summaryrefslogtreecommitdiff
path: root/vendor/golang.org/x/crypto/pkcs12/pbkdf.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/golang.org/x/crypto/pkcs12/pbkdf.go')
-rw-r--r--vendor/golang.org/x/crypto/pkcs12/pbkdf.go170
1 files changed, 170 insertions, 0 deletions
diff --git a/vendor/golang.org/x/crypto/pkcs12/pbkdf.go b/vendor/golang.org/x/crypto/pkcs12/pbkdf.go
new file mode 100644
index 0000000..5c419d4
--- /dev/null
+++ b/vendor/golang.org/x/crypto/pkcs12/pbkdf.go
@@ -0,0 +1,170 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package pkcs12
+
+import (
+ "bytes"
+ "crypto/sha1"
+ "math/big"
+)
+
+var (
+ one = big.NewInt(1)
+)
+
+// sha1Sum returns the SHA-1 hash of in.
+func sha1Sum(in []byte) []byte {
+ sum := sha1.Sum(in)
+ return sum[:]
+}
+
+// fillWithRepeats returns v*ceiling(len(pattern) / v) bytes consisting of
+// repeats of pattern.
+func fillWithRepeats(pattern []byte, v int) []byte {
+ if len(pattern) == 0 {
+ return nil
+ }
+ outputLen := v * ((len(pattern) + v - 1) / v)
+ return bytes.Repeat(pattern, (outputLen+len(pattern)-1)/len(pattern))[:outputLen]
+}
+
+func pbkdf(hash func([]byte) []byte, u, v int, salt, password []byte, r int, ID byte, size int) (key []byte) {
+ // implementation of https://tools.ietf.org/html/rfc7292#appendix-B.2 , RFC text verbatim in comments
+
+ // Let H be a hash function built around a compression function f:
+
+ // Z_2^u x Z_2^v -> Z_2^u
+
+ // (that is, H has a chaining variable and output of length u bits, and
+ // the message input to the compression function of H is v bits). The
+ // values for u and v are as follows:
+
+ // HASH FUNCTION VALUE u VALUE v
+ // MD2, MD5 128 512
+ // SHA-1 160 512
+ // SHA-224 224 512
+ // SHA-256 256 512
+ // SHA-384 384 1024
+ // SHA-512 512 1024
+ // SHA-512/224 224 1024
+ // SHA-512/256 256 1024
+
+ // Furthermore, let r be the iteration count.
+
+ // We assume here that u and v are both multiples of 8, as are the
+ // lengths of the password and salt strings (which we denote by p and s,
+ // respectively) and the number n of pseudorandom bits required. In
+ // addition, u and v are of course non-zero.
+
+ // For information on security considerations for MD5 [19], see [25] and
+ // [1], and on those for MD2, see [18].
+
+ // The following procedure can be used to produce pseudorandom bits for
+ // a particular "purpose" that is identified by a byte called "ID".
+ // This standard specifies 3 different values for the ID byte:
+
+ // 1. If ID=1, then the pseudorandom bits being produced are to be used
+ // as key material for performing encryption or decryption.
+
+ // 2. If ID=2, then the pseudorandom bits being produced are to be used
+ // as an IV (Initial Value) for encryption or decryption.
+
+ // 3. If ID=3, then the pseudorandom bits being produced are to be used
+ // as an integrity key for MACing.
+
+ // 1. Construct a string, D (the "diversifier"), by concatenating v/8
+ // copies of ID.
+ var D []byte
+ for i := 0; i < v; i++ {
+ D = append(D, ID)
+ }
+
+ // 2. Concatenate copies of the salt together to create a string S of
+ // length v(ceiling(s/v)) bits (the final copy of the salt may be
+ // truncated to create S). Note that if the salt is the empty
+ // string, then so is S.
+
+ S := fillWithRepeats(salt, v)
+
+ // 3. Concatenate copies of the password together to create a string P
+ // of length v(ceiling(p/v)) bits (the final copy of the password
+ // may be truncated to create P). Note that if the password is the
+ // empty string, then so is P.
+
+ P := fillWithRepeats(password, v)
+
+ // 4. Set I=S||P to be the concatenation of S and P.
+ I := append(S, P...)
+
+ // 5. Set c=ceiling(n/u).
+ c := (size + u - 1) / u
+
+ // 6. For i=1, 2, ..., c, do the following:
+ A := make([]byte, c*20)
+ var IjBuf []byte
+ for i := 0; i < c; i++ {
+ // A. Set A2=H^r(D||I). (i.e., the r-th hash of D||1,
+ // H(H(H(... H(D||I))))
+ Ai := hash(append(D, I...))
+ for j := 1; j < r; j++ {
+ Ai = hash(Ai)
+ }
+ copy(A[i*20:], Ai[:])
+
+ if i < c-1 { // skip on last iteration
+ // B. Concatenate copies of Ai to create a string B of length v
+ // bits (the final copy of Ai may be truncated to create B).
+ var B []byte
+ for len(B) < v {
+ B = append(B, Ai[:]...)
+ }
+ B = B[:v]
+
+ // C. Treating I as a concatenation I_0, I_1, ..., I_(k-1) of v-bit
+ // blocks, where k=ceiling(s/v)+ceiling(p/v), modify I by
+ // setting I_j=(I_j+B+1) mod 2^v for each j.
+ {
+ Bbi := new(big.Int).SetBytes(B)
+ Ij := new(big.Int)
+
+ for j := 0; j < len(I)/v; j++ {
+ Ij.SetBytes(I[j*v : (j+1)*v])
+ Ij.Add(Ij, Bbi)
+ Ij.Add(Ij, one)
+ Ijb := Ij.Bytes()
+ // We expect Ijb to be exactly v bytes,
+ // if it is longer or shorter we must
+ // adjust it accordingly.
+ if len(Ijb) > v {
+ Ijb = Ijb[len(Ijb)-v:]
+ }
+ if len(Ijb) < v {
+ if IjBuf == nil {
+ IjBuf = make([]byte, v)
+ }
+ bytesShort := v - len(Ijb)
+ for i := 0; i < bytesShort; i++ {
+ IjBuf[i] = 0
+ }
+ copy(IjBuf[bytesShort:], Ijb)
+ Ijb = IjBuf
+ }
+ copy(I[j*v:(j+1)*v], Ijb)
+ }
+ }
+ }
+ }
+ // 7. Concatenate A_1, A_2, ..., A_c together to form a pseudorandom
+ // bit string, A.
+
+ // 8. Use the first n bits of A as the output of this entire process.
+ return A[:size]
+
+ // If the above process is being used to generate a DES key, the process
+ // should be used to create 64 random bits, and the key's parity bits
+ // should be set after the 64 bits have been produced. Similar concerns
+ // hold for 2-key and 3-key triple-DES keys, for CDMF keys, and for any
+ // similar keys with parity bits "built into them".
+}