summaryrefslogtreecommitdiff
path: root/isl_coalesce.c
blob: 6f9c82e246fcc1c4d0144d8326689d9935f8e108 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
#include "isl_map_private.h"
#include "isl_seq.h"
#include "isl_tab.h"

#define STATUS_ERROR		-1
#define STATUS_REDUNDANT	 1
#define STATUS_VALID	 	 2
#define STATUS_SEPARATE	 	 3
#define STATUS_CUT	 	 4
#define STATUS_ADJ_EQ	 	 5
#define STATUS_ADJ_INEQ	 	 6

static int status_in(isl_int *ineq, struct isl_tab *tab)
{
	enum isl_ineq_type type = isl_tab_ineq_type(tab, ineq);
	switch (type) {
	case isl_ineq_error:		return STATUS_ERROR;
	case isl_ineq_redundant:	return STATUS_VALID;
	case isl_ineq_separate:		return STATUS_SEPARATE;
	case isl_ineq_cut:		return STATUS_CUT;
	case isl_ineq_adj_eq:		return STATUS_ADJ_EQ;
	case isl_ineq_adj_ineq:		return STATUS_ADJ_INEQ;
	}
}

/* Compute the position of the equalities of basic map "i"
 * with respect to basic map "j".
 * The resulting array has twice as many entries as the number
 * of equalities corresponding to the two inequalties to which
 * each equality corresponds.
 */
static int *eq_status_in(struct isl_map *map, int i, int j,
	struct isl_tab **tabs)
{
	int k, l;
	int *eq = isl_calloc_array(map->ctx, int, 2 * map->p[i]->n_eq);
	unsigned dim;

	dim = isl_basic_map_total_dim(map->p[i]);
	for (k = 0; k < map->p[i]->n_eq; ++k) {
		for (l = 0; l < 2; ++l) {
			isl_seq_neg(map->p[i]->eq[k], map->p[i]->eq[k], 1+dim);
			eq[2 * k + l] = status_in(map->p[i]->eq[k], tabs[j]);
			if (eq[2 * k + l] == STATUS_ERROR)
				goto error;
		}
		if (eq[2 * k] == STATUS_SEPARATE ||
		    eq[2 * k + 1] == STATUS_SEPARATE)
			break;
	}

	return eq;
error:
	free(eq);
	return NULL;
}

/* Compute the position of the inequalities of basic map "i"
 * with respect to basic map "j".
 */
static int *ineq_status_in(struct isl_map *map, int i, int j,
	struct isl_tab **tabs)
{
	int k;
	unsigned n_eq = map->p[i]->n_eq;
	int *ineq = isl_calloc_array(map->ctx, int, map->p[i]->n_ineq);

	for (k = 0; k < map->p[i]->n_ineq; ++k) {
		if (isl_tab_is_redundant(tabs[i], n_eq + k)) {
			ineq[k] = STATUS_REDUNDANT;
			continue;
		}
		ineq[k] = status_in(map->p[i]->ineq[k], tabs[j]);
		if (ineq[k] == STATUS_ERROR)
			goto error;
		if (ineq[k] == STATUS_SEPARATE)
			break;
	}

	return ineq;
error:
	free(ineq);
	return NULL;
}

static int any(int *con, unsigned len, int status)
{
	int i;

	for (i = 0; i < len ; ++i)
		if (con[i] == status)
			return 1;
	return 0;
}

static int count(int *con, unsigned len, int status)
{
	int i;
	int c = 0;

	for (i = 0; i < len ; ++i)
		if (con[i] == status)
			c++;
	return c;
}

static int all(int *con, unsigned len, int status)
{
	int i;

	for (i = 0; i < len ; ++i) {
		if (con[i] == STATUS_REDUNDANT)
			continue;
		if (con[i] != status)
			return 0;
	}
	return 1;
}

static void drop(struct isl_map *map, int i, struct isl_tab **tabs)
{
	isl_basic_map_free(map->p[i]);
	isl_tab_free(tabs[i]);

	if (i != map->n - 1) {
		map->p[i] = map->p[map->n - 1];
		tabs[i] = tabs[map->n - 1];
	}
	tabs[map->n - 1] = NULL;
	map->n--;
}

