1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
|
/*
* Copyright 2014 Google Inc. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define FLATBUFFERS_DEBUG_VERIFICATION_FAILURE 1
#include "flatbuffers/flatbuffers.h"
#include "flatbuffers/idl.h"
#include "flatbuffers/util.h"
#include "monster_test_generated.h"
#include "namespace_test/namespace_test1_generated.h"
#include "namespace_test/namespace_test2_generated.h"
#include <random>
using namespace MyGame::Example;
#ifdef __ANDROID__
#include <android/log.h>
#define TEST_OUTPUT_LINE(...) \
__android_log_print(ANDROID_LOG_INFO, "FlatBuffers", __VA_ARGS__)
#define FLATBUFFERS_NO_FILE_TESTS
#else
#define TEST_OUTPUT_LINE(...) \
{ printf(__VA_ARGS__); printf("\n"); }
#endif
int testing_fails = 0;
void TestFail(const char *expval, const char *val, const char *exp,
const char *file, int line) {
TEST_OUTPUT_LINE("TEST FAILED: %s:%d, %s (%s) != %s", file, line,
exp, expval, val);
assert(0);
testing_fails++;
}
void TestEqStr(const char *expval, const char *val, const char *exp,
const char *file, int line) {
if (strcmp(expval, val) != 0) {
TestFail(expval, val, exp, file, line);
}
}
template<typename T, typename U>
void TestEq(T expval, U val, const char *exp, const char *file, int line) {
if (U(expval) != val) {
TestFail(flatbuffers::NumToString(expval).c_str(),
flatbuffers::NumToString(val).c_str(),
exp, file, line);
}
}
#define TEST_EQ(exp, val) TestEq(exp, val, #exp, __FILE__, __LINE__)
#define TEST_NOTNULL(exp) TestEq(exp == NULL, false, #exp, __FILE__, __LINE__)
#define TEST_EQ_STR(exp, val) TestEqStr(exp, val, #exp, __FILE__, __LINE__)
// Include simple random number generator to ensure results will be the
// same cross platform.
// http://en.wikipedia.org/wiki/Park%E2%80%93Miller_random_number_generator
uint32_t lcg_seed = 48271;
uint32_t lcg_rand() {
return lcg_seed = ((uint64_t)lcg_seed * 279470273UL) % 4294967291UL;
}
void lcg_reset() { lcg_seed = 48271; }
// example of how to build up a serialized buffer algorithmically:
flatbuffers::unique_ptr_t CreateFlatBufferTest(std::string &buffer) {
flatbuffers::FlatBufferBuilder builder;
auto vec = Vec3(1, 2, 3, 0, Color_Red, Test(10, 20));
auto name = builder.CreateString("MyMonster");
unsigned char inv_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
auto inventory = builder.CreateVector(inv_data, 10);
// Alternatively, create the vector first, and fill in data later:
// unsigned char *inv_buf = nullptr;
// auto inventory = builder.CreateUninitializedVector<unsigned char>(
// 10, &inv_buf);
// memcpy(inv_buf, inv_data, 10);
Test tests[] = { Test(10, 20), Test(30, 40) };
auto testv = builder.CreateVectorOfStructs(tests, 2);
// create monster with very few fields set:
// (same functionality as CreateMonster below, but sets fields manually)
flatbuffers::Offset<Monster> mlocs[3];
auto fred = builder.CreateString("Fred");
auto barney = builder.CreateString("Barney");
auto wilma = builder.CreateString("Wilma");
MonsterBuilder mb1(builder);
mb1.add_name(fred);
mlocs[0] = mb1.Finish();
MonsterBuilder mb2(builder);
mb2.add_name(barney);
mlocs[1] = mb2.Finish();
MonsterBuilder mb3(builder);
mb3.add_name(wilma);
mlocs[2] = mb3.Finish();
// Create an array of strings. Also test string pooling.
flatbuffers::Offset<flatbuffers::String> strings[4];
strings[0] = builder.CreateSharedString("bob");
strings[1] = builder.CreateSharedString("fred");
strings[2] = builder.CreateSharedString("bob");
strings[3] = builder.CreateSharedString("fred");
auto vecofstrings = builder.CreateVector(strings, 4);
// Create an array of sorted tables, can be used with binary search when read:
auto vecoftables = builder.CreateVectorOfSortedTables(mlocs, 3);
// shortcut for creating monster with all fields set:
auto mloc = CreateMonster(builder, &vec, 150, 80, name, inventory, Color_Blue,
Any_Monster, mlocs[1].Union(), // Store a union.
