1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
|
/*
* Copyright 2015 Google Inc. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "flatbuffers/reflection.h"
#include "flatbuffers/util.h"
// Helper functionality for reflection.
namespace flatbuffers {
int64_t GetAnyValueI(reflection::BaseType type, const uint8_t *data) {
// clang-format off
#define FLATBUFFERS_GET(T) static_cast<int64_t>(ReadScalar<T>(data))
switch (type) {
case reflection::UType:
case reflection::Bool:
case reflection::UByte: return FLATBUFFERS_GET(uint8_t);
case reflection::Byte: return FLATBUFFERS_GET(int8_t);
case reflection::Short: return FLATBUFFERS_GET(int16_t);
case reflection::UShort: return FLATBUFFERS_GET(uint16_t);
case reflection::Int: return FLATBUFFERS_GET(int32_t);
case reflection::UInt: return FLATBUFFERS_GET(uint32_t);
case reflection::Long: return FLATBUFFERS_GET(int64_t);
case reflection::ULong: return FLATBUFFERS_GET(uint64_t);
case reflection::Float: return FLATBUFFERS_GET(float);
case reflection::Double: return FLATBUFFERS_GET(double);
case reflection::String: {
auto s = reinterpret_cast<const String *>(ReadScalar<uoffset_t>(data) +
data);
return s ? StringToInt(s->c_str()) : 0;
}
default: return 0; // Tables & vectors do not make sense.
}
#undef FLATBUFFERS_GET
// clang-format on
}
double GetAnyValueF(reflection::BaseType type, const uint8_t *data) {
switch (type) {
case reflection::Float: return static_cast<double>(ReadScalar<float>(data));
case reflection::Double: return ReadScalar<double>(data);
case reflection::String: {
auto s =
reinterpret_cast<const String *>(ReadScalar<uoffset_t>(data) + data);
if (s) {
double d;
StringToNumber(s->c_str(), &d);
return d;
} else {
return 0.0;
}
}
default: return static_cast<double>(GetAnyValueI(type, data));
}
}
std::string GetAnyValueS(reflection::BaseType type, const uint8_t *data,
const reflection::Schema *schema, int type_index) {
switch (type) {
case reflection::Float:
case reflection::Double: return NumToString(GetAnyValueF(type, data));
case reflection::String: {
auto s =
reinterpret_cast<const String *>(ReadScalar<uoffset_t>(data) + data);
return s ? s->c_str() : "";
}
case reflection::Obj:
if (schema) {
// Convert the table to a string. This is mostly for debugging purposes,
// and does NOT promise to be JSON compliant.
// Also prefixes the type.
auto &objectdef = *schema->objects()->Get(type_index);
auto s = objectdef.name()->str();
if (objectdef.is_struct()) {
s += "(struct)"; // TODO: implement this as well.
} else {
auto table_field = reinterpret_cast<const Table *>(
ReadScalar<uoffset_t>(data) + data);
s += " { ";
auto fielddefs = objectdef.fields();
for (auto it = fielddefs->begin(); it != fielddefs->end(); ++it) {
auto &fielddef = **it;
if (!table_field->CheckField(fielddef.offset())) continue;
auto val = GetAnyFieldS(*table_field, fielddef, schema);
if (fielddef.type()->base_type() == reflection::String) {
std::string esc;
flatbuffers::EscapeString(val.c_str(), val.length(), &esc, true,
false);
val = esc;
}
s += fielddef.name()->str();
s += ": ";
s += val;
s += ", ";
}
s += "}";
}
return s;
} else {
return "(table)";
}
case reflection::Vector:
return "[(elements)]"; // TODO: implement this as well.
case reflection::Union: return "(union)"; // TODO: implement this as well.
default: return NumToString(GetAnyValueI(type, data));
}
}
void ForAllFields(const reflection::Object *object, bool reverse,
std::function<void(const reflection::Field *)> func) {
std::vector<uint32_t> field_to_id_map;
field_to_id_map.resize(object->fields()->size());
// Create the mapping of field ID to the index into the vector.
