upper triangular form of A31 and copy the upper +* triangle of A31 back into place +* + DO 170 JJ = J + JB - 1, J, -1 + JP = IPIV( JJ ) - JJ + 1 + IF( JP.NE.1 ) THEN +* +* Apply interchange to columns J to JJ-1 +* + IF( JP+JJ-1.LT.J+KL ) THEN +* +* The interchange does not affect A31 +* + CALL CSWAP( JJ-J, AB( KV+1+JJ-J, J ), LDAB-1, + $ AB( KV+JP+JJ-J, J ), LDAB-1 ) + ELSE +* +* The interchange does affect A31 +* + CALL CSWAP( JJ-J, AB( KV+1+JJ-J, J ), LDAB-1, + $ WORK31( JP+JJ-J-KL, 1 ), LDWORK ) + END IF + END IF +* +* Copy the current column of A31 back into place +* + NW = MIN( I3, JJ-J+1 ) + IF( NW.GT.0 ) + $ CALL CCOPY( NW, WORK31( 1, JJ-J+1 ), 1, + $ AB( KV+KL+1-JJ+J, JJ ), 1 ) + 170 CONTINUE + 180 CONTINUE + END IF +* + RETURN +* +* End of CGBTRF +* + END |