testv, vecofstrings, vecoftables, 0);
FinishMonsterBuffer(builder, mloc);
#ifdef FLATBUFFERS_TEST_VERBOSE
// print byte data for debugging:
auto p = builder.GetBufferPointer();
for (flatbuffers::uoffset_t i = 0; i < builder.GetSize(); i++)
printf("%d ", p[i]);
#endif
// return the buffer for the caller to use.
auto bufferpointer =
reinterpret_cast<const char *>(builder.GetBufferPointer());
buffer.assign(bufferpointer, bufferpointer + builder.GetSize());
return builder.ReleaseBufferPointer();
}
// example of accessing a buffer loaded in memory:
void AccessFlatBufferTest(const uint8_t *flatbuf, size_t length) {
// First, verify the buffers integrity (optional)
flatbuffers::Verifier verifier(flatbuf, length);
TEST_EQ(VerifyMonsterBuffer(verifier), true);
TEST_EQ(strcmp(MonsterIdentifier(), "MONS"), 0);
TEST_EQ(MonsterBufferHasIdentifier(flatbuf), true);
TEST_EQ(strcmp(MonsterExtension(), "mon"), 0);
// Access the buffer from the root.
auto monster = GetMonster(flatbuf);
TEST_EQ(monster->hp(), 80);
TEST_EQ(monster->mana(), 150); // default
TEST_EQ_STR(monster->name()->c_str(), "MyMonster");
// Can't access the following field, it is deprecated in the schema,
// which means accessors are not generated:
// monster.friendly()
auto pos = monster->pos();
TEST_NOTNULL(pos);
TEST_EQ(pos->z(), 3);
TEST_EQ(pos->test3().a(), 10);
TEST_EQ(pos->test3().b(), 20);
auto inventory = monster->inventory();
TEST_EQ(VectorLength(inventory), 10UL); // Works even if inventory is null.
TEST_NOTNULL(inventory);
unsigned char inv_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
for (auto it = inventory->begin(); it != inventory->end(); ++it)
TEST_EQ(*it, inv_data[it - inventory->begin()]);
TEST_EQ(monster->color(), Color_Blue);
// Example of accessing a union:
TEST_EQ(monster->test_type(), Any_Monster); // First make sure which it is.
auto monster2 = reinterpret_cast<const Monster *>(monster->test());
TEST_NOTNULL(monster2);
TEST_EQ_STR(monster2->name()->c_str(), "Fred");
// Example of accessing a vector of strings:
auto vecofstrings = monster->testarrayofstring();
TEST_EQ(vecofstrings->Length(), 4U);
TEST_EQ_STR(vecofstrings->Get(0)->c_str(), "bob");
TEST_EQ_STR(vecofstrings->Get(1)->c_str(), "fred");
// These should have pointer equality because of string pooling.
TEST_EQ(vecofstrings->Get(0)->c_str(), vecofstrings->Get(2)->c_str());
TEST_EQ(vecofstrings->Get(1)->c_str(), vecofstrings->Get(3)->c_str());
// Example of accessing a vector of tables:
auto vecoftables = monster->testarrayoftables();
TEST_EQ(vecoftables->Length(), 3U);
for (auto it = vecoftables->begin(); it != vecoftables->end(); ++it)
TEST_EQ(strlen(it->name()->c_str()) >= 4, true);
TEST_EQ_STR(vecoftables->Get(0)->name()->c_str(), "Barney");
TEST_EQ_STR(vecoftables->Get(1)->name()->c_str(), "Fred");
TEST_EQ_STR(vecoftables->Get(2)->name()->c_str(), "Wilma");
TEST_NOTNULL(vecoftables->LookupByKey("Barney"));
TEST_NOTNULL(vecoftables->LookupByKey("Fred"));
TEST_NOTNULL(vecoftables->LookupByKey("Wilma"));
// Since Flatbuffers uses explicit mechanisms to override the default
// compiler alignment, double check that the compiler indeed obeys them:
// (Test consists of a short and byte):
TEST_EQ(flatbuffers::AlignOf<Test>(), 2UL);
TEST_EQ(sizeof(Test), 4UL);
auto tests = monster->test4();
TEST_NOTNULL(tests);
auto test_0 = tests->Get(0);
auto test_1 = tests->Get(1);
TEST_EQ(test_0->a(), 10);
TEST_EQ(test_0->b(), 20);
TEST_EQ(test_1->a(), 30);
TEST_EQ(test_1->b(), 40);
for (auto it = tests->begin(); it != tests->end(); ++it) {
TEST_EQ(it->a() == 10 || it->a() == 30, true); // Just testing iterators.