for (uint32_t i = 0; i < object->fields()->size(); ++i) {
auto field = object->fields()->Get(i);
field_to_id_map[field->id()] = i;
}
for (size_t i = 0; i < field_to_id_map.size(); ++i) {
func(object->fields()->Get(
field_to_id_map[reverse ? field_to_id_map.size() - i + 1 : i]));
}
}
void SetAnyValueI(reflection::BaseType type, uint8_t *data, int64_t val) {
// clang-format off
#define FLATBUFFERS_SET(T) WriteScalar(data, static_cast<T>(val))
switch (type) {
case reflection::UType:
case reflection::Bool:
case reflection::UByte: FLATBUFFERS_SET(uint8_t ); break;
case reflection::Byte: FLATBUFFERS_SET(int8_t ); break;
case reflection::Short: FLATBUFFERS_SET(int16_t ); break;
case reflection::UShort: FLATBUFFERS_SET(uint16_t); break;
case reflection::Int: FLATBUFFERS_SET(int32_t ); break;
case reflection::UInt: FLATBUFFERS_SET(uint32_t); break;
case reflection::Long: FLATBUFFERS_SET(int64_t ); break;
case reflection::ULong: FLATBUFFERS_SET(uint64_t); break;
case reflection::Float: FLATBUFFERS_SET(float ); break;
case reflection::Double: FLATBUFFERS_SET(double ); break;
// TODO: support strings
default: break;
}
#undef FLATBUFFERS_SET
// clang-format on
}
void SetAnyValueF(reflection::BaseType type, uint8_t *data, double val) {
switch (type) {
case reflection::Float: WriteScalar(data, static_cast<float>(val)); break;
case reflection::Double: WriteScalar(data, val); break;
// TODO: support strings.
default: SetAnyValueI(type, data, static_cast<int64_t>(val)); break;
}
}
void SetAnyValueS(reflection::BaseType type, uint8_t *data, const char *val) {
switch (type) {
case reflection::Float:
case reflection::Double: {
double d;
StringToNumber(val, &d);
SetAnyValueF(type, data, d);
break;
}
// TODO: support strings.
default: SetAnyValueI(type, data, StringToInt(val)); break;
}
}
// Resize a FlatBuffer in-place by iterating through all offsets in the buffer
// and adjusting them by "delta" if they straddle the start offset.
// Once that is done, bytes can now be inserted/deleted safely.
// "delta" may be negative (shrinking).
// Unless "delta" is a multiple of the largest alignment, you'll create a small
// amount of garbage space in the buffer (usually 0..7 bytes).
// If your FlatBuffer's root table is not the schema's root table, you should
// pass in your root_table type as well.
class ResizeContext {
public:
ResizeContext(const reflection::Schema &schema, uoffset_t start, int delta,
std::vector<uint8_t> *flatbuf,
const reflection::Object *root_table = nullptr)
: schema_(schema),
startptr_(flatbuf->data() + start),
delta_(delta),
buf_(*flatbuf),
dag_check_(flatbuf->size() / sizeof(uoffset_t), false) {
auto mask = static_cast<int>(sizeof(largest_scalar_t) - 1);
delta_ = (delta_ + mask) & ~mask;
if (!delta_) return; // We can't shrink by less than largest_scalar_t.
// Now change all the offsets by delta_.
auto root = GetAnyRoot(buf_.data());
Straddle<uoffset_t, 1>(buf_.data(), root, buf_.data());
ResizeTable(root_table ? *root_table : *schema.root_table(), root);
// We can now add or remove bytes at start.
if (delta_ > 0)
buf_.insert(buf_.begin() + start, delta_, 0);
else
buf_.erase(buf_.begin() + start + delta_, buf_.begin() + start);
}
// Check if the range between first (lower address) and second straddles
// the insertion point. If it does, change the offset at offsetloc (of
// type T, with direction D).
template<typename T, int D>
void Straddle(const void *first, const void *second, void *offsetloc) {
if (first <= startptr_ && second >= startptr_) {
WriteScalar<T>(offsetloc, ReadScalar<T>(offsetloc) + delta_ * D);
DagCheck(offsetloc) = true;
}
}
// This returns a boolean that records if the corresponding offset location
// has been modified already. If so, we can't even read the corresponding
// offset, since it is pointing to a location that is illegal until the
// resize actually happens.