/* Replace the pair of basic maps i and j but the basic map bounded
 * by the valid constraints in both basic maps.
 */
static int fuse(struct isl_map *map, int i, int j, struct isl_tab **tabs,
	int *ineq_i, int *ineq_j)
{
	int k, l;
	struct isl_basic_map *fused = NULL;
	struct isl_tab *fused_tab = NULL;
	unsigned total = isl_basic_map_total_dim(map->p[i]);

	fused = isl_basic_map_alloc_dim(isl_dim_copy(map->p[i]->dim),
			map->p[i]->n_div,
			map->p[i]->n_eq + map->p[j]->n_eq,
			map->p[i]->n_ineq + map->p[j]->n_ineq);
	if (!fused)
		goto error;

	for (k = 0; k < map->p[i]->n_eq; ++k) {
		int l = isl_basic_map_alloc_equality(fused);
		isl_seq_cpy(fused->eq[l], map->p[i]->eq[k], 1 + total);
	}

	for (k = 0; k < map->p[j]->n_eq; ++k) {
		int l = isl_basic_map_alloc_equality(fused);
		isl_seq_cpy(fused->eq[l], map->p[j]->eq[k], 1 + total);
	}

	for (k = 0; k < map->p[i]->n_ineq; ++k) {
		if (ineq_i[k] != STATUS_VALID)
			continue;
		l = isl_basic_map_alloc_inequality(fused);
		isl_seq_cpy(fused->ineq[l], map->p[i]->ineq[k], 1 + total);
	}

	for (k = 0; k < map->p[j]->n_ineq; ++k) {
		if (ineq_j[k] != STATUS_VALID)
			continue;
		l = isl_basic_map_alloc_inequality(fused);
		isl_seq_cpy(fused->ineq[l], map->p[j]->ineq[k], 1 + total);
	}

	for (k = 0; k < map->p[i]->n_div; ++k) {
		int l = isl_basic_map_alloc_div(fused);
		isl_seq_cpy(fused->div[l], map->p[i]->div[k], 1 + 1 + total);
	}

	fused = isl_basic_map_gauss(fused, NULL);
	ISL_F_SET(fused, ISL_BASIC_MAP_FINAL);
	if (ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_RATIONAL) &&
	    ISL_F_ISSET(map->p[j], ISL_BASIC_MAP_RATIONAL))
		ISL_F_SET(fused, ISL_BASIC_MAP_RATIONAL);

	fused_tab = isl_tab_from_basic_map(fused);
	fused_tab = isl_tab_detect_redundant(fused_tab);
	if (!fused_tab)
		goto error;

	isl_basic_map_free(map->p[i]);
	map->p[i] = fused;
	isl_tab_free(tabs[i]);
	tabs[i] = fused_tab;
	drop(map, j, tabs);

	return 1;
error:
	isl_basic_map_free(fused);
	return -1;
}

/* Given a pair of basic maps i and j such that all constraints are either
 * "valid" or "cut", check if the facets corresponding to the "cut"
 * constraints of i lie entirely within basic map j.
 * If so, replace the pair by the basic map consisting of the valid
 * constraints in both basic maps.
 *
 * To see that we are not introducing any extra points, call the
 * two basic maps A and B and the resulting map U and let x
 * be an element of U \setminus ( A \cup B ).
 * Then there is a pair of cut constraints c_1 and c_2 in A and B such that x
 * violates them.  Let X be the intersection of U with the opposites
 * of these constraints.  Then x \in X.
 * The facet corresponding to c_1 contains the corresponding facet of A.
 * This facet is entirely contained in B, so c_2 is valid on the facet.
 * However, since it is also (part of) a facet of X, -c_2 is also valid
 * on the facet.  This means c_2 is saturated on the facet, so c_1 and
 * c_2 must be opposites of each other, but then x could not violate
 * both of them.
 */
static int check_facets(struct isl_map *map, int i, int j,
	struct isl_tab **tabs, int *ineq_i, int *ineq_j)
{
	int k, l;
	struct isl_tab_undo *snap;
	unsigned n_eq = map->p[i]->n_eq;

	snap = isl_tab_snap(tabs[i]);

	for (k = 0; k < map->p[i]->n_ineq; ++k) {
		if (ineq_i[k] != STATUS_CUT)
			continue;
		tabs[i] = isl_tab_select_facet(tabs[i], n_eq + k);
		for (l = 0; l < map->p[j]->n_ineq; ++l) {
			int stat;
			if (ineq_j[l] != STATUS_CUT)
				continue;
			stat = status_in(map->p[j]->ineq[l], tabs[i]);
			if (stat != STATUS_VALID)
				break;
		}
		isl_tab_rollback(tabs[i], snap);
		if (l < map->p[j]->n_ineq)
			break;
	}

	if (k < map->p[i]->n_ineq)
		/* BAD CUT PAIR */
		return 0;
	return fuse(map, i, j, tabs, ineq_i, ineq_j);
}

