summaryrefslogtreecommitdiff
path: root/inference-engine/thirdparty/mkl-dnn/examples/simple_rnn.cpp
blob: 105979ad1d807f460cd2d4ca3f6562f6c4c780fb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
/*******************************************************************************
* Copyright 2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include <cstring>
#include <iostream>
#include <math.h>
#include <numeric>
#include <string>

#include "mkl_cblas.h"

#include "mkldnn.hpp"

// MSVC doesn't support collapse clause in omp parallel
#if defined(_MSC_VER) && !defined(__clang__) && !defined(__INTEL_COMPILER)
#define collapse(x)
#endif

using namespace mkldnn;

const int batch = 128;
const int src_seq_length_max = 28;
const int tgt_seq_length_max = 28;

const int feature_size = 1024;

const int enc_bidir_n_layers = 1;
const int enc_unidir_n_layers = 7;
const int dec_n_layers = 8;

const int lstm_n_gates = 4;
const int lstm_n_states = 2;
std::vector<float> weighted_src_layer(batch *feature_size, 1.0f);
std::vector<float> alignment_model(
        src_seq_length_max *batch *feature_size, 1.0f);
std::vector<float> alignments(src_seq_length_max *batch, 1.0f);
std::vector<float> exp_sums(batch, 1.0f);

void compute_weighted_annotations(float *weighted_annotations,
        int src_seq_length_max, int batch, int feature_size,
        float *weights_annot, float *annotations) {
    // annotations(aka enc_dst_layer) is (t, n, 2c)
    // weights_annot is (2c, c)

    // annotation[i] = GEMM(weights_annot, enc_dst_layer[i]);
    cblas_sgemm(CblasColMajor, CblasNoTrans, CblasNoTrans, feature_size,
            src_seq_length_max * batch, feature_size, 1.0f, weights_annot,
            feature_size, annotations, feature_size, 0.0f, weighted_annotations,
            feature_size);
}

void compute_attention(float *context_vectors, int src_seq_length_max,
        int batch, int feature_size, float *weights_src_layer,
        float *dec_src_layer, float *annotations, float *weighted_annotations,
        float *weights_alignments) {
    // dst_iter : (n, c) matrix
    // src_layer: (n, c) matrix
    // weighted_annotations (t, n, c)

    // weights_yi is (c, c)
    // weights_ai is (c, 1)
    // tmp[i] is (n, c)
    // a[i] is (n, 1)
    // p is (n, 1)

    // first we precompute the weighted_dec_src_layer
    cblas_sgemm(CblasColMajor, CblasNoTrans, CblasNoTrans, feature_size, batch,
            feature_size, 1.0f, weights_src_layer, feature_size, dec_src_layer,
            feature_size, 0.0f, weighted_src_layer.data(), feature_size);

    // then we compute the alignment model
    float *alignment_model_ptr = alignment_model.data();
#pragma omp parallel for collapse(2)
    for (int i = 0; i < src_seq_length_max; i++) {
        for (int j = 0; j < batch * feature_size; j++)
            alignment_model_ptr[i * batch * feature_size + j] = tanhf(
                    weighted_src_layer.data()[j]
                    + weighted_annotations[i * batch * feature_size + j]);
    }

    // gemv with alignments weights. the resulting alignments are in alignments
    cblas_sgemm(CblasColMajor, CblasNoTrans, CblasNoTrans, 1,
            src_seq_length_max * batch, feature_size, 1.0f, weights_alignments,
            1, alignment_model_ptr, feature_size, 0.0f, alignments.data(), 1);

// softmax on alignments. the resulting context weights are in alignments
#pragma omp parallel for
    for (int i = 0; i < batch; i++)
        exp_sums[i] = 0.0f;
#pragma omp parallel for collapse(2)
    for (int i = 0; i < src_seq_length_max; i++) {
        for (int j = 0; j < batch; j++) {
            alignments[i * batch + j] = expf(alignments[i * batch + j]);
            exp_sums[j] += alignments[i * batch + j];
        }
    }

#pragma omp parallel for collapse(2)
    for (int i = 0; i < src_seq_length_max; i++)
        for (int j = 0; j < batch; j++)
            alignments[i * batch + j] /= exp_sums[j];

// then we compute the context vectors
#pragma omp parallel for collapse(2)
    for (int i = 0; i < batch; i++)
        for (int j = 0; j < feature_size; j++)
            context_vectors[i * (feature_size + feature_size) + feature_size
                    + j]
                    = 0.0f;

