summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorjulie <julielangou@users.noreply.github.com>2011-01-20 17:33:46 +0000
committerjulie <julielangou@users.noreply.github.com>2011-01-20 17:33:46 +0000
commitd1e13ae04629ee20c024a9fdebf37eccb8f042f5 (patch)
treeb1f4bc2f10d2c824844c367391e4569fd2d11ac0
parent69dafd0e92b95a7fe6548027519cbb9e2bdbc5ab (diff)
downloadlapack-d1e13ae04629ee20c024a9fdebf37eccb8f042f5.tar.gz
lapack-d1e13ae04629ee20c024a9fdebf37eccb8f042f5.tar.bz2
lapack-d1e13ae04629ee20c024a9fdebf37eccb8f042f5.zip
Adding new hetri routines
-rw-r--r--SRC/CMakeLists.txt6
-rw-r--r--SRC/Makefile6
-rw-r--r--SRC/cheswapr.f136
-rw-r--r--SRC/chetri2.f127
-rw-r--r--SRC/chetri2x.f508
-rw-r--r--SRC/zheswapr.f136
-rw-r--r--SRC/zhetri2.f127
-rw-r--r--SRC/zhetri2x.f508
-rw-r--r--TESTING/LIN/cchkhe.f15
-rw-r--r--TESTING/LIN/cdrvhe.f7
-rw-r--r--TESTING/LIN/cdrvhex.f7
-rw-r--r--TESTING/LIN/cerrhe.f17
-rw-r--r--TESTING/LIN/cerrhex.f17
-rw-r--r--TESTING/LIN/zchkhe.f11
-rw-r--r--TESTING/LIN/zdrvhe.f7
-rw-r--r--TESTING/LIN/zdrvhex.f7
-rw-r--r--TESTING/LIN/zerrhe.f17
-rw-r--r--TESTING/LIN/zerrhex.f17
18 files changed, 1640 insertions, 36 deletions
diff --git a/SRC/CMakeLists.txt b/SRC/CMakeLists.txt
index 4f9f8a33..4cbfff1a 100644
--- a/SRC/CMakeLists.txt
+++ b/SRC/CMakeLists.txt
@@ -172,7 +172,8 @@ set(CLASRC
checon.f cheev.f cheevd.f cheevr.f cheevx.f chegs2.f chegst.f
chegv.f chegvd.f chegvx.f cherfs.f chesv.f chesvx.f chetd2.f
chetf2.f chetrd.f
- chetrf.f chetri.f chetrs.f chetrs2.f chgeqz.f chpcon.f chpev.f chpevd.f
+ chetrf.f chetri.f chetri2.f chetri2x.f cheswapr.f
+ chetrs.f chetrs2.f chgeqz.f chpcon.f chpev.f chpevd.f
chpevx.f chpgst.f chpgv.f chpgvd.f chpgvx.f chprfs.f chpsv.f
chpsvx.f
chptrd.f chptrf.f chptri.f chptrs.f chsein.f chseqr.f clabrd.f
@@ -312,7 +313,8 @@ set(ZLASRC
zhecon.f zheev.f zheevd.f zheevr.f zheevx.f zhegs2.f zhegst.f
zhegv.f zhegvd.f zhegvx.f zherfs.f zhesv.f zhesvx.f zhetd2.f
zhetf2.f zhetrd.f
- zhetrf.f zhetri.f zhetrs.f zhetrs2.f zhgeqz.f zhpcon.f zhpev.f zhpevd.f
+ zhetrf.f zhetri.f zhetri2.f zhetri2x.f zheswapr.f
+ zhetrs.f zhetrs2.f zhgeqz.f zhpcon.f zhpev.f zhpevd.f
zhpevx.f zhpgst.f zhpgv.f zhpgvd.f zhpgvx.f zhprfs.f zhpsv.f
zhpsvx.f
zhptrd.f zhptrf.f zhptri.f zhptrs.f zhsein.f zhseqr.f zlabrd.f
diff --git a/SRC/Makefile b/SRC/Makefile
index 9fe35696..59756832 100644
--- a/SRC/Makefile
+++ b/SRC/Makefile
@@ -173,7 +173,8 @@ CLASRC = \
checon.o cheev.o cheevd.o cheevr.o cheevx.o chegs2.o chegst.o \
chegv.o chegvd.o chegvx.o cherfs.o chesv.o chesvx.o chetd2.o \
chetf2.o chetrd.o \
- chetrf.o chetri.o chetrs.o chetrs2.o chgeqz.o chpcon.o chpev.o chpevd.o \
+ chetrf.o chetri.o chetri2.o chetri2x.o cheswapr.o \
+ chetrs.o chetrs2.o chgeqz.o chpcon.o chpev.o chpevd.o \
chpevx.o chpgst.o chpgv.o chpgvd.o chpgvx.o chprfs.o chpsv.o \
chpsvx.o \
chptrd.o chptrf.o chptri.o chptrs.o chsein.o chseqr.o clabrd.o \
@@ -312,7 +313,8 @@ ZLASRC = \
zhecon.o zheev.o zheevd.o zheevr.o zheevx.o zhegs2.o zhegst.o \
zhegv.o zhegvd.o zhegvx.o zherfs.o zhesv.o zhesvx.o zhetd2.o \
zhetf2.o zhetrd.o \
- zhetrf.o zhetri.o zhetrs.o zhetrs2.o zhgeqz.o zhpcon.o zhpev.o zhpevd.o \
+ zhetrf.o zhetri.o zhetri2.o zhetri2x.o zheswapr.o \
+ zhetrs.o zhetrs2.o zhgeqz.o zhpcon.o zhpev.o zhpevd.o \
zhpevx.o zhpgst.o zhpgv.o zhpgvd.o zhpgvx.o zhprfs.o zhpsv.o \
zhpsvx.o \
zhptrd.o zhptrf.o zhptri.o zhptrs.o zhsein.o zhseqr.o zlabrd.o \
diff --git a/SRC/cheswapr.f b/SRC/cheswapr.f
new file mode 100644
index 00000000..3bb2c226
--- /dev/null
+++ b/SRC/cheswapr.f
@@ -0,0 +1,136 @@
+ SUBROUTINE CHESWAPR( UPLO, N, A, I1, I2)
+*
+* -- LAPACK auxiliary routine (version 3.3.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2010
+*
+* .. Scalar Arguments ..
+ CHARACTER UPLO
+ INTEGER I1, I2, N
+* ..
+* .. Array Arguments ..
+ COMPLEX A(N,N)
+*
+* Purpose
+* =======
+*
+* CHESWAPR applies an elementary permutation on the rows and the columns of
+* a hermitian matrix.
+*
+* Arguments
+* =========
+*
+* UPLO (input) CHARACTER*1
+* Specifies whether the details of the factorization are stored
+* as an upper or lower triangular matrix.
+* = 'U': Upper triangular, form is A = U*D*U**T;
+* = 'L': Lower triangular, form is A = L*D*L**T.
+*
+* N (input) INTEGER
+* The order of the matrix A. N >= 0.
+*
+* A (input/output) COMPLEX array, dimension (LDA,N)
+* On entry, the NB diagonal matrix D and the multipliers
+* used to obtain the factor U or L as computed by CSYTRF.
+*
+* On exit, if INFO = 0, the (symmetric) inverse of the original
+* matrix. If UPLO = 'U', the upper triangular part of the
+* inverse is formed and the part of A below the diagonal is not
+* referenced; if UPLO = 'L' the lower triangular part of the
+* inverse is formed and the part of A above the diagonal is
+* not referenced.
+*
+* I1 (input) INTEGER
+* Index of the first row to swap
+*
+* I2 (input) INTEGER
+* Index of the second row to swap
+*
+* =====================================================================
+*
+* ..
+* .. Local Scalars ..
+ LOGICAL UPPER
+ INTEGER I
+ COMPLEX TMP
+*
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. External Subroutines ..
+ EXTERNAL CSWAP
+* ..
+* .. Executable Statements ..
