summaryrefslogtreecommitdiff
path: root/grand.c
blob: 95c95a84b0068aa18e26f08b7a006509048fc259 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
/* GLIB - Library of useful routines for C programming
 * Copyright (C) 1995-1997  Peter Mattis, Spencer Kimball and Josh MacDonald
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 02111-1307, USA.
 */

/* Originally developed and coded by Makoto Matsumoto and Takuji
 * Nishimura.  Please mail <matumoto@math.keio.ac.jp>, if you're using
 * code from this file in your own programs or libraries.
 * Further information on the Mersenne Twister can be found at
 * http://www.math.keio.ac.jp/~matumoto/emt.html
 * This code was adapted to glib by Sebastian Wilhelmi <wilhelmi@ira.uka.de>.
 */

/*
 * Modified by the GLib Team and others 1997-2000.  See the AUTHORS
 * file for a list of people on the GLib Team.  See the ChangeLog
 * files for a list of changes.  These files are distributed with
 * GLib at ftp://ftp.gtk.org/pub/gtk/.  
 */

/* 
 * MT safe
 */

#include <glib.h>
#include <math.h>
#include <stdio.h>

G_LOCK_DEFINE_STATIC (global_random);
static GRand* global_random = NULL;

/* Period parameters */  
#define N 624
#define M 397
#define MATRIX_A 0x9908b0df   /* constant vector a */
#define UPPER_MASK 0x80000000 /* most significant w-r bits */
#define LOWER_MASK 0x7fffffff /* least significant r bits */

/* Tempering parameters */   
#define TEMPERING_MASK_B 0x9d2c5680
#define TEMPERING_MASK_C 0xefc60000
#define TEMPERING_SHIFT_U(y)  (y >> 11)
#define TEMPERING_SHIFT_S(y)  (y << 7)
#define TEMPERING_SHIFT_T(y)  (y << 15)
#define TEMPERING_SHIFT_L(y)  (y >> 18)

struct _GRand
{
  guint32 mt[N]; /* the array for the state vector  */
  guint mti; 
};

GRand*
g_rand_new_with_seed (guint32 seed)
{
  GRand *rand = g_new0 (GRand, 1);
  g_rand_set_seed (rand, seed);
  return rand;
}

GRand* 
g_rand_new (void)
{
  guint32 seed;
  GTimeVal now;
  static gboolean dev_urandom_exists = TRUE;
  
  if (dev_urandom_exists)
    {
      FILE* dev_urandom = fopen("/dev/urandom", "rb");
      if (dev_urandom)
	{
	  if (fread (&seed, sizeof (seed), 1, dev_urandom) != 1)
	    dev_urandom_exists = FALSE;
	  fclose (dev_urandom);
	}	
      else
	dev_urandom_exists = FALSE;
    }
  if (!dev_urandom_exists)
    {  
      g_get_current_time (&now);
      seed = now.tv_sec ^ now.tv_usec;
    }

  return g_rand_new_with_seed (seed);
}

void
g_rand_free (GRand* rand)
{
  g_return_if_fail (rand != NULL);

  g_free (rand);
}

void
g_rand_set_seed (GRand* rand, guint32 seed)
{
  g_return_if_fail (rand != NULL);

  /* setting initial seeds to mt[N] using         */
  /* the generator Line 25 of Table 1 in          */
  /* [KNUTH 1981, The Art of Computer Programming */
  /*    Vol. 2 (2nd Ed.), pp102]                  */
  
  if (seed == 0) /* This would make the PRNG procude only zeros */
    seed = 0x6b842128; /* Just set it to another number */

  rand->mt[0]= seed & 0xffffffff;
  for (rand->mti=1; rand->mti<N; rand->mti++)
    rand->mt[rand->mti] = (69069 * rand->mt[rand->mti-1]) & 0xffffffff;
}

guint32
g_rand_int (GRand* rand)
{
  guint32 y;
  static const guint32 mag01[2]={0x0, MATRIX_A};
  /* mag01[x] = x * MATRIX_A  for x=0,1 */

  g_return_val_if_fail (rand != NULL, 0);

  if (rand->mti >= N) { /* generate N words at one time */
    int kk;
    