/* Both basic maps have at least one inequality with and adjacent
 * (but opposite) inequality in the other basic map.
 * Check that there are no cut constraints and that there is only
 * a single pair of adjacent inequalities.
 * If so, we can replace the pair by a single basic map described
 * by all but the pair of adjacent inequalities.
 * Any additional points introduced lie strictly between the two
 * adjacent hyperplanes and can therefore be integral.
 *
 *        ____			  _____
 *       /    ||\		 /     \
 *      /     || \		/       \
 *      \     ||  \	=>	\        \
 *       \    ||  /		 \       /
 *        \___||_/		  \_____/
 *
 * The test for a single pair of adjancent inequalities is important
 * for avoiding the combination of two basic maps like the following
 *
 *       /|
 *      / |
 *     /__|
 *         _____
 *         |   |
 *         |   |
 *         |___|
 */
static int check_adj_ineq(struct isl_map *map, int i, int j,
	struct isl_tab **tabs, int *ineq_i, int *ineq_j)
{
	int changed = 0;

	if (any(ineq_i, map->p[i]->n_ineq, STATUS_CUT) ||
	    any(ineq_j, map->p[j]->n_ineq, STATUS_CUT))
		/* ADJ INEQ CUT */
		;
	else if (count(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) == 1 &&
		 count(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ) == 1)
		changed = fuse(map, i, j, tabs, ineq_i, ineq_j);
	/* else ADJ INEQ TOO MANY */

	return changed;
}

/* Check if basic map "i" contains the basic map represented
 * by the tableau "tab".
 */
static int contains(struct isl_map *map, int i, int *ineq_i,
	struct isl_tab *tab)
{
	int k, l;
	unsigned dim;

	dim = isl_basic_map_total_dim(map->p[i]);
	for (k = 0; k < map->p[i]->n_eq; ++k) {
		for (l = 0; l < 2; ++l) {
			int stat;
			isl_seq_neg(map->p[i]->eq[k], map->p[i]->eq[k], 1+dim);
			stat = status_in(map->p[i]->eq[k], tab);
			if (stat != STATUS_VALID)
				return 0;
		}
	}

	for (k = 0; k < map->p[i]->n_ineq; ++k) {
		int stat;
		if (ineq_i[k] == STATUS_REDUNDANT)
			continue;
		stat = status_in(map->p[i]->ineq[k], tab);
		if (stat != STATUS_VALID)
			return 0;
	}
	return 1;
}

/* At least one of the basic maps has an equality that is adjacent
 * to inequality.  Make sure that only one of the basic maps has
 * such an equality and that the other basic map has exactly one
 * inequality adjacent to an equality.
 * We call the basic map that has the inequality "i" and the basic
 * map that has the equality "j".
 * If "i" has any "cut" inequality, then relaxing the inequality
 * by one would not result in a basic map that contains the other
 * basic map.
 * Otherwise, we relax the constraint, compute the corresponding
 * facet and check whether it is included in the other basic map.
 * If so, we know that relaxing the constraint extend the basic
 * map with exactly the other basic map (we already know that this
 * other basic map is included in the extension, because there
 * were no "cut" inequalities in "i") and we can replace the
 * two basic maps by thie extension.
 *        ____			  _____
 *       /    || 		 /     |
 *      /     ||  		/      |
 *      \     ||   	=>	\      |
 *       \    ||		 \     |
 *        \___||		  \____|
 */
static int check_adj_eq(struct isl_map *map, int i, int j,
	struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
{
	int changed = 0;
	int super;
	int k;
	struct isl_tab_undo *snap, *snap2;
	unsigned n_eq = map->p[i]->n_eq;

	if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ) &&
	    any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ))
		/* ADJ EQ TOO MANY */
		return 0;

	if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ))
		return check_adj_eq(map, j, i, tabs,
					eq_j, ineq_j, eq_i, ineq_i);