+*
+ UPPER = LSAME( UPLO, 'U' )
+ IF (UPPER) THEN
+*
+* UPPER
+* first swap
+* - swap column I1 and I2 from I1 to I1-1
+ CALL CSWAP( I1-1, A(1,I1), 1, A(1,I2), 1 )
+*
+* second swap :
+* - swap A(I1,I1) and A(I2,I2)
+* - swap row I1 from I1+1 to I2-1 with col I2 from I1+1 to I2-1
+* - swap A(I2,I1) and A(I1,I2)
+
+ TMP=A(I1,I1)
+ A(I1,I1)=A(I2,I2)
+ A(I2,I2)=TMP
+*
+ DO I=1,I2-I1-1
+ TMP=A(I1,I1+I)
+ A(I1,I1+I)=CONJG(A(I1+I,I2))
+ A(I1+I,I2)=CONJG(TMP)
+ END DO
+*
+ A(I1,I2)=CONJG(A(I1,I2))
+
+*
+* third swap
+* - swap row I1 and I2 from I2+1 to N
+ DO I=I2+1,N
+ TMP=A(I1,I)
+ A(I1,I)=A(I2,I)
+ A(I2,I)=TMP
+ END DO
+*
+ ELSE
+*
+* LOWER
+* first swap
+* - swap row I1 and I2 from 1 to I1-1
+ CALL CSWAP ( I1-1, A(I1,1), N, A(I2,1), N )
+*
+* second swap :
+* - swap A(I1,I1) and A(I2,I2)
+* - swap col I1 from I1+1 to I2-1 with row I2 from I1+1 to I2-1
+* - swap A(I2,I1) and A(I1,I2)
+
+ TMP=A(I1,I1)
+ A(I1,I1)=A(I2,I2)
+ A(I2,I2)=TMP
+*
+ DO I=1,I2-I1-1
+ TMP=A(I1+I,I1)
+ A(I1+I,I1)=CONJG(A(I2,I1+I))
+ A(I2,I1+I)=CONJG(TMP)
+ END DO
+*
+ A(I2,I1)=CONJG(A(I2,I1))
+*
+* third swap
+* - swap col I1 and I2 from I2+1 to N
+ DO I=I2+1,N
+ TMP=A(I,I1)
+ A(I,I1)=A(I,I2)
+ A(I,I2)=TMP
+ END DO
+*
+ ENDIF
+
+ END SUBROUTINE CHESWAPR
+
diff --git a/SRC/chetri2.f b/SRC/chetri2.f
new file mode 100644
index 00000000..f8c55ee9
--- /dev/null
+++ b/SRC/chetri2.f
@@ -0,0 +1,127 @@
+ SUBROUTINE CHETRI2( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
+*
+* -- LAPACK routine (version 3.3.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2010
+*
+* -- Written by Julie Langou of the Univ. of TN --
+*
+* .. Scalar Arguments ..
+ CHARACTER UPLO
+ INTEGER INFO, LDA, LWORK, N
+* ..
+* .. Array Arguments ..
+ INTEGER IPIV( * )
+ COMPLEX A( LDA, * ), WORK( * )
+* ..
+*
+* Purpose
+* =======
+*
+* CHETRI2 computes the inverse of a complex hermitian indefinite matrix
+* A using the factorization A = U*D*U**T or A = L*D*L**T computed by
+* CHETRF. CHETRI2 set the LEADING DIMENSION of the workspace
+* before calling CHETRI2X that actually compute the inverse.
+*
+* Arguments
+* =========
+*
+* UPLO (input) CHARACTER*1
+* Specifies whether the details of the factorization are stored
+* as an upper or lower triangular matrix.
+* = 'U': Upper triangular, form is A = U*D*U**T;
+* = 'L': Lower triangular, form is A = L*D*L**T.
+*
+* N (input) INTEGER
+* The order of the matrix A. N >= 0.
+*
+* A (input/output) COMPLEX array, dimension (LDA,N)
+* On entry, the NB diagonal matrix D and the multipliers
+* used to obtain the factor U or L as computed by CHETRF.
+*
+* On exit, if INFO = 0, the (symmetric) inverse of the original
+* matrix. If UPLO = 'U', the upper triangular part of the
+* inverse is formed and the part of A below the diagonal is not
+* referenced; if UPLO = 'L' the lower triangular part of the
+* inverse is formed and the part of A above the diagonal is
+* not referenced.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,N).
+*
+* IPIV (input) INTEGER array, dimension (N)
+* Details of the interchanges and the NB structure of D
+* as determined by CHETRF.
+*
+* WORK (workspace) COMPLEX array, dimension (N+NB+1)*(NB+3)
+*
+* LWORK (input) INTEGER
+* The dimension of the array WORK.
+* WORK is size >= (N+NB+1)*(NB+3)
+* If LDWORK = -1, then a workspace query is assumed; the routine
+* calculates:
+* - the optimal size of the WORK array, returns
+* this value as the first entry of the WORK array,
+* - and no error message related to LDWORK is issued by XERBLA.
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value
+* > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
+* inverse could not be computed.
+*
+* =====================================================================
+*
+* .. Local Scalars ..
+ LOGICAL UPPER, LQUERY
+ INTEGER MINSIZE, NBMAX
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER ILAENV
+ EXTERNAL LSAME, ILAENV
+* ..
+* .. External Subroutines ..
+ EXTERNAL CHETRI2X
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ INFO = 0
+ UPPER = LSAME( UPLO, 'U' )
+ LQUERY = ( LWORK.EQ.-1 )
+* Get blocksize
+ NBMAX = ILAENV( 1, 'CHETRF', UPLO, N, -1, -1, -1 )
+ MINSIZE = (N+NBMAX+1)*(NBMAX+3)
+*
+ IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+ INFO = -4
+ ELSE IF (LWORK .LT. MINSIZE .AND. .NOT.LQUERY ) THEN
+ INFO = -7
+ END IF
+*
+* Quick return if possible
+*
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'CHETRI2', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ WORK(1)=(N+NBMAX+1)*(NBMAX+3)
+ RETURN
+ END IF
+ IF( N.EQ.0 )
+ $ RETURN
+
+ CALL CHETRI2X( UPLO, N, A, LDA, IPIV, WORK, NBMAX, INFO )
+ RETURN
+*
+* End of CHETRI2
+*
+ END
diff --git a/SRC/chetri2x.f b/SRC/chetri2x.f
new file mode 100644
index 00000000..91699060
--- /dev/null
+++ b/SRC/chetri2x.f
@@ -0,0 +1,508 @@
+ SUBROUTINE CHETRI2X( UPLO, N, A, LDA, IPIV, WORK, NB, INFO )
+*
+* -- LAPACK routine (version 3.3.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2010
+*
+* -- Written by Julie Langou of the Univ. of TN --
+*
+* .. Scalar Arguments ..
+ CHARACTER UPLO
+ INTEGER INFO, LDA, N, NB
+* ..
+* .. Array Arguments ..
+ INTEGER IPIV( * )
+ COMPLEX A( LDA, * ), WORK( N+NB+1,* )
+* ..
+*
+* Purpose
+* =======
+*
+* CHETRI2X computes the inverse of a complex Hermitian indefinite matrix
+* A using the factorization A = U*D*U**H or A = L*D*L**H computed by
+* CHETRF.
+*
+* Arguments
+* =========
+*
+* UPLO (input) CHARACTER*1
+* Specifies whether the details of the factorization are stored
+* as an upper or lower triangular matrix.
+* = 'U': Upper triangular, form is A = U*D*U**H;
+* = 'L': Lower triangular, form is A = L*D*L**H.
+*
+* N (input) INTEGER
+* The order of the matrix A. N >= 0.
+*
+* A (input/output) COMPLEX array, dimension (LDA,N)
+* On entry, the NNB diagonal matrix D and the multipliers
+* used to obtain the factor U or L as computed by CHETRF.
+*
+* On exit, if INFO = 0, the (symmetric) inverse of the original
+* matrix. If UPLO = 'U', the upper triangular part of the
+* inverse is formed and the part of A below the diagonal is not
+* referenced; if UPLO = 'L' the lower triangular part of the
+* inverse is formed and the part of A above the diagonal is
+* not referenced.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,N).
+*
+* IPIV (input) INTEGER array, dimension (N)
+* Details of the interchanges and the NNB structure of D
+* as determined by CHETRF.
+*
+* WORK (workspace) COMPLEX array, dimension (N+NNB+1,NNB+3)
+*
+* NB (input) INTEGER
+* Block size
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value
+* > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
+* inverse could not be computed.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ REAL ONE
+ COMPLEX CONE, ZERO
+ PARAMETER ( ONE = 1.0E+0,
+ $ CONE = ( 1.0E+0, 0.0E+0 ),
+ $ ZERO = ( 0.0E+0, 0.0E+0 ) )
+* ..
+* .. Local Scalars ..
+ LOGICAL UPPER
+ INTEGER I, IINFO, IP, K, CUT, NNB
+ INTEGER COUNT
+ INTEGER J, U11, INVD
+
+ COMPLEX AK, AKKP1, AKP1, D, T
+ COMPLEX U01_I_J, U01_IP1_J
+ COMPLEX U11_I_J, U11_IP1_J
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. External Subroutines ..
+ EXTERNAL CSYCONV, XERBLA, CTRTRI
+ EXTERNAL CGEMM, CTRMM, CHESWAPR
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ INFO = 0
+ UPPER = LSAME( UPLO, 'U' )
+ IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+ INFO = -4
+ END IF
+*
+* Quick return if possible
+*
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'CHETRI2X', -INFO )
+ RETURN
+ END IF
+ IF( N.EQ.0 )
+ $ RETURN
+*
+* Convert A
+* Workspace got Non-diag elements of D
+*
+ CALL CSYCONV( UPLO, 'C', N, A, LDA, IPIV, WORK, IINFO )
+*
+* Check that the diagonal matrix D is nonsingular.
+*
+ IF( UPPER ) THEN
+*
+* Upper triangular storage: examine D from bottom to top
+*
+ DO INFO = N, 1, -1
+ IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
+ $ RETURN
+ END DO
+ ELSE
+*
+* Lower triangular storage: examine D from top to bottom.
+*
+ DO INFO = 1, N
+ IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
+ $ RETURN
+ END DO
+ END IF
+ INFO = 0
+*
+* Splitting Workspace
+* U01 is a block (N,NB+1)
+* The first element of U01 is in WORK(1,1)
+* U11 is a block (NB+1,NB+1)
+* The first element of U11 is in WORK(N+1,1)
+ U11 = N
+* INVD is a block (N,2)
+* The first element of INVD is in WORK(1,INVD)
+ INVD = NB+2
+
+ IF( UPPER ) THEN
+*
+* invA = P * inv(U')*inv(D)*inv(U)*P'.
