1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
|
/*
* Copyright (C) 2011 Patrick O. Perry
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <assert.h> // assert
#include <errno.h> // EINVAL
#include <stddef.h> // size_t, NULL
#include <stdlib.h> // malloc, free
#include <string.h> // memcpy, memmove
#include "ejdbutl.h"
/**
* This is the minimum sized sequence that will be merged. Shorter
* sequences will be lengthened by calling binarySort. If the entire
* array is less than this length, no merges will be performed.
*
* This constant should be a power of two. It was 64 in Tim Peter's C
* implementation, but 32 was empirically determined to work better in
* [Android's Java] implementation. In the unlikely event that you set
* this constant to be a number that's not a power of two, you'll need
* to change the {@link #minRunLength} computation.
*
* If you decrease this constant, you must change the stackLen
* computation in the TimSort constructor, or you risk an
* ArrayOutOfBounds exception. See listsort.txt for a discussion
* of the minimum stack length required as a function of the length
* of the array being sorted and the minimum merge sequence length.
*/
#define MIN_MERGE 32
/**
* When we get into galloping mode, we stay there until both runs win less
* often than MIN_GALLOP consecutive times.
*/
#define MIN_GALLOP 7
/**
* Maximum initial size of tmp array, which is used for merging. The array
* can grow to accommodate demand.
*
* Unlike Tim's original C version, we do not allocate this much storage
* when sorting smaller arrays. This change was required for performance.
*/
#define INITIAL_TMP_STORAGE_LENGTH 256
/**
* Maximum stack size. This depends on MIN_MERGE and sizeof(size_t).
*/
#define MAX_STACK 85
/**
* Define MALLOC_STACK if you want to allocate the run stack on the heap.
* Otherwise, 2* MAX_STACK * sizeof(size_t) ~ 1.3K gets reserved on the
* call stack.
*/
/* #undef MALLOC_STACK */
#define DEFINE_TEMP(temp) char temp[WIDTH]
#define ASSIGN(x, y) memcpy(x, y, WIDTH)
#define INCPTR(x) ((void *)((char *)(x) + WIDTH))
#define DECPTR(x) ((void *)((char *)(x) - WIDTH))
#define ELEM(a,i) ((char *)(a) + (i) * WIDTH)
#define LEN(n) ((n) * WIDTH)
#ifndef MIN
#define MIN(a,b) ((a) <= (b) ? (a) : (b))
#endif
#define SUCCESS 0
#define FAILURE (-1)
#define CONCAT(x, y) x ## _ ## y
#define MAKE_STR(x, y) CONCAT(x,y)
#define NAME(x) MAKE_STR(x, WIDTH)
#define CALL(x) NAME(x)
typedef int (*comparator) (const void *x, const void *y, void *opaque);
struct timsort_run {
void *base;
size_t len;
};
struct timsort {
/**
* The array being sorted.
*/
void *a;
size_t a_length;
/**
* The comparator for this sort.
*/
int (*c) (const void *x, const void *y, void *opaque);
void *opaque;
/**
* This controls when we get *into* galloping mode. It is initialized
* to MIN_GALLOP. The mergeLo and mergeHi methods nudge it higher for
* random data, and lower for highly structured data.
*/
size_t minGallop;
/**
* Temp storage for merges.
*/
void *tmp;
size_t tmp_length;
/**
* A stack of pending runs yet to be merged. Run i starts at
* address base[i] and extends for len[i] elements. It's always
* true (so long as the indices are in bounds) that:
*
* runBase[i] + runLen[i] == runBase[i + 1]
*
* so we could cut the storage for this, but it's a minor amount,
* and keeping all the info explicit simplifies the code.
*/
size_t stackSize; // Number of pending runs on stack
size_t stackLen; // maximum stack size
#ifdef MALLOC_STACK
struct timsort_run *run;
#else
struct timsort_run run[MAX_STACK];
#endif
};
static int timsort_init(struct timsort *ts, void *a, size_t len,
int (*c) (const void *, const void *, void *opaque),
void *opaque,
size_t width);
static void timsort_deinit(struct timsort *ts);
static size_t minRunLength(size_t n);
static void pushRun(struct timsort *ts, void *runBase, size_t runLen);
static void *ensureCapacity(struct timsort *ts, size_t minCapacity,
size_t width);
/**
* Creates a TimSort instance to maintain the state of an ongoing sort.