	/* j has an equality adjacent to an inequality in i */

	if (any(ineq_i, map->p[i]->n_ineq, STATUS_CUT))
		/* ADJ EQ CUT */
		return 0;
	if (count(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ) != 1 ||
	    count(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_EQ) != 1 ||
	    any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_EQ) ||
	    any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) ||
	    any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ))
		/* ADJ EQ TOO MANY */
		return 0;

	for (k = 0; k < map->p[i]->n_ineq ; ++k)
		if (ineq_i[k] == STATUS_ADJ_EQ)
			break;

	snap = isl_tab_snap(tabs[i]);
	tabs[i] = isl_tab_relax(tabs[i], n_eq + k);
	snap2 = isl_tab_snap(tabs[i]);
	tabs[i] = isl_tab_select_facet(tabs[i], n_eq + k);
	super = contains(map, j, ineq_j, tabs[i]);
	if (super) {
		isl_tab_rollback(tabs[i], snap2);
		map->p[i] = isl_basic_map_cow(map->p[i]);
		if (!map->p[i])
			return -1;
		isl_int_add_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
		ISL_F_SET(map->p[i], ISL_BASIC_MAP_FINAL);
		drop(map, j, tabs);
		changed = 1;
	} else
		isl_tab_rollback(tabs[i], snap);

	return changed;
}

/* Check if the union of the given pair of basic maps
 * can be represented by a single basic map.
 * If so, replace the pair by the single basic map and return 1.
 * Otherwise, return 0;
 *
 * We first check the effect of each constraint of one basic map
 * on the other basic map.
 * The constraint may be
 *	redundant	the constraint is redundant in its own
 *			basic map and should be ignore and removed
 *			in the end
 *	valid		all (integer) points of the other basic map
 *			satisfy the constraint
 *	separate	no (integer) point of the other basic map
 *			satisfies the constraint
 *	cut		some but not all points of the other basic map
 *			satisfy the constraint
 *	adj_eq		the given constraint is adjacent (on the outside)
 *			to an equality of the other basic map
 *	adj_ineq	the given constraint is adjacent (on the outside)
 *			to an inequality of the other basic map
 *
 * We consider four cases in which we can replace the pair by a single
 * basic map.  We ignore all "redundant" constraints.
 *
 *	1. all constraints of one basic map are valid
 *		=> the other basic map is a subset and can be removed
 *
 *	2. all constraints of both basic maps are either "valid" or "cut"
 *	   and the facets corresponding to the "cut" constraints
 *	   of one of the basic maps lies entirely inside the other basic map
 *		=> the pair can be replaced by a basic map consisting
 *		   of the valid constraints in both basic maps
 *
 *	3. there is a single pair of adjacent inequalities
 *	   (all other constraints are "valid")
 *		=> the pair can be replaced by a basic map consisting
 *		   of the valid constraints in both basic maps
 *
 *	4. there is a single adjacent pair of an inequality and an equality,
 *	   the other constraints of the basic map containing the inequality are
 *	   "valid".  Moreover, if the inequality the basic map is relaxed
 *	   and then turned into an equality, then resulting facet lies
 *	   entirely inside the other basic map
 *		=> the pair can be replaced by the basic map containing
 *		   the inequality, with the inequality relaxed.
 *
 * Throughout the computation, we maintain a collection of tableaus
 * corresponding to the basic maps.  When the basic maps are dropped
 * or combined, the tableaus are modified accordingly.
 */
static int coalesce_pair(struct isl_map *map, int i, int j,
	struct isl_tab **tabs)
{
	int changed = 0;
	int *eq_i = NULL;
	int *eq_j = NULL;
	int *ineq_i = NULL;
	int *ineq_j = NULL;

	eq_i = eq_status_in(map, i, j, tabs);
	if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ERROR))
		goto error;
	if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_SEPARATE))
		goto done;

	eq_j = eq_status_in(map, j, i, tabs);
	if (any(eq_j, 2 * map->p[j]->n_eq, STATUS_ERROR))
		goto error;
	if (any(eq_j, 2 * map->p[j]->n_eq, STATUS_SEPARATE))
		goto done;

	ineq_i = ineq_status_in(map, i, j, tabs);
	if (any(ineq_i, map->p[i]->n_ineq, STATUS_ERROR))
		goto error;
	if (any(ineq_i, map->p[i]->n_ineq, STATUS_SEPARATE))
		goto done;