+*
+ CALL CTRTRI( UPLO, 'U', N, A, LDA, INFO )
+*
+* inv(D) and inv(D)*inv(U)
+*
+ K=1
+ DO WHILE ( K .LE. N )
+ IF( IPIV( K ).GT.0 ) THEN
+* 1 x 1 diagonal NNB
+ WORK(K,INVD) = ONE / REAL ( A( K, K ) )
+ WORK(K,INVD+1) = 0
+ K=K+1
+ ELSE
+* 2 x 2 diagonal NNB
+ T = ABS ( WORK(K+1,1) )
+ AK = REAL ( A( K, K ) ) / T
+ AKP1 = REAL ( A( K+1, K+1 ) ) / T
+ AKKP1 = WORK(K+1,1) / T
+ D = T*( AK*AKP1-ONE )
+ WORK(K,INVD) = AKP1 / D
+ WORK(K+1,INVD+1) = AK / D
+ WORK(K,INVD+1) = -AKKP1 / D
+ WORK(K+1,INVD) = CONJG (WORK(K,INVD+1) )
+ K=K+2
+ END IF
+ END DO
+*
+* inv(U') = (inv(U))'
+*
+* inv(U')*inv(D)*inv(U)
+*
+ CUT=N
+ DO WHILE (CUT .GT. 0)
+ NNB=NB
+ IF (CUT .LE. NNB) THEN
+ NNB=CUT
+ ELSE
+ COUNT = 0
+* count negative elements,
+ DO I=CUT+1-NNB,CUT
+ IF (IPIV(I) .LT. 0) COUNT=COUNT+1
+ END DO
+* need a even number for a clear cut
+ IF (MOD(COUNT,2) .EQ. 1) NNB=NNB+1
+ END IF
+
+ CUT=CUT-NNB
+*
+* U01 Block
+*
+ DO I=1,CUT
+ DO J=1,NNB
+ WORK(I,J)=A(I,CUT+J)
+ END DO
+ END DO
+*
+* U11 Block
+*
+ DO I=1,NNB
+ WORK(U11+I,I)=CONE
+ DO J=1,I-1
+ WORK(U11+I,J)=ZERO
+ END DO
+ DO J=I+1,NNB
+ WORK(U11+I,J)=A(CUT+I,CUT+J)
+ END DO
+ END DO
+*
+* invD*U01
+*
+ I=1
+ DO WHILE (I .LE. CUT)
+ IF (IPIV(I) > 0) THEN
+ DO J=1,NNB
+ WORK(I,J)=WORK(I,INVD)*WORK(I,J)
+ END DO
+ I=I+1
+ ELSE
+ DO J=1,NNB
+ U01_I_J = WORK(I,J)
+ U01_IP1_J = WORK(I+1,J)
+ WORK(I,J)=WORK(I,INVD)*U01_I_J+
+ $ WORK(I,INVD+1)*U01_IP1_J
+ WORK(I+1,J)=WORK(I+1,INVD)*U01_I_J+
+ $ WORK(I+1,INVD+1)*U01_IP1_J
+ END DO
+ I=I+2
+ END IF
+ END DO
+*
+* invD1*U11
+*
+ I=1
+ DO WHILE (I .LE. NNB)
+ IF (IPIV(CUT+I) > 0) THEN
+ DO J=I,NNB
+ WORK(U11+I,J)=WORK(CUT+I,INVD)*WORK(U11+I,J)
+ END DO
+ I=I+1
+ ELSE
+ DO J=I,NNB
+ U11_I_J = WORK(U11+I,J)
+ U11_IP1_J = WORK(U11+I+1,J)
+ WORK(U11+I,J)=WORK(CUT+I,INVD)*WORK(U11+I,J) +
+ $ WORK(CUT+I,INVD+1)*WORK(U11+I+1,J)
+ WORK(U11+I+1,J)=WORK(CUT+I+1,INVD)*U11_I_J+
+ $ WORK(CUT+I+1,INVD+1)*U11_IP1_J
+ END DO
+ I=I+2
+ END IF
+ END DO
+*
+* U11T*invD1*U11->U11
+*
+ CALL CTRMM('L','U','C','U',NNB, NNB,
+ $ CONE,A(CUT+1,CUT+1),LDA,WORK(U11+1,1),N+NB+1)
+*
+* U01'invD*U01->A(CUT+I,CUT+J)
+*
+ CALL CGEMM('C','N',NNB,NNB,CUT,CONE,A(1,CUT+1),LDA,
+ $ WORK,N+NB+1, ZERO, A(CUT+1,CUT+1), LDA)
+*
+* U11 = U11T*invD1*U11 + U01'invD*U01
+*
+ DO I=1,NNB
+ DO J=I,NNB
+ A(CUT+I,CUT+J)=A(CUT+I,CUT+J)+WORK(U11+I,J)
+ END DO
+ END DO
+*
+* U01 = U00T*invD0*U01
+*
+ CALL CTRMM('L',UPLO,'C','U',CUT, NNB,
+ $ CONE,A,LDA,WORK,N+NB+1)
+
+*
+* Update U01
+*
+ DO I=1,CUT
+ DO J=1,NNB
+ A(I,CUT+J)=WORK(I,J)
+ END DO
+ END DO
+*
+* Next Block
+*
+ END DO
+*
+* Apply PERMUTATIONS P and P': P * inv(U')*inv(D)*inv(U) *P'
+*
+ I=1
+ DO WHILE ( I .LE. N )
+ IF( IPIV(I) .GT. 0 ) THEN
+ IP=IPIV(I)
+ IF (I .LT. IP) CALL CHESWAPR( UPLO, N, A, I ,IP )
+ IF (I .GT. IP) CALL CHESWAPR( UPLO, N, A, IP ,I )
+ ELSE
+ IP=-IPIV(I)
+ I=I+1
+ IF ( (I-1) .LT. IP)
+ $ CALL CHESWAPR( UPLO, N, A, I-1 ,IP )
+ IF ( (I-1) .GT. IP)
+ $ CALL CHESWAPR( UPLO, N, A, IP ,I-1 )
+ ENDIF
+ I=I+1
+ END DO
+ ELSE
+*
+* LOWER...
+*
+* invA = P * inv(U')*inv(D)*inv(U)*P'.