#pragma omp parallel for collapse(3)
    for (int i = 0; i < batch; i++)
        for (int k = 0; k < src_seq_length_max; k++)
            for (int j = 0; j < feature_size; j++)
                context_vectors[i * (feature_size + feature_size) + feature_size
                        + j]
                        += alignments[k * batch + i]
                        * annotations[j + feature_size * (i + batch * k)];
}

void copy_context(float *src_iter, int n_layers, int n_states, int batch,
        int feature_size) {
// we copy the context from the first layer to all other layers
#pragma omp parallel for collapse(3)
    for (int k = 1; k < n_layers; k++)
        for (int j = 0; j < batch; j++)
            for (int i = 0; i < feature_size; i++)
                src_iter[(k * n_states * batch + j)
                                * (feature_size + feature_size)
                        + i]
                        = src_iter[j * (feature_size + feature_size) + i];
}

void simple_net() {
    auto cpu_engine = engine(engine::cpu, 0);
    auto null_memory_ = null_memory(cpu_engine);

    /*
      GNMT Example.
      Note, we do not implement connection yet.
      For the encoder we use:
      - one primitive for the bidirectional layer of the encoder
      - one primitive for all remaining unidirectional layers in the encoder
      For the decoder we use:
      - one primitive for the first iteration
      - one primitive for all subsequent iterations in the decoder. Note that
        in this example, this primitive computes the states in place.
      - the attention mechanism is implemented separately as there is no support
        for the context vectors in MKL-DNN yet
     */

    std::vector<primitive> encoder_net;
    std::vector<primitive> decoder_net;

    std::vector<float> net_src(batch * src_seq_length_max * feature_size, 1.0f);
    std::vector<float> net_dst(batch * tgt_seq_length_max * feature_size, 1.0f);

    /* Encoder */

    memory::dims enc_bidir_src_layer_tz
            = { src_seq_length_max, batch, feature_size };
    memory::dims enc_bidir_weights_layer_tz = { enc_bidir_n_layers, 2,
        feature_size, lstm_n_gates, feature_size };
    memory::dims enc_bidir_weights_iter_tz = { enc_bidir_n_layers, 2,
        feature_size, lstm_n_gates, feature_size };
    memory::dims enc_bidir_bias_tz
            = { enc_bidir_n_layers, 2, lstm_n_gates, feature_size };
    memory::dims enc_bidir_dst_layer_tz
            = { src_seq_length_max, batch, 2 * feature_size };

    /* GNMT encoder: 1 bidirectional layer and 7 unidirectional layers
     */

    std::vector<float> user_enc_bidir_wei_layer(
            enc_bidir_n_layers * 2 * feature_size * lstm_n_gates * feature_size,
            1.0f);
    std::vector<float> user_enc_bidir_wei_iter(
            enc_bidir_n_layers * 2 * feature_size * lstm_n_gates * feature_size,
            1.0f);
    std::vector<float> user_enc_bidir_bias(
            enc_bidir_n_layers * 2 * lstm_n_gates * feature_size, 1.0f);

    // We create the memory descriptors used by the user
    auto user_enc_bidir_src_layer_md = mkldnn::memory::desc(
            { enc_bidir_src_layer_tz }, mkldnn::memory::data_type::f32,
            mkldnn::memory::format::tnc);

    auto user_enc_bidir_wei_layer_md = mkldnn::memory::desc(
            { enc_bidir_weights_layer_tz }, mkldnn::memory::data_type::f32,
            mkldnn::memory::format::ldigo);

    auto user_enc_bidir_wei_iter_md = mkldnn::memory::desc(
            { enc_bidir_weights_iter_tz }, mkldnn::memory::data_type::f32,
            mkldnn::memory::format::ldigo);

    auto user_enc_bidir_bias_md = mkldnn::memory::desc({ enc_bidir_bias_tz },
            mkldnn::memory::data_type::f32, mkldnn::memory::format::ldgo);

    auto enc_bidir_dst_layer_md = mkldnn::memory::desc(
            { enc_bidir_dst_layer_tz }, mkldnn::memory::data_type::f32,
            mkldnn::memory::format::tnc);