}
// Checking for presence of fields:
TEST_EQ(flatbuffers::IsFieldPresent(monster, Monster::VT_HP), true);
TEST_EQ(flatbuffers::IsFieldPresent(monster, Monster::VT_MANA), false);
}
// Change a FlatBuffer in-place, after it has been constructed.
void MutateFlatBuffersTest(uint8_t *flatbuf, std::size_t length) {
// Get non-const pointer to root.
auto monster = GetMutableMonster(flatbuf);
// Each of these tests mutates, then tests, then set back to the original,
// so we can test that the buffer in the end still passes our original test.
auto hp_ok = monster->mutate_hp(10);
TEST_EQ(hp_ok, true); // Field was present.
TEST_EQ(monster->hp(), 10);
monster->mutate_hp(80);
auto mana_ok = monster->mutate_mana(10);
TEST_EQ(mana_ok, false); // Field was NOT present, because default value.
// Mutate structs.
auto pos = monster->mutable_pos();
auto test3 = pos->mutable_test3(); // Struct inside a struct.
test3.mutate_a(50); // Struct fields never fail.
TEST_EQ(test3.a(), 50);
test3.mutate_a(10);
// Mutate vectors.
auto inventory = monster->mutable_inventory();
inventory->Mutate(9, 100);
TEST_EQ(inventory->Get(9), 100);
inventory->Mutate(9, 9);
// Run the verifier and the regular test to make sure we didn't trample on
// anything.
AccessFlatBufferTest(flatbuf, length);
}
// example of parsing text straight into a buffer, and generating
// text back from it:
void ParseAndGenerateTextTest() {
// load FlatBuffer schema (.fbs) and JSON from disk
std::string schemafile;
std::string jsonfile;
TEST_EQ(flatbuffers::LoadFile(
"tests/monster_test.fbs", false, &schemafile), true);
TEST_EQ(flatbuffers::LoadFile(
"tests/monsterdata_test.golden", false, &jsonfile), true);
// parse schema first, so we can use it to parse the data after
flatbuffers::Parser parser;
const char *include_directories[] = { "tests", nullptr };
TEST_EQ(parser.Parse(schemafile.c_str(), include_directories), true);
TEST_EQ(parser.Parse(jsonfile.c_str(), include_directories), true);
// here, parser.builder_ contains a binary buffer that is the parsed data.
// First, verify it, just in case:
flatbuffers::Verifier verifier(parser.builder_.GetBufferPointer(),
parser.builder_.GetSize());
TEST_EQ(VerifyMonsterBuffer(verifier), true);
// to ensure it is correct, we now generate text back from the binary,
// and compare the two:
std::string jsongen;
GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
if (jsongen != jsonfile) {
printf("%s----------------\n%s", jsongen.c_str(), jsonfile.c_str());
TEST_NOTNULL(NULL);
}
}
void ReflectionTest(uint8_t *flatbuf, size_t length) {
// Load a binary schema.
std::string bfbsfile;
TEST_EQ(flatbuffers::LoadFile(
"tests/monster_test.bfbs", true, &bfbsfile), true);
// Verify it, just in case:
flatbuffers::Verifier verifier(
reinterpret_cast<const uint8_t *>(bfbsfile.c_str()), bfbsfile.length());
TEST_EQ(reflection::VerifySchemaBuffer(verifier), true);
// Make sure the schema is what we expect it to be.
auto &schema = *reflection::GetSchema(bfbsfile.c_str());
auto root_table = schema.root_table();
TEST_EQ_STR(root_table->name()->c_str(), "Monster");
auto fields = root_table->fields();
auto hp_field_ptr = fields->LookupByKey("hp");
TEST_NOTNULL(hp_field_ptr);
auto &hp_field = *hp_field_ptr;
TEST_EQ_STR(hp_field.name()->c_str(), "hp");
TEST_EQ(hp_field.id(), 2);
TEST_EQ(hp_field.type()->base_type(), reflection::Short);
auto friendly_field_ptr = fields->LookupByKey("friendly");
TEST_NOTNULL(friendly_field_ptr);
TEST_NOTNULL(friendly_field_ptr->attributes());
TEST_NOTNULL(friendly_field_ptr->attributes()->LookupByKey("priority"));
// Now use it to dynamically access a buffer.
auto &root = *flatbuffers::GetAnyRoot(flatbuf);
auto hp = flatbuffers::GetFieldI<uint16_t>(root, hp_field);
TEST_EQ(hp, 80);
// Rather than needing to know the type, we can also get the value of
// any field as an int64_t/double/string, regardless of what it actually is.
auto hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field);
TEST_EQ(hp_int64, 80);
auto hp_double = flatbuffers::GetAnyFieldF(root, hp_field);
TEST_EQ(hp_double, 80.0);
auto hp_string = flatbuffers::GetAnyFieldS(root, hp_field, &schema);
TEST_EQ_STR(hp_string.c_str(), "80");
// We can also modify it.
flatbuffers::SetField<uint16_t>(&root, hp_field, 200);
hp = flatbuffers::GetFieldI<uint16_t>(root, hp_field);
TEST_EQ(hp, 200);
// We can also set fields generically:
flatbuffers::SetAnyFieldI(&root, hp_field, 300);
hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field);
TEST_EQ(hp_int64, 300);
flatbuffers::SetAnyFieldF(&root, hp_field, 300.5);
hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field);
TEST_EQ(hp_int64, 300);
flatbuffers::SetAnyFieldS(&root, hp_field, "300");
hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field);
TEST_EQ(hp_int64, 300);
// Reset it, for further tests.
flatbuffers::SetField<uint16_t>(&root, hp_field, 80);
// More advanced functionality: changing the size of items in-line!