+*
+ CALL CTRTRI( UPLO, 'U', N, A, LDA, INFO )
+*
+* inv(D) and inv(D)*inv(U)
+*
+ K=N
+ DO WHILE ( K .GE. 1 )
+ IF( IPIV( K ).GT.0 ) THEN
+* 1 x 1 diagonal NNB
+ WORK(K,INVD) = ONE / REAL ( A( K, K ) )
+ WORK(K,INVD+1) = 0
+ K=K-1
+ ELSE
+* 2 x 2 diagonal NNB
+ T = ABS ( WORK(K-1,1) )
+ AK = REAL ( A( K-1, K-1 ) ) / T
+ AKP1 = REAL ( A( K, K ) ) / T
+ AKKP1 = WORK(K-1,1) / T
+ D = T*( AK*AKP1-ONE )
+ WORK(K-1,INVD) = AKP1 / D
+ WORK(K,INVD) = AK / D
+ WORK(K,INVD+1) = -AKKP1 / D
+ WORK(K-1,INVD+1) = CONJG (WORK(K,INVD+1) )
+ K=K-2
+ END IF
+ END DO
+*
+* inv(U') = (inv(U))'
+*
+* inv(U')*inv(D)*inv(U)
+*
+ CUT=0
+ DO WHILE (CUT .LT. N)
+ NNB=NB
+ IF (CUT + NNB .GE. N) THEN
+ NNB=N-CUT
+ ELSE
+ COUNT = 0
+* count negative elements,
+ DO I=CUT+1,CUT+NNB
+ IF (IPIV(I) .LT. 0) COUNT=COUNT+1
+ END DO
+* need a even number for a clear cut
+ IF (MOD(COUNT,2) .EQ. 1) NNB=NNB+1
+ END IF
+* L21 Block
+ DO I=1,N-CUT-NNB
+ DO J=1,NNB
+ WORK(I,J)=A(CUT+NNB+I,CUT+J)
+ END DO
+ END DO
+* L11 Block
+ DO I=1,NNB
+ WORK(U11+I,I)=CONE
+ DO J=I+1,NNB
+ WORK(U11+I,J)=ZERO
+ END DO
+ DO J=1,I-1
+ WORK(U11+I,J)=A(CUT+I,CUT+J)
+ END DO
+ END DO
+*
+* invD*L21
+*
+ I=N-CUT-NNB
+ DO WHILE (I .GE. 1)
+ IF (IPIV(CUT+NNB+I) > 0) THEN
+ DO J=1,NNB
+ WORK(I,J)=WORK(CUT+NNB+I,INVD)*WORK(I,J)
+ END DO
+ I=I-1
+ ELSE
+ DO J=1,NNB
+ U01_I_J = WORK(I,J)
+ U01_IP1_J = WORK(I-1,J)
+ WORK(I,J)=WORK(CUT+NNB+I,INVD)*U01_I_J+
+ $ WORK(CUT+NNB+I,INVD+1)*U01_IP1_J
+ WORK(I-1,J)=WORK(CUT+NNB+I-1,INVD+1)*U01_I_J+
+ $ WORK(CUT+NNB+I-1,INVD)*U01_IP1_J
+ END DO
+ I=I-2
+ END IF
+ END DO
+*
+* invD1*L11
+*
+ I=NNB
+ DO WHILE (I .GE. 1)
+ IF (IPIV(CUT+I) > 0) THEN
+ DO J=1,NNB
+ WORK(U11+I,J)=WORK(CUT+I,INVD)*WORK(U11+I,J)
+ END DO
+ I=I-1
+ ELSE
+ DO J=1,NNB
+ U11_I_J = WORK(U11+I,J)
+ U11_IP1_J = WORK(U11+I-1,J)
+ WORK(U11+I,J)=WORK(CUT+I,INVD)*WORK(U11+I,J) +
+ $ WORK(CUT+I,INVD+1)*U11_IP1_J
+ WORK(U11+I-1,J)=WORK(CUT+I-1,INVD+1)*U11_I_J+
+ $ WORK(CUT+I-1,INVD)*U11_IP1_J
+ END DO
+ I=I-2
+ END IF
+ END DO
+*
+* L11T*invD1*L11->L11
+*
+ CALL CTRMM('L',UPLO,'C','U',NNB, NNB,
+ $ CONE,A(CUT+1,CUT+1),LDA,WORK(U11+1,1),N+NB+1)
+
+ IF ( (CUT+NNB) .LT. N ) THEN
+*
+* L21T*invD2*L21->A(CUT+I,CUT+J)
+*
+ CALL CGEMM('C','N',NNB,NNB,N-NNB-CUT,CONE,A(CUT+NNB+1,CUT+1)
+ $ ,LDA,WORK,N+NB+1, ZERO, A(CUT+1,CUT+1), LDA)
+
+*
+* L11 = L11T*invD1*L11 + U01'invD*U01
+*
+ DO I=1,NNB
+ DO J=1,I
+ A(CUT+I,CUT+J)=A(CUT+I,CUT+J)+WORK(U11+I,J)
+ END DO
+ END DO
+*
+* L01 = L22T*invD2*L21
+*
+ CALL CTRMM('L',UPLO,'C','U', N-NNB-CUT, NNB,
+ $ CONE,A(CUT+NNB+1,CUT+NNB+1),LDA,WORK,N+NB+1)
+
+* Update L21
+ DO I=1,N-CUT-NNB
+ DO J=1,NNB
+ A(CUT+NNB+I,CUT+J)=WORK(I,J)
+ END DO
+ END DO
+ ELSE
+*
+* L11 = L11T*invD1*L11
+*
+ DO I=1,NNB
+ DO J=1,I
+ A(CUT+I,CUT+J)=WORK(U11+I,J)
+ END DO
+ END DO
+ END IF
+*
+* Next Block
+*
+ CUT=CUT+NNB
+ END DO
+*
+* Apply PERMUTATIONS P and P': P * inv(U')*inv(D)*inv(U) *P'
+*
+ I=N
+ DO WHILE ( I .GE. 1 )
+ IF( IPIV(I) .GT. 0 ) THEN
+ IP=IPIV(I)
+ IF (I .LT. IP) CALL CHESWAPR( UPLO, N, A, I ,IP )
+ IF (I .GT. IP) CALL CHESWAPR( UPLO, N, A, IP ,I )
+ ELSE
+ IP=-IPIV(I)
+ IF ( I .LT. IP) CALL CHESWAPR( UPLO, N, A, I ,IP )
+ IF ( I .GT. IP) CALL CHESWAPR( UPLO, N, A, IP ,I )
+ I=I-1
+ ENDIF
+ I=I-1
+ END DO
+ END IF
+*
+ RETURN
+*
+* End of CHETRI2X
+*
+ END
+
diff --git a/SRC/zheswapr.f b/SRC/zheswapr.f
new file mode 100644
index 00000000..0cead401
--- /dev/null
+++ b/SRC/zheswapr.f
@@ -0,0 +1,136 @@
+ SUBROUTINE ZHESWAPR( UPLO, N, A, I1, I2)
+*
+* -- LAPACK auxiliary routine (version 3.3.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2010
+*
+* .. Scalar Arguments ..
+ CHARACTER UPLO
+ INTEGER I1, I2, N
+* ..
+* .. Array Arguments ..
+ COMPLEX*16 A(N,N)
+*
+* Purpose
+* =======
+*
+* ZHESWAPR applies an elementary permutation on the rows and the columns of
+* a hermitian matrix.
+*
+* Arguments
+* =========
+*
+* UPLO (input) CHARACTER*1
+* Specifies whether the details of the factorization are stored
+* as an upper or lower triangular matrix.
+* = 'U': Upper triangular, form is A = U*D*U**T;
+* = 'L': Lower triangular, form is A = L*D*L**T.
+*
+* N (input) INTEGER
+* The order of the matrix A. N >= 0.
+*
+* A (input/output) COMPLEX*16 array, dimension (LDA,N)
+* On entry, the NB diagonal matrix D and the multipliers
+* used to obtain the factor U or L as computed by CSYTRF.
+*
+* On exit, if INFO = 0, the (symmetric) inverse of the original
+* matrix. If UPLO = 'U', the upper triangular part of the
+* inverse is formed and the part of A below the diagonal is not
+* referenced; if UPLO = 'L' the lower triangular part of the
+* inverse is formed and the part of A above the diagonal is
+* not referenced.
+*
+* I1 (input) INTEGER
+* Index of the first row to swap
+*
+* I2 (input) INTEGER
+* Index of the second row to swap
+*
+* =====================================================================
+*
+* ..
+* .. Local Scalars ..
+ LOGICAL UPPER
+ INTEGER I
+ COMPLEX*16 TMP
+*
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. External Subroutines ..
+ EXTERNAL ZSWAP
+* ..
+* .. Executable Statements ..
+*
+ UPPER = LSAME( UPLO, 'U' )
+ IF (UPPER) THEN
+*
+* UPPER
+* first swap
+* - swap column I1 and I2 from I1 to I1-1
+ CALL ZSWAP( I1-1, A(1,I1), 1, A(1,I2), 1 )
+*
+* second swap :
+* - swap A(I1,I1) and A(I2,I2)
+* - swap row I1 from I1+1 to I2-1 with col I2 from I1+1 to I2-1
+* - swap A(I2,I1) and A(I1,I2)
+
+ TMP=A(I1,I1)
+ A(I1,I1)=A(I2,I2)
+ A(I2,I2)=TMP
+*
+ DO I=1,I2-I1-1
+ TMP=A(I1,I1+I)
+ A(I1,I1+I)=DCONJG(A(I1+I,I2))
+ A(I1+I,I2)=DCONJG(TMP)
+ END DO
+*
+ A(I1,I2)=DCONJG(A(I1,I2))
+
+*
+* third swap
+* - swap row I1 and I2 from I2+1 to N
+ DO I=I2+1,N
+ TMP=A(I1,I)
+ A(I1,I)=A(I2,I)
+ A(I2,I)=TMP
+ END DO
+*
+ ELSE
+*
+* LOWER
+* first swap
+* - swap row I1 and I2 from 1 to I1-1
+ CALL ZSWAP ( I1-1, A(I1,1), N, A(I2,1), N )
+*
+* second swap :
+* - swap A(I1,I1) and A(I2,I2)
+* - swap col I1 from I1+1 to I2-1 with row I2 from I1+1 to I2-1
+* - swap A(I2,I1) and A(I1,I2)
+
+ TMP=A(I1,I1)
+ A(I1,I1)=A(I2,I2)
+ A(I2,I2)=TMP
+*
+ DO I=1,I2-I1-1
+ TMP=A(I1+I,I1)
+ A(I1+I,I1)=DCONJG(A(I2,I1+I))
+ A(I2,I1+I)=DCONJG(TMP)
+ END DO
+*
+ A(I2,I1)=DCONJG(A(I2,I1))
+*
+* third swap
+* - swap col I1 and I2 from I2+1 to N
+ DO I=I2+1,N
+ TMP=A(I,I1)
+ A(I,I1)=A(I,I2)
+ A(I,I2)=TMP
+ END DO
+*
+ ENDIF
+
+ END SUBROUTINE ZHESWAPR
+
diff --git a/SRC/zhetri2.f b/SRC/zhetri2.f
new file mode 100644
index 00000000..7938b898
--- /dev/null
+++ b/SRC/zhetri2.f
@@ -0,0 +1,127 @@
+ SUBROUTINE ZHETRI2( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
+*
+* -- LAPACK routine (version 3.3.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2010
+*
+* -- Written by Julie Langou of the Univ. of TN --
+*
+* .. Scalar Arguments ..
+ CHARACTER UPLO
+ INTEGER INFO, LDA, LWORK, N
+* ..
+* .. Array Arguments ..
+ INTEGER IPIV( * )
+ COMPLEX*16 A( LDA, * ), WORK( * )
+* ..