    /* We create memories */
    auto user_enc_bidir_src_layer_memory = mkldnn::memory(
            { user_enc_bidir_src_layer_md, cpu_engine }, net_src.data());
    auto user_enc_bidir_wei_layer_memory
            = mkldnn::memory({ user_enc_bidir_wei_layer_md, cpu_engine },
                    user_enc_bidir_wei_layer.data());
    auto user_enc_bidir_wei_iter_memory
            = mkldnn::memory({ user_enc_bidir_wei_iter_md, cpu_engine },
                    user_enc_bidir_wei_iter.data());
    auto user_enc_bidir_bias_memory = mkldnn::memory(
            { user_enc_bidir_bias_md, cpu_engine }, user_enc_bidir_bias.data());

#if 0
    /// These will be null memories
    /// @todo introduce predefined null_memory() ?
    auto enc_bidir_src_iter_memory = mkldnn::memory({enc_bidir_src_iter_md, cpu_engine});
    auto enc_bidir_dst_iter_memory = mkldnn::memory({enc_bidir_dst_iter_md, cpu_engine});
#endif

    /// @todo fix this once cell desc is merged with rnn_desc
    rnn_cell::desc bi_cell(algorithm::vanilla_lstm);
    rnn_forward::desc bi_layer_desc(prop_kind::forward_inference, bi_cell,
            rnn_direction::bidirectional_concat, user_enc_bidir_src_layer_md,
            zero_md(), user_enc_bidir_wei_layer_md, user_enc_bidir_wei_iter_md,
            user_enc_bidir_bias_md, enc_bidir_dst_layer_md, zero_md());

    auto enc_bidir_prim_desc
            = mkldnn::rnn_forward::primitive_desc(bi_layer_desc, cpu_engine);

    // there are currently no reorders
    /// @todo add a reorder when they will be available

    auto enc_bidir_dst_layer_memory
            = mkldnn::memory(enc_bidir_prim_desc.dst_layer_primitive_desc());

    encoder_net.push_back(
            rnn_forward(enc_bidir_prim_desc, user_enc_bidir_src_layer_memory,
                    null_memory_, user_enc_bidir_wei_layer_memory,
                    user_enc_bidir_wei_iter_memory, user_enc_bidir_bias_memory,
                    enc_bidir_dst_layer_memory, null_memory_, null_memory_));

    /* GNMT encoder: unidirectional layers
     */
    // First unidirectinal layer, the scaling from 2*feature size features
    // comming from the previous layer come
    /// memories
    std::vector<float> user_enc_uni_first_wei_layer(
            1 * 1 * 2 * feature_size * lstm_n_gates * feature_size, 1.0f);
    std::vector<float> user_enc_uni_first_wei_iter(
            1 * 1 * feature_size * lstm_n_gates * feature_size, 1.0f);
    std::vector<float> user_enc_uni_first_bias(
            1 * 1 * lstm_n_gates * feature_size, 1.0f);
    memory::dims user_enc_uni_first_wei_layer_dims
            = { 1, 1, 2 * feature_size, lstm_n_gates, feature_size };
    memory::dims user_enc_uni_first_wei_iter_dims
            = { 1, 1, feature_size, lstm_n_gates, feature_size };
    memory::dims user_enc_uni_first_bias_dims
            = { 1, 1, lstm_n_gates, feature_size };
    memory::dims enc_uni_first_dst_layer_dims
            = { src_seq_length_max, batch, feature_size };
    auto user_enc_uni_first_wei_layer_md = mkldnn::memory::desc(
            { user_enc_uni_first_wei_layer_dims },
            mkldnn::memory::data_type::f32, mkldnn::memory::format::ldigo);
    auto user_enc_uni_first_wei_iter_md = mkldnn::memory::desc(
            { user_enc_uni_first_wei_iter_dims },
            mkldnn::memory::data_type::f32, mkldnn::memory::format::ldigo);
    auto user_enc_uni_first_bias_md = mkldnn::memory::desc(
            { user_enc_uni_first_bias_dims }, mkldnn::memory::data_type::f32,
            mkldnn::memory::format::ldgo);
    auto enc_uni_first_dst_layer_md = mkldnn::memory::desc(
            { enc_uni_first_dst_layer_dims }, mkldnn::memory::data_type::f32,
            mkldnn::memory::format::tnc);
    auto user_enc_uni_first_wei_layer_memory
            = mkldnn::memory({ user_enc_uni_first_wei_layer_md, cpu_engine },
                    user_enc_uni_first_wei_layer.data());
    ;
    auto user_enc_uni_first_wei_iter_memory
            = mkldnn::memory({ user_enc_uni_first_wei_iter_md, cpu_engine },
                    user_enc_uni_first_wei_iter.data());
    auto user_enc_uni_first_bias_memory
            = mkldnn::memory({ user_enc_uni_first_bias_md, cpu_engine },
                    user_enc_uni_first_bias.data());

