summaryrefslogtreecommitdiff
path: root/inference-engine/thirdparty/mkl-dnn/tests/gtests/test_convolution_relu_forward_common.hpp
blob: 7eb1a8a59ff99de22e5185211add03111b5f44fc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
/*******************************************************************************
* Copyright 2016-2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include "mkldnn_test_common.hpp"
#include "gtest/gtest.h"

#include "mkldnn.hpp"

namespace mkldnn {

template <typename data_t_src, typename data_t_wei,
          typename data_t_acc, typename data_t_dst>
void compute_ref_conv_relu_fwd(const test_convolution_sizes_t &c,
        const memory &src, const memory &weights, const memory &bias,
        const memory &dst, bool w_bias, float negative_slope)
{
    data_t_src *src_data = (data_t_src *)src.get_data_handle();
    data_t_wei *weights_data = (data_t_wei *)weights.get_data_handle();
    data_t_dst *bias_data
            = (data_t_dst *)(w_bias ? bias.get_data_handle() : nullptr);
    data_t_dst *dst_data = (data_t_dst *)dst.get_data_handle();

    const memory::desc src_d = src.get_primitive_desc().desc();
    const memory::desc weights_d = weights.get_primitive_desc().desc();
    const memory::desc dst_d = dst.get_primitive_desc().desc();

    size_t padded_ic = src_d.data.layout_desc.blocking.padding_dims[1];
    size_t padded_oc = dst_d.data.layout_desc.blocking.padding_dims[1];

#pragma omp parallel for collapse(5) schedule(static)
    for (int n = 0; n < c.mb; n++) {
        for (int g = 0; g < c.ng; g++) {
            for (int oc = 0; oc < c.oc / c.ng; oc++) {
                for (int oh = 0; oh < c.oh; oh++) {
                    for (int ow = 0; ow < c.ow; ow++) {
                        size_t oidx = n * padded_oc * c.oh * c.ow
                                + g * padded_oc / c.ng * c.oh * c.ow
                                + oc * c.oh * c.ow + oh * c.ow + ow;
                        dst_data[map_index(dst_d, oidx)] = bias_data ?
                                bias_data[map_index(
                                        bias.get_primitive_desc().desc(),
                                        g * padded_oc / c.ng + oc)] :
                                data_t_dst{0};
                        for (int ic = 0; ic < c.ic / c.ng; ic++) {
                            for (int kh = 0; kh < c.kh; kh++) {
                                for (int kw = 0; kw < c.kw; kw++) {
                                    int iw = ow * c.strw
                                          - c.padw + kw * (1 + c.dilw);
                                    int ih = oh * c.strh
                                          - c.padh + kh * (1 + c.dilh);
                                    if (iw < 0 || iw >= c.iw) continue;
                                    if (ih < 0 || ih >= c.ih) continue;
                                    size_t iidx = n * padded_ic * c.ih * c.iw
                                            + g * padded_ic / c.ng * c.ih * c.iw
                                            + ic * c.ih * c.iw + ih * c.iw + iw;
                                    size_t widx = g * padded_oc / c.ng * padded_ic
                                                    / c.ng * c.kh * c.kw
                                        + oc * padded_ic / c.ng * c.kh * c.kw
                                        + ic * c.kh * c.kw + kh * c.kw + kw;

                                    dst_data[map_index(dst_d, oidx)]
                                            += src_data[map_index(src_d, iidx)]
                                            * weights_data[map_index(
                                                      weights_d, widx)];
                                }
                            }
                        }

                        if (dst_data[map_index(dst_d, oidx)] < 0) {
                            dst_data[map_index(dst_d, oidx)] =
                                static_cast<data_t_dst>( negative_slope
                                * dst_data[map_index(dst_d, oidx)] );
                        }

                    }
                }
            }
        }
    }
}

template <typename data_t_src, typename data_t_wei,
          typename data_t_acc, typename data_t_dst>
class convolution_relu_test
    : public ::testing::TestWithParam<test_convolution_params_t> {
protected:
    virtual void SetUp() {
        auto p = ::testing::TestWithParam<test_convolution_params_t>::GetParam();
        catch_expected_failures([=](){Test();}, p.expect_to_fail,
                    p.expected_status);
    }

    void Test() {
        auto p = ::testing::TestWithParam<test_convolution_params_t>::GetParam();
        ASSERT_TRUE(p.engine_kind == engine::kind::cpu);
        ASSERT_EQ(p.aalgorithm, convolution_direct);
        auto eng = engine(p.engine_kind, 0);
        float negative_slope = p.relu_negative_slope;

        memory::data_type data_type_src = data_traits<data_t_src>::data_type;
        memory::data_type data_type_dst = data_traits<data_t_dst>::data_type;
        memory::data_type data_type_wei = data_traits<data_t_wei>::data_type;