+*
+* Purpose
+* =======
+*
+* ZHETRI2 computes the inverse of a COMPLEX*16 hermitian indefinite matrix
+* A using the factorization A = U*D*U**T or A = L*D*L**T computed by
+* ZHETRF. ZHETRI2 set the LEADING DIMENSION of the workspace
+* before calling ZHETRI2X that actually compute the inverse.
+*
+* Arguments
+* =========
+*
+* UPLO (input) CHARACTER*1
+* Specifies whether the details of the factorization are stored
+* as an upper or lower triangular matrix.
+* = 'U': Upper triangular, form is A = U*D*U**T;
+* = 'L': Lower triangular, form is A = L*D*L**T.
+*
+* N (input) INTEGER
+* The order of the matrix A. N >= 0.
+*
+* A (input/output) COMPLEX*16 array, dimension (LDA,N)
+* On entry, the NB diagonal matrix D and the multipliers
+* used to obtain the factor U or L as computed by ZHETRF.
+*
+* On exit, if INFO = 0, the (symmetric) inverse of the original
+* matrix. If UPLO = 'U', the upper triangular part of the
+* inverse is formed and the part of A below the diagonal is not
+* referenced; if UPLO = 'L' the lower triangular part of the
+* inverse is formed and the part of A above the diagonal is
+* not referenced.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,N).
+*
+* IPIV (input) INTEGER array, dimension (N)
+* Details of the interchanges and the NB structure of D
+* as determined by ZHETRF.
+*
+* WORK (workspace) COMPLEX*16 array, dimension (N+NB+1)*(NB+3)
+*
+* LWORK (input) INTEGER
+* The dimension of the array WORK.
+* WORK is size >= (N+NB+1)*(NB+3)
+* If LDWORK = -1, then a workspace query is assumed; the routine
+* calculates:
+* - the optimal size of the WORK array, returns
+* this value as the first entry of the WORK array,
+* - and no error message related to LDWORK is issued by XERBLA.
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value
+* > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
+* inverse could not be computed.
+*
+* =====================================================================
+*
+* .. Local Scalars ..
+ LOGICAL UPPER, LQUERY
+ INTEGER MINSIZE, NBMAX
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER ILAENV
+ EXTERNAL LSAME, ILAENV
+* ..
+* .. External Subroutines ..
+ EXTERNAL ZHETRI2X
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ INFO = 0
+ UPPER = LSAME( UPLO, 'U' )
+ LQUERY = ( LWORK.EQ.-1 )
+* Get blocksize
+ NBMAX = ILAENV( 1, 'ZHETRF', UPLO, N, -1, -1, -1 )
+ MINSIZE = (N+NBMAX+1)*(NBMAX+3)
+*
+ IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+ INFO = -4
+ ELSE IF (LWORK .LT. MINSIZE .AND. .NOT.LQUERY ) THEN
+ INFO = -7
+ END IF
+*
+* Quick return if possible
+*
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZHETRI2', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ WORK(1)=(N+NBMAX+1)*(NBMAX+3)
+ RETURN
+ END IF
+ IF( N.EQ.0 )
+ $ RETURN
+
+ CALL ZHETRI2X( UPLO, N, A, LDA, IPIV, WORK, NBMAX, INFO )
+ RETURN
+*
+* End of ZHETRI2
+*
+ END
diff --git a/SRC/zhetri2x.f b/SRC/zhetri2x.f
new file mode 100644
index 00000000..0d3f489e
--- /dev/null
+++ b/SRC/zhetri2x.f
@@ -0,0 +1,508 @@
+ SUBROUTINE ZHETRI2X( UPLO, N, A, LDA, IPIV, WORK, NB, INFO )
+*
+* -- LAPACK routine (version 3.3.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2010
+*
+* -- Written by Julie Langou of the Univ. of TN --
+*
+* .. Scalar Arguments ..
+ CHARACTER UPLO
+ INTEGER INFO, LDA, N, NB
+* ..
+* .. Array Arguments ..
+ INTEGER IPIV( * )
+ COMPLEX*16 A( LDA, * ), WORK( N+NB+1,* )
+* ..
+*
+* Purpose
+* =======
+*
+* ZHETRI2X computes the inverse of a COMPLEX*16 Hermitian indefinite matrix
+* A using the factorization A = U*D*U**H or A = L*D*L**H computed by
+* ZHETRF.
+*
+* Arguments
+* =========
+*
+* UPLO (input) CHARACTER*1
+* Specifies whether the details of the factorization are stored
+* as an upper or lower triangular matrix.
+* = 'U': Upper triangular, form is A = U*D*U**H;
+* = 'L': Lower triangular, form is A = L*D*L**H.
+*
+* N (input) INTEGER
+* The order of the matrix A. N >= 0.
+*
+* A (input/output) COMPLEX*16 array, dimension (LDA,N)
+* On entry, the NNB diagonal matrix D and the multipliers
+* used to obtain the factor U or L as computed by ZHETRF.
+*
+* On exit, if INFO = 0, the (symmetric) inverse of the original
+* matrix. If UPLO = 'U', the upper triangular part of the
+* inverse is formed and the part of A below the diagonal is not
+* referenced; if UPLO = 'L' the lower triangular part of the
+* inverse is formed and the part of A above the diagonal is
+* not referenced.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,N).
+*
+* IPIV (input) INTEGER array, dimension (N)
+* Details of the interchanges and the NNB structure of D
+* as determined by ZHETRF.
+*
+* WORK (workspace) COMPLEX*16 array, dimension (N+NNB+1,NNB+3)
+*
+* NB (input) INTEGER
+* Block size
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value
+* > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
+* inverse could not be computed.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ REAL ONE
+ COMPLEX*16 CONE, ZERO
+ PARAMETER ( ONE = 1.0D+0,
+ $ CONE = ( 1.0D+0, 0.0D+0 ),
+ $ ZERO = ( 0.0D+0, 0.0D+0 ) )
+* ..
+* .. Local Scalars ..
+ LOGICAL UPPER
+ INTEGER I, IINFO, IP, K, CUT, NNB
+ INTEGER COUNT
+ INTEGER J, U11, INVD
+
+ COMPLEX*16 AK, AKKP1, AKP1, D, T
+ COMPLEX*16 U01_I_J, U01_IP1_J
+ COMPLEX*16 U11_I_J, U11_IP1_J
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. External Subroutines ..
+ EXTERNAL ZSYCONV, XERBLA, ZTRTRI
+ EXTERNAL ZGEMM, ZTRMM, ZHESWAPR
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ INFO = 0
+ UPPER = LSAME( UPLO, 'U' )
+ IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+ INFO = -4
+ END IF
+*
+* Quick return if possible
+*
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZHETRI2X', -INFO )
+ RETURN
+ END IF
+ IF( N.EQ.0 )
+ $ RETURN
+*
+* Convert A
+* Workspace got Non-diag elements of D
+*
+ CALL ZSYCONV( UPLO, 'C', N, A, LDA, IPIV, WORK, IINFO )
+*
+* Check that the diagonal matrix D is nonsingular.
+*
+ IF( UPPER ) THEN
+*
+* Upper triangular storage: examine D from bottom to top
+*
+ DO INFO = N, 1, -1
+ IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
+ $ RETURN
+ END DO
+ ELSE
+*
+* Lower triangular storage: examine D from top to bottom.
+*
+ DO INFO = 1, N
+ IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
+ $ RETURN
+ END DO
+ END IF
+ INFO = 0
+*
+* Splitting Workspace
+* U01 is a block (N,NB+1)
+* The first element of U01 is in WORK(1,1)
+* U11 is a block (NB+1,NB+1)
+* The first element of U11 is in WORK(N+1,1)
+ U11 = N
+* INVD is a block (N,2)
+* The first element of INVD is in WORK(1,INVD)
+ INVD = NB+2
+
+ IF( UPPER ) THEN
+*
+* invA = P * inv(U')*inv(D)*inv(U)*P'.