// First we put the FlatBuffer inside an std::vector.
std::vector<uint8_t> resizingbuf(flatbuf, flatbuf + length);
// Find the field we want to modify.
auto &name_field = *fields->LookupByKey("name");
// Get the root.
// This time we wrap the result from GetAnyRoot in a smartpointer that
// will keep rroot valid as resizingbuf resizes.
auto rroot = flatbuffers::piv(flatbuffers::GetAnyRoot(resizingbuf.data()),
resizingbuf);
SetString(schema, "totally new string", GetFieldS(**rroot, name_field),
&resizingbuf);
// Here resizingbuf has changed, but rroot is still valid.
TEST_EQ_STR(GetFieldS(**rroot, name_field)->c_str(), "totally new string");
// Now lets extend a vector by 100 elements (10 -> 110).
auto &inventory_field = *fields->LookupByKey("inventory");
auto rinventory = flatbuffers::piv(
flatbuffers::GetFieldV<uint8_t>(**rroot, inventory_field),
resizingbuf);
flatbuffers::ResizeVector<uint8_t>(schema, 110, 50, *rinventory,
&resizingbuf);
// rinventory still valid, so lets read from it.
TEST_EQ(rinventory->Get(10), 50);
// For reflection uses not covered already, there is a more powerful way:
// we can simply generate whatever object we want to add/modify in a
// FlatBuffer of its own, then add that to an existing FlatBuffer:
// As an example, let's add a string to an array of strings.
// First, find our field:
auto &testarrayofstring_field = *fields->LookupByKey("testarrayofstring");
// Find the vector value:
auto rtestarrayofstring = flatbuffers::piv(
flatbuffers::GetFieldV<flatbuffers::Offset<flatbuffers::String>>(
**rroot, testarrayofstring_field),
resizingbuf);
// It's a vector of 2 strings, to which we add one more, initialized to
// offset 0.
flatbuffers::ResizeVector<flatbuffers::Offset<flatbuffers::String>>(
schema, 3, 0, *rtestarrayofstring, &resizingbuf);
// Here we just create a buffer that contans a single string, but this
// could also be any complex set of tables and other values.
flatbuffers::FlatBufferBuilder stringfbb;
stringfbb.Finish(stringfbb.CreateString("hank"));
// Add the contents of it to our existing FlatBuffer.
// We do this last, so the pointer doesn't get invalidated (since it is
// at the end of the buffer):
auto string_ptr = flatbuffers::AddFlatBuffer(resizingbuf,
stringfbb.GetBufferPointer(),
stringfbb.GetSize());
// Finally, set the new value in the vector.
rtestarrayofstring->MutateOffset(2, string_ptr);
TEST_EQ_STR(rtestarrayofstring->Get(0)->c_str(), "bob");
TEST_EQ_STR(rtestarrayofstring->Get(2)->c_str(), "hank");
// Test integrity of all resize operations above.
flatbuffers::Verifier resize_verifier(
reinterpret_cast<const uint8_t *>(resizingbuf.data()),
resizingbuf.size());
TEST_EQ(VerifyMonsterBuffer(resize_verifier), true);
// As an additional test, also set it on the name field.
// Note: unlike the name change above, this just overwrites the offset,
// rather than changing the string in-place.
SetFieldT(*rroot, name_field, string_ptr);
TEST_EQ_STR(GetFieldS(**rroot, name_field)->c_str(), "hank");
// Using reflection, rather than mutating binary FlatBuffers, we can also copy
// tables and other things out of other FlatBuffers into a FlatBufferBuilder,
// either part or whole.
flatbuffers::FlatBufferBuilder fbb;
auto root_offset = flatbuffers::CopyTable(fbb, schema, *root_table,
*flatbuffers::GetAnyRoot(flatbuf),
true);
fbb.Finish(root_offset, MonsterIdentifier());
// Test that it was copied correctly:
AccessFlatBufferTest(fbb.GetBufferPointer(), fbb.GetSize());
}
// Parse a .proto schema, output as .fbs
void ParseProtoTest() {
// load the .proto and the golden file from disk
std::string protofile;
std::string goldenfile;
TEST_EQ(flatbuffers::LoadFile(
"tests/prototest/test.proto", false, &protofile), true);
TEST_EQ(flatbuffers::LoadFile(
"tests/prototest/test.golden", false, &goldenfile), true);
flatbuffers::IDLOptions opts;
opts.include_dependence_headers = false;
opts.proto_mode = true;
// Parse proto.