// This must be checked for every offset, since we can't know which offsets
// will straddle and which won't.
uint8_t &DagCheck(const void *offsetloc) {
auto dag_idx = reinterpret_cast<const uoffset_t *>(offsetloc) -
reinterpret_cast<const uoffset_t *>(buf_.data());
return dag_check_[dag_idx];
}
void ResizeTable(const reflection::Object &objectdef, Table *table) {
if (DagCheck(table)) return; // Table already visited.
auto vtable = table->GetVTable();
// Early out: since all fields inside the table must point forwards in
// memory, if the insertion point is before the table we can stop here.
auto tableloc = reinterpret_cast<uint8_t *>(table);
if (startptr_ <= tableloc) {
// Check if insertion point is between the table and a vtable that
// precedes it. This can't happen in current construction code, but check
// just in case we ever change the way flatbuffers are built.
Straddle<soffset_t, -1>(vtable, table, table);
} else {
// Check each field.
auto fielddefs = objectdef.fields();
for (auto it = fielddefs->begin(); it != fielddefs->end(); ++it) {
auto &fielddef = **it;
auto base_type = fielddef.type()->base_type();
// Ignore scalars.
if (base_type <= reflection::Double) continue;
// Ignore fields that are not stored.
auto offset = table->GetOptionalFieldOffset(fielddef.offset());
if (!offset) continue;
// Ignore structs.
auto subobjectdef =
base_type == reflection::Obj
? schema_.objects()->Get(fielddef.type()->index())
: nullptr;
if (subobjectdef && subobjectdef->is_struct()) continue;
// Get this fields' offset, and read it if safe.
auto offsetloc = tableloc + offset;
if (DagCheck(offsetloc)) continue; // This offset already visited.
auto ref = offsetloc + ReadScalar<uoffset_t>(offsetloc);
Straddle<uoffset_t, 1>(offsetloc, ref, offsetloc);
// Recurse.
switch (base_type) {
case reflection::Obj: {
ResizeTable(*subobjectdef, reinterpret_cast<Table *>(ref));
break;
}
case reflection::Vector: {
auto elem_type = fielddef.type()->element();
if (elem_type != reflection::Obj && elem_type != reflection::String)
break;
auto vec = reinterpret_cast<Vector<uoffset_t> *>(ref);
auto elemobjectdef =
elem_type == reflection::Obj
? schema_.objects()->Get(fielddef.type()->index())
: nullptr;
if (elemobjectdef && elemobjectdef->is_struct()) break;
for (uoffset_t i = 0; i < vec->size(); i++) {
auto loc = vec->Data() + i * sizeof(uoffset_t);
if (DagCheck(loc)) continue; // This offset already visited.
auto dest = loc + vec->Get(i);
Straddle<uoffset_t, 1>(loc, dest, loc);
if (elemobjectdef)
ResizeTable(*elemobjectdef, reinterpret_cast<Table *>(dest));
}
break;
}
case reflection::Union: {
ResizeTable(GetUnionType(schema_, objectdef, fielddef, *table),
reinterpret_cast<Table *>(ref));
break;
}
case reflection::String: break;
default: FLATBUFFERS_ASSERT(false);
}
}
// Check if the vtable offset points beyond the insertion point.
// Must do this last, since GetOptionalFieldOffset above still reads
// this value.
Straddle<soffset_t, -1>(table, vtable, table);
}
}
private:
const reflection::Schema &schema_;
uint8_t *startptr_;
int delta_;
std::vector<uint8_t> &buf_;
std::vector<uint8_t> dag_check_;
};
void SetString(const reflection::Schema &schema, const std::string &val,
const String *str, std::vector<uint8_t> *flatbuf,
const reflection::Object *root_table) {
auto delta = static_cast<int>(val.size()) - static_cast<int>(str->size());
auto str_start = static_cast<uoffset_t>(
reinterpret_cast<const uint8_t *>(str) - flatbuf->data());
auto start = str_start + static_cast<uoffset_t>(sizeof(uoffset_t));
if (delta) {
// Clear the old string, since we don't want parts of it remaining.
memset(flatbuf->data() + start, 0, str->size());
// Different size, we must expand (or contract).