+*
+ CALL ZTRTRI( UPLO, 'U', N, A, LDA, INFO )
+*
+* inv(D) and inv(D)*inv(U)
+*
+ K=1
+ DO WHILE ( K .LE. N )
+ IF( IPIV( K ).GT.0 ) THEN
+* 1 x 1 diagonal NNB
+ WORK(K,INVD) = ONE / REAL ( A( K, K ) )
+ WORK(K,INVD+1) = 0
+ K=K+1
+ ELSE
+* 2 x 2 diagonal NNB
+ T = ABS ( WORK(K+1,1) )
+ AK = REAL ( A( K, K ) ) / T
+ AKP1 = REAL ( A( K+1, K+1 ) ) / T
+ AKKP1 = WORK(K+1,1) / T
+ D = T*( AK*AKP1-ONE )
+ WORK(K,INVD) = AKP1 / D
+ WORK(K+1,INVD+1) = AK / D
+ WORK(K,INVD+1) = -AKKP1 / D
+ WORK(K+1,INVD) = DCONJG (WORK(K,INVD+1) )
+ K=K+2
+ END IF
+ END DO
+*
+* inv(U') = (inv(U))'
+*
+* inv(U')*inv(D)*inv(U)
+*
+ CUT=N
+ DO WHILE (CUT .GT. 0)
+ NNB=NB
+ IF (CUT .LE. NNB) THEN
+ NNB=CUT
+ ELSE
+ COUNT = 0
+* count negative elements,
+ DO I=CUT+1-NNB,CUT
+ IF (IPIV(I) .LT. 0) COUNT=COUNT+1
+ END DO
+* need a even number for a clear cut
+ IF (MOD(COUNT,2) .EQ. 1) NNB=NNB+1
+ END IF
+
+ CUT=CUT-NNB
+*
+* U01 Block
+*
+ DO I=1,CUT
+ DO J=1,NNB
+ WORK(I,J)=A(I,CUT+J)
+ END DO
+ END DO
+*
+* U11 Block
+*
+ DO I=1,NNB
+ WORK(U11+I,I)=CONE
+ DO J=1,I-1
+ WORK(U11+I,J)=ZERO
+ END DO
+ DO J=I+1,NNB
+ WORK(U11+I,J)=A(CUT+I,CUT+J)
+ END DO
+ END DO
+*
+* invD*U01
+*
+ I=1
+ DO WHILE (I .LE. CUT)
+ IF (IPIV(I) > 0) THEN
+ DO J=1,NNB
+ WORK(I,J)=WORK(I,INVD)*WORK(I,J)
+ END DO
+ I=I+1
+ ELSE
+ DO J=1,NNB
+ U01_I_J = WORK(I,J)
+ U01_IP1_J = WORK(I+1,J)
+ WORK(I,J)=WORK(I,INVD)*U01_I_J+
+ $ WORK(I,INVD+1)*U01_IP1_J
+ WORK(I+1,J)=WORK(I+1,INVD)*U01_I_J+
+ $ WORK(I+1,INVD+1)*U01_IP1_J
+ END DO
+ I=I+2
+ END IF
+ END DO
+*
+* invD1*U11
+*
+ I=1
+ DO WHILE (I .LE. NNB)
+ IF (IPIV(CUT+I) > 0) THEN
+ DO J=I,NNB
+ WORK(U11+I,J)=WORK(CUT+I,INVD)*WORK(U11+I,J)
+ END DO
+ I=I+1
+ ELSE
+ DO J=I,NNB
+ U11_I_J = WORK(U11+I,J)
+ U11_IP1_J = WORK(U11+I+1,J)
+ WORK(U11+I,J)=WORK(CUT+I,INVD)*WORK(U11+I,J) +
+ $ WORK(CUT+I,INVD+1)*WORK(U11+I+1,J)
+ WORK(U11+I+1,J)=WORK(CUT+I+1,INVD)*U11_I_J+
+ $ WORK(CUT+I+1,INVD+1)*U11_IP1_J
+ END DO
+ I=I+2
+ END IF
+ END DO
+*
+* U11T*invD1*U11->U11
+*
+ CALL ZTRMM('L','U','C','U',NNB, NNB,
+ $ CONE,A(CUT+1,CUT+1),LDA,WORK(U11+1,1),N+NB+1)
+*
+* U01'invD*U01->A(CUT+I,CUT+J)
+*
+ CALL ZGEMM('C','N',NNB,NNB,CUT,CONE,A(1,CUT+1),LDA,
+ $ WORK,N+NB+1, ZERO, A(CUT+1,CUT+1), LDA)
+*
+* U11 = U11T*invD1*U11 + U01'invD*U01
+*
+ DO I=1,NNB
+ DO J=I,NNB
+ A(CUT+I,CUT+J)=A(CUT+I,CUT+J)+WORK(U11+I,J)
+ END DO
+ END DO
+*
+* U01 = U00T*invD0*U01
+*
+ CALL ZTRMM('L',UPLO,'C','U',CUT, NNB,
+ $ CONE,A,LDA,WORK,N+NB+1)
+
+*
+* Update U01
+*
+ DO I=1,CUT
+ DO J=1,NNB
+ A(I,CUT+J)=WORK(I,J)
+ END DO
+ END DO
+*
+* Next Block
+*
+ END DO
+*
+* Apply PERMUTATIONS P and P': P * inv(U')*inv(D)*inv(U) *P'
+*
+ I=1
+ DO WHILE ( I .LE. N )
+ IF( IPIV(I) .GT. 0 ) THEN
+ IP=IPIV(I)
+ IF (I .LT. IP) CALL ZHESWAPR( UPLO, N, A, I ,IP )
+ IF (I .GT. IP) CALL ZHESWAPR( UPLO, N, A, IP ,I )
+ ELSE
+ IP=-IPIV(I)
+ I=I+1
+ IF ( (I-1) .LT. IP)
+ $ CALL ZHESWAPR( UPLO, N, A, I-1 ,IP )
+ IF ( (I-1) .GT. IP)
+ $ CALL ZHESWAPR( UPLO, N, A, IP ,I-1 )
+ ENDIF
+ I=I+1
+ END DO
+ ELSE
+*
+* LOWER...
+*
+* invA = P * inv(U')*inv(D)*inv(U)*P'.
+*
+ CALL ZTRTRI( UPLO, 'U', N, A, LDA, INFO )
+*
+* inv(D) and inv(D)*inv(U)
+*
+ K=N
+ DO WHILE ( K .GE. 1 )
+ IF( IPIV( K ).GT.0 ) THEN
+* 1 x 1 diagonal NNB
+ WORK(K,INVD) = ONE / REAL ( A( K, K ) )
+ WORK(K,INVD+1) = 0
+ K=K-1
+ ELSE
+* 2 x 2 diagonal NNB
+ T = ABS ( WORK(K-1,1) )
+ AK = REAL ( A( K-1, K-1 ) ) / T
+ AKP1 = REAL ( A( K, K ) ) / T
+ AKKP1 = WORK(K-1,1) / T
+ D = T*( AK*AKP1-ONE )
+ WORK(K-1,INVD) = AKP1 / D
+ WORK(K,INVD) = AK / D
+ WORK(K,INVD+1) = -AKKP1 / D
+ WORK(K-1,INVD+1) = DCONJG (WORK(K,INVD+1) )
+ K=K-2
+ END IF
+ END DO
+*
+* inv(U') = (inv(U))'
+*
+* inv(U')*inv(D)*inv(U)
+*
+ CUT=0
+ DO WHILE (CUT .LT. N)
+ NNB=NB
+ IF (CUT + NNB .GE. N) THEN
+ NNB=N-CUT
+ ELSE
+ COUNT = 0
+* count negative elements,
+ DO I=CUT+1,CUT+NNB
+ IF (IPIV(I) .LT. 0) COUNT=COUNT+1
+ END DO
+* need a even number for a clear cut
+ IF (MOD(COUNT,2) .EQ. 1) NNB=NNB+1
+ END IF
+* L21 Block
+ DO I=1,N-CUT-NNB
+ DO J=1,NNB
+ WORK(I,J)=A(CUT+NNB+I,CUT+J)
+ END DO
+ END DO
+* L11 Block
+ DO I=1,NNB
+ WORK(U11+I,I)=CONE
+ DO J=I+1,NNB
+ WORK(U11+I,J)=ZERO
+ END DO
+ DO J=1,I-1
+ WORK(U11+I,J)=A(CUT+I,CUT+J)
+ END DO
+ END DO
+*
+* invD*L21
+*
+ I=N-CUT-NNB
+ DO WHILE (I .GE. 1)
+ IF (IPIV(CUT+NNB+I) > 0) THEN
+ DO J=1,NNB
+ WORK(I,J)=WORK(CUT+NNB+I,INVD)*WORK(I,J)
+ END DO
+ I=I-1
+ ELSE
+ DO J=1,NNB
+ U01_I_J = WORK(I,J)
+ U01_IP1_J = WORK(I-1,J)
+ WORK(I,J)=WORK(CUT+NNB+I,INVD)*U01_I_J+
+ $ WORK(CUT+NNB+I,INVD+1)*U01_IP1_J
+ WORK(I-1,J)=WORK(CUT+NNB+I-1,INVD+1)*U01_I_J+
+ $ WORK(CUT+NNB+I-1,INVD)*U01_IP1_J
+ END DO
+ I=I-2
+ END IF
+ END DO
+*
+* invD1*L11
+*
+ I=NNB
+ DO WHILE (I .GE. 1)
+ IF (IPIV(CUT+I) > 0) THEN
+ DO J=1,NNB
+ WORK(U11+I,J)=WORK(CUT+I,INVD)*WORK(U11+I,J)
+ END DO
+ I=I-1
+ ELSE
+ DO J=1,NNB
+ U11_I_J = WORK(U11+I,J)
+ U11_IP1_J = WORK(U11+I-1,J)
+ WORK(U11+I,J)=WORK(CUT+I,INVD)*WORK(U11+I,J) +
+ $ WORK(CUT+I,INVD+1)*U11_IP1_J
+ WORK(U11+I-1,J)=WORK(CUT+I-1,INVD+1)*U11_I_J+
+ $ WORK(CUT+I-1,INVD)*U11_IP1_J
+ END DO
+ I=I-2
+ END IF
+ END DO
+*
+* L11T*invD1*L11->L11