flatbuffers::Parser parser(opts);
const char *include_directories[] = { "tests/prototest", nullptr };
TEST_EQ(parser.Parse(protofile.c_str(), include_directories), true);
// Generate fbs.
auto fbs = flatbuffers::GenerateFBS(parser, "test");
// Ensure generated file is parsable.
flatbuffers::Parser parser2;
TEST_EQ(parser2.Parse(fbs.c_str(), nullptr), true);
if (fbs != goldenfile) {
printf("%s----------------\n%s", fbs.c_str(), goldenfile.c_str());
TEST_NOTNULL(NULL);
}
}
template<typename T> void CompareTableFieldValue(flatbuffers::Table *table,
flatbuffers::voffset_t voffset,
T val) {
T read = table->GetField(voffset, static_cast<T>(0));
TEST_EQ(read, val);
}
// Low level stress/fuzz test: serialize/deserialize a variety of
// different kinds of data in different combinations
void FuzzTest1() {
// Values we're testing against: chosen to ensure no bits get chopped
// off anywhere, and also be different from eachother.
const uint8_t bool_val = true;
const int8_t char_val = -127; // 0x81
const uint8_t uchar_val = 0xFF;
const int16_t short_val = -32222; // 0x8222;
const uint16_t ushort_val = 0xFEEE;
const int32_t int_val = 0x83333333;
const uint32_t uint_val = 0xFDDDDDDD;
const int64_t long_val = 0x8444444444444444LL;
const uint64_t ulong_val = 0xFCCCCCCCCCCCCCCCULL;
const float float_val = 3.14159f;
const double double_val = 3.14159265359;
const int test_values_max = 11;
const flatbuffers::voffset_t fields_per_object = 4;
const int num_fuzz_objects = 10000; // The higher, the more thorough :)
flatbuffers::FlatBufferBuilder builder;
lcg_reset(); // Keep it deterministic.
flatbuffers::uoffset_t objects[num_fuzz_objects];
// Generate num_fuzz_objects random objects each consisting of
// fields_per_object fields, each of a random type.
for (int i = 0; i < num_fuzz_objects; i++) {
auto start = builder.StartTable();
for (flatbuffers::voffset_t f = 0; f < fields_per_object; f++) {
int choice = lcg_rand() % test_values_max;
auto off = flatbuffers::FieldIndexToOffset(f);
switch (choice) {
case 0: builder.AddElement<uint8_t >(off, bool_val, 0); break;
case 1: builder.AddElement<int8_t >(off, char_val, 0); break;
case 2: builder.AddElement<uint8_t >(off, uchar_val, 0); break;
case 3: builder.AddElement<int16_t >(off, short_val, 0); break;
case 4: builder.AddElement<uint16_t>(off, ushort_val, 0); break;
case 5: builder.AddElement<int32_t >(off, int_val, 0); break;
case 6: builder.AddElement<uint32_t>(off, uint_val, 0); break;
case 7: builder.AddElement<int64_t >(off, long_val, 0); break;
case 8: builder.AddElement<uint64_t>(off, ulong_val, 0); break;
case 9: builder.AddElement<float >(off, float_val, 0); break;
case 10: builder.AddElement<double >(off, double_val, 0); break;
}
}
objects[i] = builder.EndTable(start, fields_per_object);
}
builder.PreAlign<flatbuffers::largest_scalar_t>(0); // Align whole buffer.
lcg_reset(); // Reset.
uint8_t *eob = builder.GetCurrentBufferPointer() + builder.GetSize();
// Test that all objects we generated are readable and return the
// expected values. We generate random objects in the same order
// so this is deterministic.
for (int i = 0; i < num_fuzz_objects; i++) {
auto table = reinterpret_cast<flatbuffers::Table *>(eob - objects[i]);
for (flatbuffers::voffset_t f = 0; f < fields_per_object; f++) {
int choice = lcg_rand() % test_values_max;
flatbuffers::voffset_t off = flatbuffers::FieldIndexToOffset(f);
switch (choice) {
case 0: CompareTableFieldValue(table, off, bool_val ); break;
case 1: CompareTableFieldValue(table, off, char_val ); break;
case 2: CompareTableFieldValue(table, off, uchar_val ); break;
case 3: CompareTableFieldValue(table, off, short_val ); break;
case 4: CompareTableFieldValue(table, off, ushort_val); break;
case 5: CompareTableFieldValue(table, off, int_val ); break;
case 6: CompareTableFieldValue(table, off, uint_val ); break;
case 7: CompareTableFieldValue(table, off, long_val ); break;
case 8: CompareTableFieldValue(table, off, ulong_val ); break;
case 9: CompareTableFieldValue(table, off, float_val ); break;
case 10: CompareTableFieldValue(table, off, double_val); break;
}
}
}
}
// High level stress/fuzz test: generate a big schema and
// matching json data in random combinations, then parse both,
// generate json back from the binary, and compare with the original.