ResizeContext(schema, start, delta, flatbuf, root_table);
// Set the new length.
WriteScalar(flatbuf->data() + str_start,
static_cast<uoffset_t>(val.size()));
}
// Copy new data. Safe because we created the right amount of space.
memcpy(flatbuf->data() + start, val.c_str(), val.size() + 1);
}
uint8_t *ResizeAnyVector(const reflection::Schema &schema, uoffset_t newsize,
const VectorOfAny *vec, uoffset_t num_elems,
uoffset_t elem_size, std::vector<uint8_t> *flatbuf,
const reflection::Object *root_table) {
auto delta_elem = static_cast<int>(newsize) - static_cast<int>(num_elems);
auto delta_bytes = delta_elem * static_cast<int>(elem_size);
auto vec_start = reinterpret_cast<const uint8_t *>(vec) - flatbuf->data();
auto start = static_cast<uoffset_t>(vec_start) +
static_cast<uoffset_t>(sizeof(uoffset_t)) +
elem_size * num_elems;
if (delta_bytes) {
if (delta_elem < 0) {
// Clear elements we're throwing away, since some might remain in the
// buffer.
auto size_clear = -delta_elem * elem_size;
memset(flatbuf->data() + start - size_clear, 0, size_clear);
}
ResizeContext(schema, start, delta_bytes, flatbuf, root_table);
WriteScalar(flatbuf->data() + vec_start, newsize); // Length field.
// Set new elements to 0.. this can be overwritten by the caller.
if (delta_elem > 0) {
memset(flatbuf->data() + start, 0,
static_cast<size_t>(delta_elem) * elem_size);
}
}
return flatbuf->data() + start;
}
const uint8_t *AddFlatBuffer(std::vector<uint8_t> &flatbuf,
const uint8_t *newbuf, size_t newlen) {
// Align to sizeof(uoffset_t) past sizeof(largest_scalar_t) since we're
// going to chop off the root offset.
while ((flatbuf.size() & (sizeof(uoffset_t) - 1)) ||
!(flatbuf.size() & (sizeof(largest_scalar_t) - 1))) {
flatbuf.push_back(0);
}
auto insertion_point = static_cast<uoffset_t>(flatbuf.size());
// Insert the entire FlatBuffer minus the root pointer.
flatbuf.insert(flatbuf.end(), newbuf + sizeof(uoffset_t), newbuf + newlen);
auto root_offset = ReadScalar<uoffset_t>(newbuf) - sizeof(uoffset_t);
return flatbuf.data() + insertion_point + root_offset;
}
namespace {
static void CopyInline(FlatBufferBuilder &fbb, const reflection::Field &fielddef,
const Table &table, size_t align, size_t size) {
fbb.Align(align);
fbb.PushBytes(table.GetStruct<const uint8_t *>(fielddef.offset()), size);
fbb.TrackField(fielddef.offset(), fbb.GetSize());
}
} // namespace
Offset<const Table *> CopyTable(FlatBufferBuilder &fbb,
const reflection::Schema &schema,
const reflection::Object &objectdef,
const Table &table, bool use_string_pooling) {
// Before we can construct the table, we have to first generate any
// subobjects, and collect their offsets.
std::vector<uoffset_t> offsets;
auto fielddefs = objectdef.fields();
for (auto it = fielddefs->begin(); it != fielddefs->end(); ++it) {
auto &fielddef = **it;
// Skip if field is not present in the source.