    /// @todo add suport for residual connections
    /// should it be a set residual in op_desc or a field to set manually?
    /// should be an integer to specify at which layer to start
    rnn_cell::desc enc_uni_first_cell(algorithm::vanilla_lstm);
    rnn_forward::desc enc_uni_first_layer_desc(prop_kind::forward_inference,
            enc_uni_first_cell, rnn_direction::unidirectional_left2right,
            enc_bidir_dst_layer_md, zero_md(), user_enc_uni_first_wei_layer_md,
            user_enc_uni_first_wei_iter_md, user_enc_uni_first_bias_md,
            enc_uni_first_dst_layer_md, zero_md());
    auto enc_uni_first_prim_desc = mkldnn::rnn_forward::primitive_desc(
            enc_uni_first_layer_desc, cpu_engine);
    auto enc_uni_first_dst_layer_memory = mkldnn::memory(
            enc_uni_first_prim_desc.dst_layer_primitive_desc());

    /// @todo add a reorder when they will be available
    encoder_net.push_back(rnn_forward(enc_uni_first_prim_desc,
            enc_bidir_dst_layer_memory, null_memory_,
            user_enc_uni_first_wei_layer_memory,
            user_enc_uni_first_wei_iter_memory, user_enc_uni_first_bias_memory,
            enc_uni_first_dst_layer_memory, null_memory_, null_memory_));

    // Remainging Unidirectional layers
    /// memories
    std::vector<float> user_enc_uni_wei_layer((enc_unidir_n_layers - 1) * 1
                    * feature_size * lstm_n_gates * feature_size, 1.0f);
    std::vector<float> user_enc_uni_wei_iter((enc_unidir_n_layers - 1) * 1
                    * feature_size * lstm_n_gates * feature_size, 1.0f);
    std::vector<float> user_enc_uni_bias(
            (enc_unidir_n_layers - 1) * 1 * lstm_n_gates * feature_size, 1.0f);
    memory::dims user_enc_uni_wei_layer_dims = { (enc_unidir_n_layers - 1), 1,
        feature_size, lstm_n_gates, feature_size };
    memory::dims user_enc_uni_wei_iter_dims = { (enc_unidir_n_layers - 1), 1,
        feature_size, lstm_n_gates, feature_size };
    memory::dims user_enc_uni_bias_dims
            = { (enc_unidir_n_layers - 1), 1, lstm_n_gates, feature_size };
    memory::dims enc_dst_layer_dims
            = { src_seq_length_max, batch, feature_size };
    auto user_enc_uni_wei_layer_md = mkldnn::memory::desc(
            { user_enc_uni_wei_layer_dims }, mkldnn::memory::data_type::f32,
            mkldnn::memory::format::ldigo);
    auto user_enc_uni_wei_iter_md = mkldnn::memory::desc(
            { user_enc_uni_wei_iter_dims }, mkldnn::memory::data_type::f32,
            mkldnn::memory::format::ldigo);
    auto user_enc_uni_bias_md = mkldnn::memory::desc({ user_enc_uni_bias_dims },
            mkldnn::memory::data_type::f32, mkldnn::memory::format::ldgo);
    auto enc_dst_layer_md = mkldnn::memory::desc({ enc_dst_layer_dims },
            mkldnn::memory::data_type::f32, mkldnn::memory::format::tnc);
    auto user_enc_uni_wei_layer_memory
            = mkldnn::memory({ user_enc_uni_wei_layer_md, cpu_engine },
                    user_enc_uni_wei_layer.data());
    ;
    auto user_enc_uni_wei_iter_memory
            = mkldnn::memory({ user_enc_uni_wei_iter_md, cpu_engine },
                    user_enc_uni_wei_iter.data());
    auto user_enc_uni_bias_memory = mkldnn::memory(
            { user_enc_uni_bias_md, cpu_engine }, user_enc_uni_bias.data());