void FuzzTest2() {
lcg_reset(); // Keep it deterministic.
const int num_definitions = 30;
const int num_struct_definitions = 5; // Subset of num_definitions.
const int fields_per_definition = 15;
const int instances_per_definition = 5;
const int deprecation_rate = 10; // 1 in deprecation_rate fields will
// be deprecated.
std::string schema = "namespace test;\n\n";
struct RndDef {
std::string instances[instances_per_definition];
// Since we're generating schema and corresponding data in tandem,
// this convenience function adds strings to both at once.
static void Add(RndDef (&definitions_l)[num_definitions],
std::string &schema_l,
const int instances_per_definition_l,
const char *schema_add, const char *instance_add,
int definition) {
schema_l += schema_add;
for (int i = 0; i < instances_per_definition_l; i++)
definitions_l[definition].instances[i] += instance_add;
}
};
#define AddToSchemaAndInstances(schema_add, instance_add) \
RndDef::Add(definitions, schema, instances_per_definition, \
schema_add, instance_add, definition)
#define Dummy() \
RndDef::Add(definitions, schema, instances_per_definition, \
"byte", "1", definition)
RndDef definitions[num_definitions];
// We are going to generate num_definitions, the first
// num_struct_definitions will be structs, the rest tables. For each
// generate random fields, some of which may be struct/table types
// referring to previously generated structs/tables.
// Simultanenously, we generate instances_per_definition JSON data
// definitions, which will have identical structure to the schema
// being generated. We generate multiple instances such that when creating
// hierarchy, we get some variety by picking one randomly.
for (int definition = 0; definition < num_definitions; definition++) {
std::string definition_name = "D" + flatbuffers::NumToString(definition);
bool is_struct = definition < num_struct_definitions;
AddToSchemaAndInstances(
((is_struct ? "struct " : "table ") + definition_name + " {\n").c_str(),
"{\n");
for (int field = 0; field < fields_per_definition; field++) {
const bool is_last_field = field == fields_per_definition - 1;
// Deprecate 1 in deprecation_rate fields. Only table fields can be
// deprecated.
// Don't deprecate the last field to avoid dangling commas in JSON.
const bool deprecated = !is_struct &&
!is_last_field &&
(lcg_rand() % deprecation_rate == 0);
std::string field_name = "f" + flatbuffers::NumToString(field);
AddToSchemaAndInstances((" " + field_name + ":").c_str(),
deprecated ? "" : (field_name + ": ").c_str());
// Pick random type:
int base_type = lcg_rand() % (flatbuffers::BASE_TYPE_UNION + 1);
switch (base_type) {
case flatbuffers::BASE_TYPE_STRING:
if (is_struct) {
Dummy(); // No strings in structs.
} else {
AddToSchemaAndInstances("string", deprecated ? "" : "\"hi\"");
}
break;
case flatbuffers::BASE_TYPE_VECTOR:
if (is_struct) {
Dummy(); // No vectors in structs.
}
else {
AddToSchemaAndInstances("[ubyte]",
deprecated ? "" : "[\n0,\n1,\n255\n]");
}
break;
case flatbuffers::BASE_TYPE_NONE:
case flatbuffers::BASE_TYPE_UTYPE:
case flatbuffers::BASE_TYPE_STRUCT:
case flatbuffers::BASE_TYPE_UNION:
if (definition) {
// Pick a random previous definition and random data instance of
// that definition.
int defref = lcg_rand() % definition;
int instance = lcg_rand() % instances_per_definition;
AddToSchemaAndInstances(
("D" + flatbuffers::NumToString(defref)).c_str(),
deprecated
? ""
: definitions[defref].instances[instance].c_str());
} else {
// If this is the first definition, we have no definition we can
// refer to.