if (!table.CheckField(fielddef.offset())) continue;
uoffset_t offset = 0;
switch (fielddef.type()->base_type()) {
case reflection::String: {
offset = use_string_pooling
? fbb.CreateSharedString(GetFieldS(table, fielddef)).o
: fbb.CreateString(GetFieldS(table, fielddef)).o;
break;
}
case reflection::Obj: {
auto &subobjectdef = *schema.objects()->Get(fielddef.type()->index());
if (!subobjectdef.is_struct()) {
offset = CopyTable(fbb, schema, subobjectdef,
*GetFieldT(table, fielddef), use_string_pooling)
.o;
}
break;
}
case reflection::Union: {
auto &subobjectdef = GetUnionType(schema, objectdef, fielddef, table);
offset = CopyTable(fbb, schema, subobjectdef,
*GetFieldT(table, fielddef), use_string_pooling)
.o;
break;
}
case reflection::Vector: {
auto vec =
table.GetPointer<const Vector<Offset<Table>> *>(fielddef.offset());
auto element_base_type = fielddef.type()->element();
auto elemobjectdef =
element_base_type == reflection::Obj
? schema.objects()->Get(fielddef.type()->index())
: nullptr;
switch (element_base_type) {
case reflection::String: {
std::vector<Offset<const String *>> elements(vec->size());
auto vec_s = reinterpret_cast<const Vector<Offset<String>> *>(vec);
for (uoffset_t i = 0; i < vec_s->size(); i++) {
elements[i] = use_string_pooling
? fbb.CreateSharedString(vec_s->Get(i)).o
: fbb.CreateString(vec_s->Get(i)).o;
}
offset = fbb.CreateVector(elements).o;
break;
}
case reflection::Obj: {
if (!elemobjectdef->is_struct()) {
std::vector<Offset<const Table *>> elements(vec->size());
for (uoffset_t i = 0; i < vec->size(); i++) {
elements[i] = CopyTable(fbb, schema, *elemobjectdef,
*vec->Get(i), use_string_pooling);
}
offset = fbb.CreateVector(elements).o;
break;
}
}
FLATBUFFERS_FALLTHROUGH(); // fall thru
default: { // Scalars and structs.
auto element_size = GetTypeSize(element_base_type);
if (elemobjectdef && elemobjectdef->is_struct())
element_size = elemobjectdef->bytesize();
fbb.StartVector(vec->size(), element_size);
fbb.PushBytes(vec->Data(), element_size * vec->size());
offset = fbb.EndVector(vec->size());
break;
}
}
break;
}
default: // Scalars.
break;
}
if (offset) { offsets.push_back(offset); }
}
// Now we can build the actual table from either offsets or scalar data.
auto start = objectdef.is_struct() ? fbb.StartStruct(objectdef.minalign())
: fbb.StartTable();
size_t offset_idx = 0;
for (auto it = fielddefs->begin(); it != fielddefs->end(); ++it) {
auto &fielddef = **it;
if (!table.CheckField(fielddef.offset())) continue;
auto base_type = fielddef.type()->base_type();
switch (base_type) {
case reflection::Obj: {
auto &subobjectdef = *schema.objects()->Get(fielddef.type()->index());
if (subobjectdef.is_struct()) {
CopyInline(fbb, fielddef, table, subobjectdef.minalign(),
subobjectdef.bytesize());
break;
}
}
FLATBUFFERS_FALLTHROUGH(); // fall thru
case reflection::Union:
case reflection::String:
case reflection::Vector:
fbb.AddOffset(fielddef.offset(), Offset<void>(offsets[offset_idx++]));
break;
default: { // Scalars.
auto size = GetTypeSize(base_type);
CopyInline(fbb, fielddef, table, size, size);
break;
}
}
}
FLATBUFFERS_ASSERT(offset_idx == offsets.size());
if (objectdef.is_struct()) {
fbb.ClearOffsets();
return fbb.EndStruct();
} else {
return fbb.EndTable(start);
}
}
namespace {
static bool VerifyStruct(flatbuffers::Verifier &v,
const flatbuffers::Table &parent_table,
voffset_t field_offset, const reflection::Object &obj,
bool required) {
auto offset = parent_table.GetOptionalFieldOffset(field_offset);
if (required && !offset) { return false; }
return !offset ||
v.VerifyFieldStruct(reinterpret_cast<const uint8_t *>(&parent_table),
offset, obj.bytesize(), obj.minalign());
}
static bool VerifyVectorOfStructs(flatbuffers::Verifier &v,
const flatbuffers::Table &parent_table,
voffset_t field_offset,
const reflection::Object &obj, bool required) {
auto p = parent_table.GetPointer<const uint8_t *>(field_offset);
if (required && !p) { return false; }
return !p || v.VerifyVectorOrString(p, obj.bytesize());
}
// forward declare to resolve cyclic deps between VerifyObject and VerifyVector
static bool VerifyObject(flatbuffers::Verifier &v, const reflection::Schema &schema,
const reflection::Object &obj,
const flatbuffers::Table *table, bool required);
static bool VerifyUnion(flatbuffers::Verifier &v, const reflection::Schema &schema,
uint8_t utype, const uint8_t *elem,
const reflection::Field &union_field) {
if (!utype) return true; // Not present.