    /// @todo add suport for residual connections
    /// should it be a set residual in op_desc or a field to set manually?
    /// should be an integer to specify at which layer to start
    rnn_cell::desc enc_uni_cell(algorithm::vanilla_lstm);
    rnn_forward::desc enc_uni_layer_desc(prop_kind::forward_inference,
            enc_uni_cell, rnn_direction::unidirectional_left2right,
            enc_uni_first_dst_layer_md, zero_md(), user_enc_uni_wei_layer_md,
            user_enc_uni_wei_iter_md, user_enc_uni_bias_md, enc_dst_layer_md,
            zero_md());
    auto enc_uni_prim_desc = mkldnn::rnn_forward::primitive_desc(
            enc_uni_layer_desc, cpu_engine);
    auto enc_dst_layer_memory
            = mkldnn::memory(enc_uni_prim_desc.dst_layer_primitive_desc());

    /// @todo add a reorder when they will be available
    encoder_net.push_back(
            rnn_forward(enc_uni_prim_desc, enc_uni_first_dst_layer_memory,
                    null_memory_, user_enc_uni_wei_layer_memory,
                    user_enc_uni_wei_iter_memory, user_enc_uni_bias_memory,
                    enc_dst_layer_memory, null_memory_, null_memory_));

    /*
     * GNMT: decoder with attention mechanism
     */
    // user provided memories
    std::vector<float> user_dec_wei_layer(
            dec_n_layers * 1 * feature_size * lstm_n_gates * feature_size,
            1.0f);
    std::vector<float> user_dec_wei_iter(dec_n_layers * 1
                    * (feature_size + feature_size) * lstm_n_gates
                    * feature_size, 1.0f);
    std::vector<float> user_dec_bias(
            dec_n_layers * 1 * lstm_n_gates * feature_size, 1.0f);
    std::vector<float> user_dec_dst(
            tgt_seq_length_max * batch * feature_size, 1.0f);
    std::vector<float> user_weights_attention_src_layer(
            feature_size * feature_size, 1.0f);
    std::vector<float> user_weights_annotation(
            feature_size * feature_size, 1.0f);
    std::vector<float> user_weights_alignments(feature_size, 1.0f);

    memory::dims user_dec_wei_layer_dims
            = { dec_n_layers, 1, feature_size, lstm_n_gates, feature_size };
    memory::dims user_dec_wei_iter_dims = { dec_n_layers, 1,
        feature_size + feature_size, lstm_n_gates, feature_size };
    memory::dims user_dec_bias_dims
            = { dec_n_layers, 1, lstm_n_gates, feature_size };

    memory::dims dec_src_layer_dims = { 1, batch, feature_size };
    memory::dims dec_dst_layer_dims
            = { tgt_seq_length_max, batch, feature_size };

    // We will use the same memory for dec_src_iter and dec_dst_iter
    // However, dec_src_iter has a context vector but not
    // dec_dst_iter.
    // To resolve this we will create one memory that holds the
    // context vector as well as the both the hidden and cell states.
    // For the dst_iter, we will use a view on this memory.
    // Note that the cell state will be padded by
    // feature_size values. However, we do not compute or
    // access those.
    memory::dims dec_dst_iter_dims = { dec_n_layers, 1, lstm_n_states, batch,
        feature_size + feature_size };
    memory::dims dec_dst_iter_noctx_dims
            = { dec_n_layers, 1, lstm_n_states, batch, feature_size };

    auto user_dec_wei_layer_md = mkldnn::memory::desc(
            { user_dec_wei_layer_dims }, mkldnn::memory::data_type::f32,
            mkldnn::memory::format::ldigo);
    auto user_dec_wei_iter_md = mkldnn::memory::desc({ user_dec_wei_iter_dims },
            mkldnn::memory::data_type::f32, mkldnn::memory::format::ldigo);
    auto user_dec_bias_md = mkldnn::memory::desc({ user_dec_bias_dims },
            mkldnn::memory::data_type::f32, mkldnn::memory::format::ldgo);
    auto dec_dst_layer_md = mkldnn::memory::desc({ dec_dst_layer_dims },
            mkldnn::memory::data_type::f32, mkldnn::memory::format::tnc);
    auto dec_src_layer_md = mkldnn::memory::desc({ dec_src_layer_dims },
            mkldnn::memory::data_type::f32, mkldnn::memory::format::tnc);
    auto dec_dst_iter_md = mkldnn::memory::desc({ dec_dst_iter_dims },
            mkldnn::memory::data_type::f32, mkldnn::memory::format::ldsnc);
    auto user_dec_wei_layer_memory = mkldnn::memory(
            { user_dec_wei_layer_md, cpu_engine }, user_dec_wei_layer.data());
    ;
    auto user_dec_wei_iter_memory = mkldnn::memory(
            { user_dec_wei_iter_md, cpu_engine }, user_dec_wei_iter.data());
    auto user_dec_bias_memory = mkldnn::memory(
            { user_dec_bias_md, cpu_engine }, user_dec_bias.data());
    auto user_dec_dst_layer_memory = mkldnn::memory(
            { dec_dst_layer_md, cpu_engine }, user_dec_dst.data());
    auto dec_src_layer_memory
            = mkldnn::memory({ dec_src_layer_md, cpu_engine });