+*
+ CALL ZTRMM('L',UPLO,'C','U',NNB, NNB,
+ $ CONE,A(CUT+1,CUT+1),LDA,WORK(U11+1,1),N+NB+1)
+
+ IF ( (CUT+NNB) .LT. N ) THEN
+*
+* L21T*invD2*L21->A(CUT+I,CUT+J)
+*
+ CALL ZGEMM('C','N',NNB,NNB,N-NNB-CUT,CONE,A(CUT+NNB+1,CUT+1)
+ $ ,LDA,WORK,N+NB+1, ZERO, A(CUT+1,CUT+1), LDA)
+
+*
+* L11 = L11T*invD1*L11 + U01'invD*U01
+*
+ DO I=1,NNB
+ DO J=1,I
+ A(CUT+I,CUT+J)=A(CUT+I,CUT+J)+WORK(U11+I,J)
+ END DO
+ END DO
+*
+* L01 = L22T*invD2*L21
+*
+ CALL ZTRMM('L',UPLO,'C','U', N-NNB-CUT, NNB,
+ $ CONE,A(CUT+NNB+1,CUT+NNB+1),LDA,WORK,N+NB+1)
+
+* Update L21
+ DO I=1,N-CUT-NNB
+ DO J=1,NNB
+ A(CUT+NNB+I,CUT+J)=WORK(I,J)
+ END DO
+ END DO
+ ELSE
+*
+* L11 = L11T*invD1*L11
+*
+ DO I=1,NNB
+ DO J=1,I
+ A(CUT+I,CUT+J)=WORK(U11+I,J)
+ END DO
+ END DO
+ END IF
+*
+* Next Block
+*
+ CUT=CUT+NNB
+ END DO
+*
+* Apply PERMUTATIONS P and P': P * inv(U')*inv(D)*inv(U) *P'
+*
+ I=N
+ DO WHILE ( I .GE. 1 )
+ IF( IPIV(I) .GT. 0 ) THEN
+ IP=IPIV(I)
+ IF (I .LT. IP) CALL ZHESWAPR( UPLO, N, A, I ,IP )
+ IF (I .GT. IP) CALL ZHESWAPR( UPLO, N, A, IP ,I )
+ ELSE
+ IP=-IPIV(I)
+ IF ( I .LT. IP) CALL ZHESWAPR( UPLO, N, A, I ,IP )
+ IF ( I .GT. IP) CALL ZHESWAPR( UPLO, N, A, IP ,I )
+ I=I-1
+ ENDIF
+ I=I-1
+ END DO
+ END IF
+*
+ RETURN
+*
+* End of ZHETRI2X
+*
+ END
+
diff --git a/TESTING/LIN/cchkhe.f b/TESTING/LIN/cchkhe.f
index 1f0b6db5..aff1883d 100644
--- a/TESTING/LIN/cchkhe.f
+++ b/TESTING/LIN/cchkhe.f
@@ -22,7 +22,7 @@
* Purpose
* =======
*
-* CCHKHE tests CHETRF, -TRI, -TRS, -TRS2, -RFS, and -CON.
+* CCHKHE tests CHETRF, -TRI2, -TRS, -TRS2, -RFS, and -CON.
*
* Arguments
* =========
@@ -116,9 +116,9 @@
* ..
* .. External Subroutines ..
EXTERNAL ALAERH, ALAHD, ALASUM, CERRHE, CGET04, CHECON,
- $ CHERFS, CHET01, CHETRF, CHETRI, CHETRS, CLACPY,
- $ CLAIPD, CLARHS, CLATB4, CLATMS, CPOT02, CPOT03,
- $ CPOT05, XLAENV
+ $ CHERFS, CHET01, CHETRF, CHETRI2, CHETRS,
+ $ CLACPY, CLAIPD, CLARHS, CLATB4, CLATMS, CPOT02,
+ $ CPOT03, CPOT05, XLAENV
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
@@ -329,9 +329,10 @@
*
IF( INB.EQ.1 .AND. .NOT.TRFCON ) THEN
CALL CLACPY( UPLO, N, N, AFAC, LDA, AINV, LDA )
- SRNAMT = 'CHETRI'
- CALL CHETRI( UPLO, N, AINV, LDA, IWORK, WORK,
- $ INFO )
+ SRNAMT = 'CHETRI2'
+ LWORK = (N+NB+1)*(NB+3)
+ CALL CHETRI2( UPLO, N, AINV, LDA, IWORK, WORK,
+ $ LWORK, INFO )
*
* Check error code from CHETRI.
*
diff --git a/TESTING/LIN/cdrvhe.f b/TESTING/LIN/cdrvhe.f
index cba64094..a70a526a 100644
--- a/TESTING/LIN/cdrvhe.f
+++ b/TESTING/LIN/cdrvhe.f
@@ -106,7 +106,7 @@
* ..
* .. External Subroutines ..
EXTERNAL ALADHD, ALAERH, ALASVM, CERRVX, CGET04, CHESV,
- $ CHESVX, CHET01, CHETRF, CHETRI, CLACPY, CLAIPD,
+ $ CHESVX, CHET01, CHETRF, CHETRI2, CLACPY, CLAIPD,
$ CLARHS, CLASET, CLATB4, CLATMS, CPOT02, CPOT05,
$ XLAENV
* ..
@@ -300,8 +300,9 @@
* Compute inv(A) and take its norm.
*
CALL CLACPY( UPLO, N, N, AFAC, LDA, AINV, LDA )
- CALL CHETRI( UPLO, N, AINV, LDA, IWORK, WORK,
- $ INFO )
+ LWORK = (N+NB+1)*(NB+3)
+ CALL CHETRI2( UPLO, N, AINV, LDA, IWORK, WORK,
+ $ LWORK, INFO )
AINVNM = CLANHE( '1', UPLO, N, AINV, LDA, RWORK )
*
* Compute the 1-norm condition number of A.
diff --git a/TESTING/LIN/cdrvhex.f b/TESTING/LIN/cdrvhex.f
index bf16a294..56aebba8 100644
--- a/TESTING/LIN/cdrvhex.f
+++ b/TESTING/LIN/cdrvhex.f
@@ -112,7 +112,7 @@
* ..
* .. External Subroutines ..
EXTERNAL ALADHD, ALAERH, ALASVM, CERRVX, CGET04, CHESV,
- $ CHESVX, CHET01, CHETRF, CHETRI, CLACPY, CLAIPD,
+ $ CHESVX, CHET01, CHETRF, CHETRI2, CLACPY, CLAIPD,
$ CLARHS, CLASET, CLATB4, CLATMS, CPOT02, CPOT05,
$ XLAENV, CHESVXX
* ..
@@ -306,8 +306,9 @@
* Compute inv(A) and take its norm.
*
CALL CLACPY( UPLO, N, N, AFAC, LDA, AINV, LDA )
- CALL CHETRI( UPLO, N, AINV, LDA, IWORK, WORK,
- $ INFO )
+ LWORK = (N+NB+1)*(NB+3)
+ CALL CHETRI2( UPLO, N, AINV, LDA, IWORK, WORK,
+ $ LWORK, INFO )
AINVNM = CLANHE( '1', UPLO, N, AINV, LDA, RWORK )
*
* Compute the 1-norm condition number of A.
diff --git a/TESTING/LIN/cerrhe.f b/TESTING/LIN/cerrhe.f
index c58cd36e..a9b616f0 100644
--- a/TESTING/LIN/cerrhe.f
+++ b/TESTING/LIN/cerrhe.f
@@ -48,8 +48,8 @@
* ..
* .. External Subroutines ..
EXTERNAL ALAESM, CHECON, CHERFS, CHETF2, CHETRF, CHETRI,
- $ CHETRS, CHKXER, CHPCON, CHPRFS, CHPTRF, CHPTRI,
- $ CHPTRS
+ $ CHETRI2, CHETRS, CHKXER, CHPCON, CHPRFS, CHPTRF,
+ $ CHPTRI, CHPTRS
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
@@ -130,6 +130,19 @@
CALL CHETRI( 'U', 2, A, 1, IP, W, INFO )
CALL CHKXER( 'CHETRI', INFOT, NOUT, LERR, OK )
*
+* CHETRI2
+*
+ SRNAMT = 'CHETRI2'
+ INFOT = 1
+ CALL CHETRI2( '/', 0, A, 1, IP, W, 1, INFO )
+ CALL CHKXER( 'CHETRI2', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL CHETRI2( 'U', -1, A, 1, IP, W, 1, INFO )
+ CALL CHKXER( 'CHETRI2', INFOT, NOUT, LERR, OK )
+ INFOT = 4
+ CALL CHETRI2( 'U', 2, A, 1, IP, W, 1, INFO )
+ CALL CHKXER( 'CHETRI2', INFOT, NOUT, LERR, OK )
+*
* CHETRS
*
SRNAMT = 'CHETRS'
diff --git a/TESTING/LIN/cerrhex.f b/TESTING/LIN/cerrhex.f
index e6bd10e5..a159abd8 100644
--- a/TESTING/LIN/cerrhex.f
+++ b/TESTING/LIN/cerrhex.f
@@ -54,8 +54,8 @@
* ..
* .. External Subroutines ..