	ineq_j = ineq_status_in(map, j, i, tabs);
	if (any(ineq_j, map->p[j]->n_ineq, STATUS_ERROR))
		goto error;
	if (any(ineq_j, map->p[j]->n_ineq, STATUS_SEPARATE))
		goto done;

	if (all(eq_i, 2 * map->p[i]->n_eq, STATUS_VALID) &&
	    all(ineq_i, map->p[i]->n_ineq, STATUS_VALID)) {
		drop(map, j, tabs);
		changed = 1;
	} else if (all(eq_j, 2 * map->p[j]->n_eq, STATUS_VALID) &&
		   all(ineq_j, map->p[j]->n_ineq, STATUS_VALID)) {
		drop(map, i, tabs);
		changed = 1;
	} else if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT) ||
		   any(eq_j, 2 * map->p[j]->n_eq, STATUS_CUT)) {
		/* BAD CUT */
	} else if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_EQ) ||
		   any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_EQ)) {
		/* ADJ EQ PAIR */
	} else if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ) ||
		   any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ)) {
		changed = check_adj_eq(map, i, j, tabs,
					eq_i, ineq_i, eq_j, ineq_j);
	} else if (any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_EQ) ||
		   any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_EQ)) {
		/* Can't happen */
		/* BAD ADJ INEQ */
	} else if (any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) ||
		   any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ)) {
		changed = check_adj_ineq(map, i, j, tabs, ineq_i, ineq_j);
	} else
		changed = check_facets(map, i, j, tabs, ineq_i, ineq_j);

done:
	free(eq_i);
	free(eq_j);
	free(ineq_i);
	free(ineq_j);
	return changed;
error:
	free(eq_i);
	free(eq_j);
	free(ineq_i);
	free(ineq_j);
	return -1;
}

static struct isl_map *coalesce(struct isl_map *map, struct isl_tab **tabs)
{
	int i, j;

	for (i = 0; i < map->n - 1; ++i)
		for (j = i + 1; j < map->n; ++j) {
			int changed;
			changed = coalesce_pair(map, i, j, tabs);
			if (changed < 0)
				goto error;
			if (changed)
				return coalesce(map, tabs);
		}
	return map;
error:
	isl_map_free(map);
	return NULL;
}

/* For each pair of basic maps in the map, check if the union of the two
 * can be represented by a single basic map.
 * If so, replace the pair by the single basic map and start over.
 */
struct isl_map *isl_map_coalesce(struct isl_map *map)
{
	int i;
	unsigned n;
	struct isl_tab **tabs = NULL;

	if (!map)
		return NULL;

	if (map->n <= 1)
		return map;

	map = isl_map_align_divs(map);

	tabs = isl_calloc_array(map->ctx, struct isl_tab *, map->n);
	if (!tabs)
		goto error;

	n = map->n;
	for (i = 0; i < map->n; ++i) {
		tabs[i] = isl_tab_from_basic_map(map->p[i]);
		if (!tabs[i])
			goto error;
		if (!ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_NO_IMPLICIT))
			tabs[i] = isl_tab_detect_equalities(tabs[i]);
		if (!ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_NO_REDUNDANT))
			tabs[i] = isl_tab_detect_redundant(tabs[i]);
	}
	for (i = map->n - 1; i >= 0; --i)
		if (tabs[i]->empty)
			drop(map, i, tabs);

	map = coalesce(map, tabs);

	if (map)
		for (i = 0; i < map->n; ++i) {
			map->p[i] = isl_basic_map_update_from_tab(map->p[i],
								    tabs[i]);
			map->p[i] = isl_basic_map_finalize(map->p[i]);
			if (!map->p[i])
				goto error;
			ISL_F_SET(map->p[i], ISL_BASIC_MAP_NO_IMPLICIT);
			ISL_F_SET(map->p[i], ISL_BASIC_MAP_NO_REDUNDANT);
		}

	for (i = 0; i < n; ++i)
		isl_tab_free(tabs[i]);

	free(tabs);

	return map;
error:
	if (tabs)
		for (i = 0; i < n; ++i)
			isl_tab_free(tabs[i]);
	free(tabs);
	return NULL;
}

/* For each pair of basic sets in the set, check if the union of the two
 * can be represented by a single basic set.
 * If so, replace the pair by the single basic set and start over.
 */
struct isl_set *isl_set_coalesce(struct isl_set *set)
{
	return (struct isl_set *)isl_map_coalesce((struct isl_map *)set);
}