Dummy();
}
break;
case flatbuffers::BASE_TYPE_BOOL:
AddToSchemaAndInstances("bool", deprecated
? ""
: (lcg_rand() % 2 ? "true" : "false"));
break;
default:
// All the scalar types.
schema += flatbuffers::kTypeNames[base_type];
if (!deprecated) {
// We want each instance to use its own random value.
for (int inst = 0; inst < instances_per_definition; inst++)
definitions[definition].instances[inst] +=
flatbuffers::NumToString(lcg_rand() % 128).c_str();
}
}
AddToSchemaAndInstances(
deprecated ? "(deprecated);\n" : ";\n",
deprecated ? "" : is_last_field ? "\n" : ",\n");
}
AddToSchemaAndInstances("}\n\n", "}");
}
schema += "root_type D" + flatbuffers::NumToString(num_definitions - 1);
schema += ";\n";
flatbuffers::Parser parser;
// Will not compare against the original if we don't write defaults
parser.builder_.ForceDefaults(true);
// Parse the schema, parse the generated data, then generate text back
// from the binary and compare against the original.
TEST_EQ(parser.Parse(schema.c_str()), true);
const std::string &json =
definitions[num_definitions - 1].instances[0] + "\n";
TEST_EQ(parser.Parse(json.c_str()), true);
std::string jsongen;
parser.opts.indent_step = 0;
GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
if (jsongen != json) {
// These strings are larger than a megabyte, so we show the bytes around
// the first bytes that are different rather than the whole string.
size_t len = std::min(json.length(), jsongen.length());
for (size_t i = 0; i < len; i++) {
if (json[i] != jsongen[i]) {
i -= std::min(static_cast<size_t>(10), i); // show some context;
size_t end = std::min(len, i + 20);
for (; i < end; i++)
printf("at %d: found \"%c\", expected \"%c\"\n",
static_cast<int>(i), jsongen[i], json[i]);
break;
}
}
TEST_NOTNULL(NULL);
}
printf("%dk schema tested with %dk of json\n",
static_cast<int>(schema.length() / 1024),
static_cast<int>(json.length() / 1024));
}
// Test that parser errors are actually generated.
void TestError(const char *src, const char *error_substr,
bool strict_json = false) {
flatbuffers::IDLOptions opts;
opts.strict_json = strict_json;
flatbuffers::Parser parser(opts);
TEST_EQ(parser.Parse(src), false); // Must signal error
// Must be the error we're expecting
TEST_NOTNULL(strstr(parser.error_.c_str(), error_substr));
}
// Test that parsing errors occur as we'd expect.
// Also useful for coverage, making sure these paths are run.
void ErrorTest() {
// In order they appear in idl_parser.cpp
TestError("table X { Y:byte; } root_type X; { Y: 999 }", "bit field");
TestError(".0", "floating point");
TestError("\"\0", "illegal");
TestError("\"\\q", "escape code");
TestError("table ///", "documentation");
TestError("@", "illegal");
TestError("table 1", "expecting");
TestError("table X { Y:[[int]]; }", "nested vector");
TestError("union Z { X } table X { Y:[Z]; }", "vector of union");
TestError("table X { Y:1; }", "illegal type");
TestError("table X { Y:int; Y:int; }", "field already");
TestError("struct X { Y:string; }", "only scalar");
TestError("struct X { Y:int (deprecated); }", "deprecate");
TestError("union Z { X } table X { Y:Z; } root_type X; { Y: {",
"missing type field");
TestError("union Z { X } table X { Y:Z; } root_type X; { Y_type: 99, Y: {",
"type id");
TestError("table X { Y:int; } root_type X; { Z:", "unknown field");
TestError("table X { Y:int; } root_type X; { Y:", "string constant", true);
TestError("table X { Y:int; } root_type X; { \"Y\":1, }", "string constant",
true);
TestError("struct X { Y:int; Z:int; } table W { V:X; } root_type W; "
"{ V:{ Y:1 } }", "wrong number");
TestError("enum E:byte { A } table X { Y:E; } root_type X; { Y:U }",
"unknown enum value");
TestError("table X { Y:byte; } root_type X; { Y:; }", "starting");
TestError("enum X:byte { Y } enum X {", "enum already");
TestError("enum X:float {}", "underlying");
TestError("enum X:byte { Y, Y }", "value already");
TestError("enum X:byte { Y=2, Z=1 }", "ascending");
TestError("enum X:byte (bit_flags) { Y=8 }", "bit flag out");
TestError("table X { Y:int; } table X {", "datatype already");
TestError("struct X (force_align: 7) { Y:int; }", "force_align");
TestError("{}", "no root");
TestError("table X { Y:byte; } root_type X; { Y:1 } { Y:1 }", "one json");
TestError("root_type X;", "unknown root");
TestError("struct X { Y:int; } root_type X;", "a table");
TestError("union X { Y }", "referenced");
TestError("union Z { X } struct X { Y:int; }", "only tables");
TestError("table X { Y:[int]; YLength:int; }", "clash");
TestError("table X { Y:string = 1; }", "scalar");
TestError("table X { Y:byte; } root_type X; { Y:1, Y:2 }", "more than once");
}
// Additional parser testing not covered elsewhere.
void ScientificTest() {
flatbuffers::Parser parser;
// Simple schema.