    for (kk=0;kk<N-M;kk++) {
      y = (rand->mt[kk]&UPPER_MASK)|(rand->mt[kk+1]&LOWER_MASK);
      rand->mt[kk] = rand->mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1];
    }
    for (;kk<N-1;kk++) {
      y = (rand->mt[kk]&UPPER_MASK)|(rand->mt[kk+1]&LOWER_MASK);
      rand->mt[kk] = rand->mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1];
    }
    y = (rand->mt[N-1]&UPPER_MASK)|(rand->mt[0]&LOWER_MASK);
    rand->mt[N-1] = rand->mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1];
    
    rand->mti = 0;
  }
  
  y = rand->mt[rand->mti++];
  y ^= TEMPERING_SHIFT_U(y);
  y ^= TEMPERING_SHIFT_S(y) & TEMPERING_MASK_B;
  y ^= TEMPERING_SHIFT_T(y) & TEMPERING_MASK_C;
  y ^= TEMPERING_SHIFT_L(y);
  
  return y; 
}

gint32 
g_rand_int_range (GRand* rand, gint32 min, gint32 max)
{
  guint32 dist = max - min;
  guint32 random;

  g_return_val_if_fail (rand != NULL, min);
  g_return_val_if_fail (max > min, min);

  if (dist <= 0x10000L) /* 2^16 */
    {
      /* All tricks doing modulo calculations do not have a good
	 distribution -> We must use this slower method for maximal
	 quality, but this method is only good for (max - min) <= 2^16 */
      
      random = (gint32) g_rand_double_range (rand, 0, dist);
      /* we'd rather use the following, if -lm is allowed later on:
	 random = (gint32) floor (g_rand_double_range (rand, 0, dist));  */
    }
  else
    {
      /* Now it's harder to make it right. We calculate the smallest m,
         such that dist < 2 ^ m, then we calculate a random number in
         [1..2^32-1] and rightshift it by 32 - m. Then we test, if it
         is smaller than dist and if not, get a new number and so
         forth until we get a number smaller than dist. We just return
         this. */
      guint32 border = 0x20000L; /* 2^17 */
      guint right_shift = 15; /* 32 - 17 */

      if (dist >= 0x80000000) /* in the case of dist > 2^31 our loop
				below will be infinite */
	{
	  right_shift = 0;
	}
      else
	{
	  while (dist >= border) 
	    {
	      border <<= 1;
	      right_shift--;
	    }
	}
      do 
	{ 
	  random = g_rand_int (rand) >> right_shift; 
	} while (random >= dist);
    }
  return min + random;
}

/* transform [0..2^32-1] -> [0..1) */
#define G_RAND_DOUBLE_TRANSFORM 2.3283064365386963e-10

gdouble 
g_rand_double (GRand* rand)
{                            
  return g_rand_int (rand) * G_RAND_DOUBLE_TRANSFORM;
}

gdouble 
g_rand_double_range (GRand* rand, gdouble min, gdouble max)
{
  return g_rand_int (rand) * ((max - min) * G_RAND_DOUBLE_TRANSFORM)  + min;
}

guint32
g_random_int (void)
{
  guint32 result;
  G_LOCK (global_random);
  if (!global_random)
    global_random = g_rand_new ();
  
  result = g_rand_int (global_random);
  G_UNLOCK (global_random);
  return result;
}

gint32 
g_random_int_range (gint32 min, gint32 max)
{
  gint32 result;
  G_LOCK (global_random);
  if (!global_random)
    global_random = g_rand_new ();
  
  result = g_rand_int_range (global_random, min, max);
  G_UNLOCK (global_random);
  return result;
}

gdouble 
g_random_double (void)
{
  double result;
  G_LOCK (global_random);
  if (!global_random)
    global_random = g_rand_new ();
  
  result = g_rand_double (global_random);
  G_UNLOCK (global_random);
  return result;
}

gdouble 
g_random_double_range (gdouble min, gdouble max)
{
  double result;
  G_LOCK (global_random);
  if (!global_random)
    global_random = g_rand_new ();
 
  result = g_rand_double_range (global_random, min, max);
  G_UNLOCK (global_random);
  return result;
}

void
g_random_set_seed (guint32 seed)
{
  G_LOCK (global_random);
  if (!global_random)
    global_random = g_rand_new_with_seed (seed);
  else
    g_rand_set_seed (global_random, seed);
  G_UNLOCK (global_random);
}