        test_convolution_sizes_t cd = p.sizes;

        auto c_src_desc = create_md({ cd.mb, cd.ic, cd.ih, cd.iw },
                data_type_src, p.formats.src_format);
        auto c_weights_desc = cd.ng > 1 ?
                create_md({ cd.ng, cd.oc / cd.ng, cd.ic / cd.ng, cd.kh, cd.kw },
                        data_type_wei, p.formats.weights_format) :
                create_md({ cd.oc, cd.ic, cd.kh, cd.kw },
                        data_type_wei, p.formats.weights_format);
        auto c_dst_desc = create_md({ cd.mb, cd.oc, cd.oh, cd.ow },
                data_type_dst, p.formats.dst_format);

        auto c_src = memory({c_src_desc, eng});
        auto c_weights = memory({c_weights_desc, eng});
        auto c_dst = memory({c_dst_desc, eng});

        auto dst_ref = memory({c_dst_desc, eng});

        fill_data<data_t_src>(c_src.get_primitive_desc().get_size()
                / sizeof(data_t_src), (data_t_src *)c_src.get_data_handle());
        // TODO: Temporary workaround for testing of convolution + relu
        if (cd.mb) {
            data_t_src *src_data = (data_t_src *)c_src.get_data_handle();
            const int mb_chunk = static_cast<int>(
                (c_src.get_primitive_desc().get_size() / sizeof(data_t_src))
                / cd.mb );
            for (int i = 0; i < cd.mb * mb_chunk; ++i) {
                if ((i / mb_chunk) % 2) src_data[i] *= (data_t_src)-1.;
            }
        }

        fill_data<data_t_wei>(
                c_weights.get_primitive_desc().get_size()
                / sizeof(data_t_wei),(data_t_wei *)c_weights.get_data_handle());
        fill_data<data_t_dst>(
                c_dst.get_primitive_desc().get_size()
                / sizeof(data_t_dst),(data_t_dst *)c_dst.get_data_handle());

        bool with_bias = p.formats.bias_format != memory::format::format_undef;
        auto c_bias_desc = with_bias ?
                create_md({ cd.oc }, data_type_dst, p.formats.bias_format) :
                create_md({}, data_type_dst, p.formats.bias_format);
        auto c_bias = memory({c_bias_desc, eng});
        if (with_bias) {
            fill_data<data_t_dst>(
                    c_bias.get_primitive_desc().get_size() / sizeof(data_t_dst),
                    (data_t_dst *)c_bias.get_data_handle(), 1., true);
        }
        check_zero_tail<data_t_src>(1, c_src);
        check_zero_tail<data_t_wei>(1, c_weights);
        check_zero_tail<data_t_dst>(1, c_dst);

        std::vector<int> padR = {
            right_padding(cd.ih, cd.oh, cd.kh, cd.padh, cd.strh, cd.dilh),
            right_padding(cd.iw, cd.ow, cd.kw, cd.padw, cd.strw, cd.dilw)
        };

        auto conv_desc = with_bias
            ? convolution_forward::desc(prop_kind::forward_scoring,
                    p.aalgorithm, c_src_desc, c_weights_desc, c_bias_desc,
                    c_dst_desc, { cd.strh, cd.strw }, { cd.dilh, cd.dilw },
                    { cd.padh, cd.padw }, padR, padding_kind::zero)
        : convolution_forward::desc(prop_kind::forward_scoring,
                p.aalgorithm, c_src_desc, c_weights_desc, c_dst_desc,
                { cd.strh, cd.strw }, { cd.dilh, cd.dilw },
                { cd.padh, cd.padw }, padR, padding_kind::zero);

        auto conv_relu_desc =
            convolution_relu_forward::desc(conv_desc, negative_slope);
        auto conv_primitive_desc =
            convolution_relu_forward::primitive_desc(conv_relu_desc, eng);

        auto conv = with_bias
            ? convolution_relu_forward(conv_primitive_desc,
                    c_src, c_weights, c_bias, c_dst)
            : convolution_relu_forward(conv_primitive_desc,
                    c_src, c_weights, c_dst);
        std::vector<primitive> pipeline;
        pipeline.push_back(conv);

        stream(stream::kind::lazy).submit(pipeline).wait();

        compute_ref_conv_relu_fwd<data_t_src, data_t_wei, data_t_wei,
            data_t_dst>(cd, c_src, c_weights, c_bias, dst_ref, with_bias,
                    negative_slope);
        check_zero_tail<data_t_dst>(1, dst_ref);
        compare_data<data_t_dst>(dst_ref, c_dst);
        check_zero_tail<data_t_dst>(0, c_dst);

    }
};

}