auto fb_enum = schema.enums()->Get(union_field.type()->index());
if (utype >= fb_enum->values()->size()) return false;
auto elem_type = fb_enum->values()->Get(utype)->union_type();
switch (elem_type->base_type()) {
case reflection::Obj: {
auto elem_obj = schema.objects()->Get(elem_type->index());
if (elem_obj->is_struct()) {
return v.VerifyFromPointer(elem, elem_obj->bytesize());
} else {
return VerifyObject(v, schema, *elem_obj,
reinterpret_cast<const flatbuffers::Table *>(elem),
true);
}
}
case reflection::String:
return v.VerifyString(
reinterpret_cast<const flatbuffers::String *>(elem));
default: return false;
}
}
static bool VerifyVector(flatbuffers::Verifier &v, const reflection::Schema &schema,
const flatbuffers::Table &table,
const reflection::Field &vec_field) {
FLATBUFFERS_ASSERT(vec_field.type()->base_type() == reflection::Vector);
if (!table.VerifyField<uoffset_t>(v, vec_field.offset(), sizeof(uoffset_t)))
return false;
switch (vec_field.type()->element()) {
case reflection::UType:
return v.VerifyVector(flatbuffers::GetFieldV<uint8_t>(table, vec_field));
case reflection::Bool:
case reflection::Byte:
case reflection::UByte:
return v.VerifyVector(flatbuffers::GetFieldV<int8_t>(table, vec_field));
case reflection::Short:
case reflection::UShort:
return v.VerifyVector(flatbuffers::GetFieldV<int16_t>(table, vec_field));
case reflection::Int:
case reflection::UInt:
return v.VerifyVector(flatbuffers::GetFieldV<int32_t>(table, vec_field));
case reflection::Long:
case reflection::ULong:
return v.VerifyVector(flatbuffers::GetFieldV<int64_t>(table, vec_field));
case reflection::Float:
return v.VerifyVector(flatbuffers::GetFieldV<float>(table, vec_field));
case reflection::Double:
return v.VerifyVector(flatbuffers::GetFieldV<double>(table, vec_field));
case reflection::String: {
auto vec_string =
flatbuffers::GetFieldV<flatbuffers::Offset<flatbuffers::String>>(
table, vec_field);
if (v.VerifyVector(vec_string) && v.VerifyVectorOfStrings(vec_string)) {
return true;
} else {
return false;
}
}
case reflection::Obj: {
auto obj = schema.objects()->Get(vec_field.type()->index());
if (obj->is_struct()) {
return VerifyVectorOfStructs(v, table, vec_field.offset(), *obj,
vec_field.required());
} else {
auto vec =
flatbuffers::GetFieldV<flatbuffers::Offset<flatbuffers::Table>>(
table, vec_field);
if (!v.VerifyVector(vec)) return false;
if (!vec) return true;
for (uoffset_t j = 0; j < vec->size(); j++) {
if (!VerifyObject(v, schema, *obj, vec->Get(j), true)) {
return false;
}
}
return true;
}
}
case reflection::Union: {
auto vec = flatbuffers::GetFieldV<flatbuffers::Offset<uint8_t>>(
table, vec_field);
if (!v.VerifyVector(vec)) return false;
if (!vec) return true;
auto type_vec = table.GetPointer<Vector<uint8_t> *>(vec_field.offset() -
sizeof(voffset_t));
if (!v.VerifyVector(type_vec)) return false;
for (uoffset_t j = 0; j < vec->size(); j++) {
// get union type from the prev field
auto utype = type_vec->Get(j);
auto elem = vec->Get(j);
if (!VerifyUnion(v, schema, utype, elem, vec_field)) return false;
}
return true;
}
case reflection::Vector:
case reflection::None:
default: FLATBUFFERS_ASSERT(false); return false;
}
}