EXTERNAL ALAESM, CHECON, CHERFS, CHETF2, CHETRF, CHETRI,
- $ CHETRS, CHKXER, CHPCON, CHPRFS, CHPTRF, CHPTRI,
- $ CHPTRS, CHERFSX
+ $ CHETRI2, CHETRS, CHKXER, CHPCON, CHPRFS, CHPTRF,
+ $ CHPTRI, CHPTRS, CHERFSX
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
@@ -137,6 +137,19 @@
CALL CHETRI( 'U', 2, A, 1, IP, W, INFO )
CALL CHKXER( 'CHETRI', INFOT, NOUT, LERR, OK )
*
+* CHETRI2
+*
+ SRNAMT = 'CHETRI2'
+ INFOT = 1
+ CALL CHETRI2( '/', 0, A, 1, IP, W, 1, INFO )
+ CALL CHKXER( 'CHETRI2', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL CHETRI2( 'U', -1, A, 1, IP, W, 1, INFO )
+ CALL CHKXER( 'CHETRI2', INFOT, NOUT, LERR, OK )
+ INFOT = 4
+ CALL CHETRI2( 'U', 2, A, 1, IP, W, 1, INFO )
+ CALL CHKXER( 'CHETRI2', INFOT, NOUT, LERR, OK )
+*
* CHETRS
*
SRNAMT = 'CHETRS'
diff --git a/TESTING/LIN/zchkhe.f b/TESTING/LIN/zchkhe.f
index 1d04bbd4..9dd87c70 100644
--- a/TESTING/LIN/zchkhe.f
+++ b/TESTING/LIN/zchkhe.f
@@ -22,7 +22,7 @@
* Purpose
* =======
*
-* ZCHKHE tests ZHETRF, -TRI, -TRS, -TRS2, -RFS, and -CON.
+* ZCHKHE tests ZHETRF, -TRI2, -TRS, -TRS2, -RFS, and -CON.
*
* Arguments
* =========
@@ -116,7 +116,7 @@
* ..
* .. External Subroutines ..
EXTERNAL ALAERH, ALAHD, ALASUM, XLAENV, ZERRHE, ZGET04,
- $ ZHECON, ZHERFS, ZHET01, ZHETRF, ZHETRI, ZHETRS,
+ $ ZHECON, ZHERFS, ZHET01, ZHETRF, ZHETRI2, ZHETRS,
$ ZLACPY, ZLAIPD, ZLARHS, ZLATB4, ZLATMS, ZPOT02,
$ ZPOT03, ZPOT05
* ..
@@ -329,9 +329,10 @@
*
IF( INB.EQ.1 .AND. .NOT.TRFCON ) THEN
CALL ZLACPY( UPLO, N, N, AFAC, LDA, AINV, LDA )
- SRNAMT = 'ZHETRI'
- CALL ZHETRI( UPLO, N, AINV, LDA, IWORK, WORK,
- $ INFO )
+ SRNAMT = 'ZHETRI2'
+ LWORK = (N+NB+1)*(NB+3)
+ CALL ZHETRI2( UPLO, N, AINV, LDA, IWORK, WORK,
+ $ LWORK, INFO )
*
* Check error code from ZHETRI.
*
diff --git a/TESTING/LIN/zdrvhe.f b/TESTING/LIN/zdrvhe.f
index fdf70f6d..bf428507 100644
--- a/TESTING/LIN/zdrvhe.f
+++ b/TESTING/LIN/zdrvhe.f
@@ -106,7 +106,7 @@
* ..
* .. External Subroutines ..
EXTERNAL ALADHD, ALAERH, ALASVM, XLAENV, ZERRVX, ZGET04,
- $ ZHESV, ZHESVX, ZHET01, ZHETRF, ZHETRI, ZLACPY,
+ $ ZHESV, ZHESVX, ZHET01, ZHETRF, ZHETRI2, ZLACPY,
$ ZLAIPD, ZLARHS, ZLASET, ZLATB4, ZLATMS, ZPOT02,
$ ZPOT05
* ..
@@ -300,8 +300,9 @@
* Compute inv(A) and take its norm.
*
CALL ZLACPY( UPLO, N, N, AFAC, LDA, AINV, LDA )
- CALL ZHETRI( UPLO, N, AINV, LDA, IWORK, WORK,
- $ INFO )
+ LWORK = (N+NB+1)*(NB+3)
+ CALL ZHETRI2( UPLO, N, AINV, LDA, IWORK, WORK,
+ $ LWORK, INFO )
AINVNM = ZLANHE( '1', UPLO, N, AINV, LDA, RWORK )
*
* Compute the 1-norm condition number of A.
diff --git a/TESTING/LIN/zdrvhex.f b/TESTING/LIN/zdrvhex.f
index d0461376..4ad4738f 100644
--- a/TESTING/LIN/zdrvhex.f
+++ b/TESTING/LIN/zdrvhex.f
@@ -112,7 +112,7 @@
* ..
* .. External Subroutines ..
EXTERNAL ALADHD, ALAERH, ALASVM, XLAENV, ZERRVX, ZGET04,
- $ ZHESV, ZHESVX, ZHET01, ZHETRF, ZHETRI, ZLACPY,
+ $ ZHESV, ZHESVX, ZHET01, ZHETRF, ZHETRI2, ZLACPY,
$ ZLAIPD, ZLARHS, ZLASET, ZLATB4, ZLATMS, ZPOT02,
$ ZPOT05, ZHESVXX
* ..
@@ -306,8 +306,9 @@
* Compute inv(A) and take its norm.
*
CALL ZLACPY( UPLO, N, N, AFAC, LDA, AINV, LDA )
- CALL ZHETRI( UPLO, N, AINV, LDA, IWORK, WORK,
- $ INFO )
+ LWORK = (N+NB+1)*(NB+3)
+ CALL ZHETRI2( UPLO, N, AINV, LDA, IWORK, WORK,
+ $ LWORK, INFO )
AINVNM = ZLANHE( '1', UPLO, N, AINV, LDA, RWORK )
*
* Compute the 1-norm condition number of A.
diff --git a/TESTING/LIN/zerrhe.f b/TESTING/LIN/zerrhe.f
index 60980a90..2961640d 100644
--- a/TESTING/LIN/zerrhe.f
+++ b/TESTING/LIN/zerrhe.f
@@ -48,8 +48,8 @@
* ..
* .. External Subroutines ..
EXTERNAL ALAESM, CHKXER, ZHECON, ZHERFS, ZHETF2, ZHETRF,
- $ ZHETRI, ZHETRS, ZHPCON, ZHPRFS, ZHPTRF, ZHPTRI,
- $ ZHPTRS
+ $ ZHETRI, ZHETRI2, ZHETRS, ZHPCON, ZHPRFS, ZHPTRF,
+ $ ZHPTRI, ZHPTRS
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
@@ -132,6 +132,19 @@
CALL ZHETRI( 'U', 2, A, 1, IP, W, INFO )
CALL CHKXER( 'ZHETRI', INFOT, NOUT, LERR, OK )
*
+* ZHETRI2
+*
+ SRNAMT = 'ZHETRI2'
+ INFOT = 1
+ CALL ZHETRI2( '/', 0, A, 1, IP, W, 1, INFO )
+ CALL CHKXER( 'ZHETRI2', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL ZHETRI2( 'U', -1, A, 1, IP, W, 1, INFO )
+ CALL CHKXER( 'ZHETRI2', INFOT, NOUT, LERR, OK )
+ INFOT = 4
+ CALL ZHETRI2( 'U', 2, A, 1, IP, W, 1, INFO )
+ CALL CHKXER( 'ZHETRI2', INFOT, NOUT, LERR, OK )
+*
* ZHETRS
*
SRNAMT = 'ZHETRS'
diff --git a/TESTING/LIN/zerrhex.f b/TESTING/LIN/zerrhex.f
index 0777423d..674295ec 100644
--- a/TESTING/LIN/zerrhex.f
+++ b/TESTING/LIN/zerrhex.f
@@ -54,8 +54,8 @@
* ..
* .. External Subroutines ..
EXTERNAL ALAESM, CHKXER, ZHECON, ZHERFS, ZHETF2, ZHETRF,
- $ ZHETRI, ZHETRS, ZHPCON, ZHPRFS, ZHPTRF, ZHPTRI,
- $ ZHPTRS, ZHERFSX
+ $ ZHETRI, ZHETRI2, ZHETRS, ZHPCON, ZHPRFS, ZHPTRF,
+ $ ZHPTRI, ZHPTRS, ZHERFSX
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
@@ -139,6 +139,19 @@
CALL ZHETRI( 'U', 2, A, 1, IP, W, INFO )
CALL CHKXER( 'ZHETRI', INFOT, NOUT, LERR, OK )
*
+* ZHETRI2
+*
+ SRNAMT = 'ZHETRI2'
+ INFOT = 1
+ CALL ZHETRI2( '/', 0, A, 1, IP, W, 1, INFO )
+ CALL CHKXER( 'ZHETRI2', INFOT, NOUT, LERR, OK )
+ INFOT = 2
+ CALL ZHETRI2( 'U', -1, A, 1, IP, W, 1, INFO )
+ CALL CHKXER( 'ZHETRI2', INFOT, NOUT, LERR, OK )
+ INFOT = 4
+ CALL ZHETRI2( 'U', 2, A, 1, IP, W, 1, INFO )
+ CALL CHKXER( 'ZHETRI2', INFOT, NOUT, LERR, OK )
+*
* ZHETRS
*
SRNAMT = 'ZHETRS'