*
* @param a the array to be sorted
* @param nel the length of the array
* @param c the comparator to determine the order of the sort
* @param width the element width
*/
static int timsort_init(struct timsort *ts, void *a, size_t len,
int (*c) (const void *, const void *, void *opaque),
void *opaque,
size_t width) {
assert(ts);
assert(a || !len);
assert(c);
ts->minGallop = MIN_GALLOP;
ts->stackSize = 0;
ts->a = a;
ts->a_length = len;
ts->c = c;
ts->opaque = opaque;
// Allocate temp storage (which may be increased later if necessary)
ts->tmp_length = (len < 2 * INITIAL_TMP_STORAGE_LENGTH ?
len >> 1 : INITIAL_TMP_STORAGE_LENGTH);
ts->tmp = malloc(ts->tmp_length * width);
/*
* Allocate runs-to-be-merged stack (which cannot be expanded). The
* stack length requirements are described in listsort.txt. The C
* version always uses the same stack length (85), but this was
* measured to be too expensive when sorting "mid-sized" arrays (e.g.,
* 100 elements) in Java. Therefore, we use smaller (but sufficiently
* large) stack lengths for smaller arrays. The "magic numbers" in the
* computation below must be changed if MIN_MERGE is decreased. See
* the MIN_MERGE declaration above for more information.
*/
/* POP:
* In listsort.txt, Tim argues that the run lengths form a decreasing
* sequence, and each run length is greater than the previous two.
* Thus, lower bounds on the minimum runLen numbers on the stack are:
*
* [ 1 = b[1]
* , minRun = b[2]
* , 1 * minRun + 2 = b[3]
* , 2 * minRun + 3 = b[4]
* , 3 * minRun + 6 = b[5]
* , ...
* ],
*
* Moreover, minRun >= MIN_MERGE / 2. Also, note that the sum of the
* run lenghts is less than or equal to the length of the array.
*
* Let s be the stack length and n be the array length. If s >= 2, then n >= b[1] + b[2].
* More generally, if s >= m, then n >= b[1] + b[2] + ... + b[m] = B[m]. Conversely, if
* n < B[m], then s < m.
*
* In Haskell, we can compute the bin sizes using the fibonacci numbers
*
* fibs = 1:1:(zipWith (+) fibs (tail fibs))
*
* cumSums a = case a of { [] -> [] ; (x:xs) -> x:(map (x+) (cumSums xs)) }
*
* fibSums = cumSums fibs
*
* binSizes minRun = ([ 1, minRun, minRun + 2 ]
* ++ [ (1 + minRun) * (fibs !! (i+2))
* + fibSums !! (i+1) - fibs !! i | i <- [0..] ])
*
* arraySizes minRun = cumSums (binSizes minRun)
*
* We these funcitons, we can compute a table with minRun = MIN_MERGE / 2 = 16:
*
* m B[m]
* ---------------------------
* 1 17
* 2 35
* 3 70
* 4 124
* 5 214
* 6 359
* 11 4220
* 17 76210 # > 2^16 - 1
* 40 4885703256 # > 2^32 - 1
* 86 20061275507500957239 # > 2^64 - 1
*
* If len < B[m], then stackLen < m:
*/
#ifdef MALLOC_STACK
ts->stackLen = (len < 359 ? 5
: len < 4220 ? 10
: len < 76210 ? 16 : len < 4885703256ULL ? 39 : 85);
/* Note that this is slightly more liberal than in the Java
* implementation. The discrepancy might be because the Java
* implementation uses a less accurate lower bound.
*/
//stackLen = (len < 120 ? 5 : len < 1542 ? 10 : len < 119151 ? 19 : 40);
ts->run = malloc(ts->stackLen * sizeof (ts->run[0]));
#else
ts->stackLen = MAX_STACK;
#endif
if (ts->tmp && ts->run) {
return SUCCESS;
} else {
timsort_deinit(ts);
return FAILURE;
}
}
static void timsort_deinit(struct timsort *ts) {
free(ts->tmp);
#ifdef MALLOC_STACK
free(ts->run);
#endif
}
/**
* Returns the minimum acceptable run length for an array of the specified
* length. Natural runs shorter than this will be extended with
* {@link #binarySort}.