static bool VerifyObject(flatbuffers::Verifier &v, const reflection::Schema &schema,
const reflection::Object &obj,
const flatbuffers::Table *table, bool required) {
if (!table) return !required;
if (!table->VerifyTableStart(v)) return false;
for (uoffset_t i = 0; i < obj.fields()->size(); i++) {
auto field_def = obj.fields()->Get(i);
switch (field_def->type()->base_type()) {
case reflection::None: FLATBUFFERS_ASSERT(false); break;
case reflection::UType:
if (!table->VerifyField<uint8_t>(v, field_def->offset(),
sizeof(uint8_t)))
return false;
break;
case reflection::Bool:
case reflection::Byte:
case reflection::UByte:
if (!table->VerifyField<int8_t>(v, field_def->offset(), sizeof(int8_t)))
return false;
break;
case reflection::Short:
case reflection::UShort:
if (!table->VerifyField<int16_t>(v, field_def->offset(),
sizeof(int16_t)))
return false;
break;
case reflection::Int:
case reflection::UInt:
if (!table->VerifyField<int32_t>(v, field_def->offset(),
sizeof(int32_t)))
return false;
break;
case reflection::Long:
case reflection::ULong:
if (!table->VerifyField<int64_t>(v, field_def->offset(),
sizeof(int64_t)))
return false;
break;
case reflection::Float:
if (!table->VerifyField<float>(v, field_def->offset(), sizeof(float)))
return false;
break;
case reflection::Double:
if (!table->VerifyField<double>(v, field_def->offset(), sizeof(double)))
return false;
break;
case reflection::String:
if (!table->VerifyField<uoffset_t>(v, field_def->offset(),
sizeof(uoffset_t)) ||
!v.VerifyString(flatbuffers::GetFieldS(*table, *field_def))) {
return false;
}
break;
case reflection::Vector:
if (!VerifyVector(v, schema, *table, *field_def)) return false;
break;
case reflection::Obj: {
auto child_obj = schema.objects()->Get(field_def->type()->index());
if (child_obj->is_struct()) {
if (!VerifyStruct(v, *table, field_def->offset(), *child_obj,
field_def->required())) {
return false;
}
} else {
if (!VerifyObject(v, schema, *child_obj,
flatbuffers::GetFieldT(*table, *field_def),
field_def->required())) {
return false;
}
}
break;
}
case reflection::Union: {
// get union type from the prev field
voffset_t utype_offset = field_def->offset() - sizeof(voffset_t);
auto utype = table->GetField<uint8_t>(utype_offset, 0);
auto uval = reinterpret_cast<const uint8_t *>(
flatbuffers::GetFieldT(*table, *field_def));
if (!VerifyUnion(v, schema, utype, uval, *field_def)) { return false; }
break;
}
default: FLATBUFFERS_ASSERT(false); break;
}
}
if (!v.EndTable()) return false;
return true;
}
} // namespace
bool Verify(const reflection::Schema &schema, const reflection::Object &root,
const uint8_t *const buf, const size_t length,
const uoffset_t max_depth, const uoffset_t max_tables) {
Verifier v(buf, length, max_depth, max_tables);
return VerifyObject(v, schema, root, flatbuffers::GetAnyRoot(buf),
/*required=*/true);
}
bool VerifySizePrefixed(const reflection::Schema &schema,
const reflection::Object &root,
const uint8_t *const buf, const size_t length,
const uoffset_t max_depth, const uoffset_t max_tables) {
Verifier v(buf, length, max_depth, max_tables);
return VerifyObject(v, schema, root, flatbuffers::GetAnySizePrefixedRoot(buf),
/*required=*/true);
}
} // namespace flatbuffers
|