TEST_EQ(parser.Parse("table X { Y:float; } root_type X;"), true);
// Test scientific notation numbers.
TEST_EQ(parser.Parse("{ Y:0.0314159e+2 }"), true);
auto root = flatbuffers::GetRoot<float>(parser.builder_.GetBufferPointer());
// root will point to the table, which is a 32bit vtable offset followed
// by a float:
TEST_EQ(sizeof(flatbuffers::soffset_t) == 4 && // Test assumes 32bit offsets
fabs(root[1] - 3.14159) < 0.001, true);
}
void EnumStringsTest() {
flatbuffers::Parser parser1;
TEST_EQ(parser1.Parse("enum E:byte { A, B, C } table T { F:[E]; }"
"root_type T;"
"{ F:[ A, B, \"C\", \"A B C\" ] }"), true);
flatbuffers::Parser parser2;
TEST_EQ(parser2.Parse("enum E:byte { A, B, C } table T { F:[int]; }"
"root_type T;"
"{ F:[ \"E.C\", \"E.A E.B E.C\" ] }"), true);
}
void IntegerOutOfRangeTest() {
TestError("table T { F:byte; } root_type T; { F:256 }",
"constant does not fit");
TestError("table T { F:byte; } root_type T; { F:-257 }",
"constant does not fit");
TestError("table T { F:ubyte; } root_type T; { F:256 }",
"constant does not fit");
TestError("table T { F:ubyte; } root_type T; { F:-257 }",
"constant does not fit");
TestError("table T { F:short; } root_type T; { F:65536 }",
"constant does not fit");
TestError("table T { F:short; } root_type T; { F:-65537 }",
"constant does not fit");
TestError("table T { F:ushort; } root_type T; { F:65536 }",
"constant does not fit");
TestError("table T { F:ushort; } root_type T; { F:-65537 }",
"constant does not fit");
TestError("table T { F:int; } root_type T; { F:4294967296 }",
"constant does not fit");
TestError("table T { F:int; } root_type T; { F:-4294967297 }",
"constant does not fit");
TestError("table T { F:uint; } root_type T; { F:4294967296 }",
"constant does not fit");
TestError("table T { F:uint; } root_type T; { F:-4294967297 }",
"constant does not fit");
}
void UnicodeTest() {
flatbuffers::Parser parser;
TEST_EQ(parser.Parse("table T { F:string; }"
"root_type T;"
"{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
"\\u5225\\u30B5\\u30A4\\u30C8\\x01\\x80\" }"), true);
std::string jsongen;
parser.opts.indent_step = -1;
GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
TEST_EQ(jsongen == "{F: \"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
"\\u5225\\u30B5\\u30A4\\u30C8\\x01\\x80\"}", true);
}
void UnknownFieldsTest() {
flatbuffers::IDLOptions opts;
opts.skip_unexpected_fields_in_json = true;
flatbuffers::Parser parser(opts);
TEST_EQ(parser.Parse("table T { str:string; i:int;}"
"root_type T;"
"{ str:\"test\","
"unknown_string:\"test\","
"\"unknown_string\":\"test\","
"unknown_int:10,"
"unknown_float:1.0,"
"unknown_array: [ 1, 2, 3, 4],"
"unknown_object: { i: 10 },"
"\"unknown_object\": { \"i\": 10 },"
"i:10}"), true);
std::string jsongen;
parser.opts.indent_step = -1;
GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
TEST_EQ(jsongen == "{str: \"test\",i: 10}", true);
}
int main(int /*argc*/, const char * /*argv*/[]) {
// Run our various test suites:
std::string rawbuf;
auto flatbuf = CreateFlatBufferTest(rawbuf);
AccessFlatBufferTest(reinterpret_cast<const uint8_t *>(rawbuf.c_str()),
rawbuf.length());
AccessFlatBufferTest(flatbuf.get(), rawbuf.length());
MutateFlatBuffersTest(flatbuf.get(), rawbuf.length());
#ifndef FLATBUFFERS_NO_FILE_TESTS
ParseAndGenerateTextTest();
ReflectionTest(flatbuf.get(), rawbuf.length());
ParseProtoTest();
#endif
FuzzTest1();
FuzzTest2();
ErrorTest();
ScientificTest();
EnumStringsTest();
IntegerOutOfRangeTest();
UnicodeTest();
UnknownFieldsTest();
if (!testing_fails) {
TEST_OUTPUT_LINE("ALL TESTS PASSED");
return 0;
} else {
TEST_OUTPUT_LINE("%d FAILED TESTS", testing_fails);
return 1;
}
}
|