*
* Roughly speaking, the computation is:
*
* If n < MIN_MERGE, return n (it's too small to bother with fancy stuff).
* Else if n is an exact power of 2, return MIN_MERGE/2.
* Else return an int k, MIN_MERGE/2 <= k <= MIN_MERGE, such that n/k
* is close to, but strictly less than, an exact power of 2.
*
* For the rationale, see listsort.txt.
*
* @param n the length of the array to be sorted
* @return the length of the minimum run to be merged
*/
static size_t minRunLength(size_t n) {
size_t r = 0; // Becomes 1 if any 1 bits are shifted off
while (n >= MIN_MERGE) {
r |= (n & 1);
n >>= 1;
}
return n + r;
}
/**
* Pushes the specified run onto the pending-run stack.
*
* @param runBase index of the first element in the run
* @param runLen the number of elements in the run
*/
static void pushRun(struct timsort *ts, void *runBase, size_t runLen) {
assert(ts->stackSize < ts->stackLen);
ts->run[ts->stackSize++] = (struct timsort_run){
runBase, runLen
};
}
/**
* Ensures that the external array tmp has at least the specified
* number of elements, increasing its size if necessary. The size
* increases exponentially to ensure amortized linear time complexity.
*
* @param minCapacity the minimum required capacity of the tmp array
* @return tmp, whether or not it grew
*/
static void *ensureCapacity(struct timsort *ts, size_t minCapacity,
size_t width) {
if (ts->tmp_length < minCapacity) {
// Compute smallest power of 2 > minCapacity
size_t newSize = minCapacity;
newSize |= newSize >> 1;
newSize |= newSize >> 2;
newSize |= newSize >> 4;
newSize |= newSize >> 8;
newSize |= newSize >> 16;
if (sizeof (newSize) > 4)
newSize |= newSize >> 32;
newSize++;
newSize = MIN(newSize, ts->a_length >> 1);
if (newSize == 0) { // (overflow) Not bloody likely!
newSize = minCapacity;
}
free(ts->tmp);
ts->tmp_length = newSize;
ts->tmp = malloc(ts->tmp_length * width);
}
return ts->tmp;
}
#define WIDTH 4
#include "timsort-impl.h"
#undef WIDTH
#define WIDTH 8
#include "timsort-impl.h"
#undef WIDTH
#define WIDTH 16
#include "timsort-impl.h"
#undef WIDTH
#define WIDTH width
#include "timsort-impl.h"
#undef WIDTH
/**
* @param a the array to be sorted
* @param nel the length of the array
* @param c the comparator to determine the order of the sort
* @param width the element width
* @param opaque data for the comparator function
* @param opaque data for the comparator function
*/
int ejdbtimsort(void *a, size_t nel, size_t width,
int (*c) (const void*, const void*, void*), void *opaque) {
switch (width) {
case 4:
return timsort_4(a, nel, width, c, opaque);
case 8:
return timsort_8(a, nel, width, c, opaque);
case 16:
return timsort_16(a, nel, width, c, opaque);
default:
return timsort_width(a, nel, width, c, opaque);
}
}
typedef struct {
int (*cmp)(const TCLISTDATUM*, const TCLISTDATUM*, void *opaque);
void *tcopaque;
} tclistdata;
static inline int tclistcmp(const void* a, const void* b, void* o) {
tclistdata* op = o;
assert(op && op->cmp);
return op->cmp(a, b, op->tcopaque);
}
int ejdbtimsortlist(TCLIST *list,
int (*compar) (const TCLISTDATUM*, const TCLISTDATUM*, void *opaque), void *opaque) {
tclistdata op;
op.cmp = compar;
op.tcopaque = opaque;
return ejdbtimsort(list->array + list->start, list->num, sizeof (TCLISTDATUM), tclistcmp, &op);
}
|