    // As mentioned above, we create a view without context out of the
    // memory with context.
    auto dec_dst_iter_memory = mkldnn::memory({ dec_dst_iter_md, cpu_engine });
    auto dec_dst_iter_noctx_md = mkldnn::view::primitive_desc(
            dec_dst_iter_memory.get_primitive_desc(), dec_dst_iter_noctx_dims,
            { 0, 0, 0, 0, 0 }).dst_primitive_desc().desc();

    /// @todo add suport for residual connections
    /// should it be a set residual in op_desc or a field to set manually?
    /// should be an integer to specify at which layer to start
    rnn_cell::desc dec_cell(algorithm::vanilla_lstm);
    rnn_forward::desc dec_ctx_desc(prop_kind::forward_inference, dec_cell,
            rnn_direction::unidirectional_left2right, dec_src_layer_md,
            dec_dst_iter_md, user_dec_wei_layer_md, user_dec_wei_iter_md,
            user_dec_bias_md, dec_dst_layer_md, dec_dst_iter_noctx_md);
    auto dec_ctx_prim_desc
            = mkldnn::rnn_forward::primitive_desc(dec_ctx_desc, cpu_engine);

    /// @todo add a reorder when they will be available
    decoder_net.push_back(rnn_forward(dec_ctx_prim_desc, dec_src_layer_memory,
            dec_dst_iter_memory, user_dec_wei_layer_memory,
            user_dec_wei_iter_memory, user_dec_bias_memory,
            user_dec_dst_layer_memory, dec_dst_iter_memory, null_memory_));

    // allocating temporary buffer for attention mechanism
    std::vector<float> weighted_annotations(
            src_seq_length_max * batch * feature_size, 1.0f);

    /*
       Execution
     */
    auto execute = [&]() {
        // We save the original handle on dst_layer as we will modify it at each
        // iteration
        void *dst_layer_original_handle
                = user_dec_dst_layer_memory.get_data_handle();

        // run encoder (1 stream)
        stream(stream::kind::eager).submit(encoder_net).wait();

        // we compute the weighted annotations once before the decoder
        compute_weighted_annotations(weighted_annotations.data(),
                src_seq_length_max, batch, feature_size,
                user_weights_annotation.data(),
                (float *)enc_dst_layer_memory.get_data_handle());

        // We initialise dst_layer[0] to the embedding of </s>, which are
        // assumed to
        // be 0 here
        memset(dst_layer_original_handle, 0,
                batch * feature_size * sizeof(float));

        for (int i = 0; i < tgt_seq_length_max; i++) {
            float *dst_layer_handle
                    = (float *)user_dec_dst_layer_memory.get_data_handle();
            float *dst_iter_handle
                    = (float *)dec_dst_iter_memory.get_data_handle();

            // Compute attention context vector into the first layer src_iter
            compute_attention(dst_iter_handle, src_seq_length_max, batch,
                    feature_size, user_weights_attention_src_layer.data(),
                    dst_layer_handle,
                    (float *)enc_bidir_dst_layer_memory.get_data_handle(),
                    weighted_annotations.data(),
                    user_weights_alignments.data());

            // copy the context vectors to all layers of src_iter
            copy_context(dst_iter_handle, dec_n_layers, lstm_n_states, batch,
                    feature_size);

            // We set src_layer to be the previously
            dec_src_layer_memory.set_data_handle(dst_layer_handle);

            // run the decoder iteration
            stream(stream::kind::eager).submit(decoder_net).wait();

            // Move the handle on the dst layer to the next iteration
            user_dec_dst_layer_memory.set_data_handle(
                    dst_layer_handle + batch * feature_size);
        }
        // we restore the handle to the begining of the buffer
        user_dec_dst_layer_memory.set_data_handle(dst_layer_original_handle);
        /// @todo run the softmax after each iteration or not?
    };

    execute();
}

int main(int argc, char **argv) {
    try {
        simple_net();
        std::cout << "ok\n";
    } catch (error &e) {
        std::cerr << "status: " << e.status << std::endl;
        std::cerr << "message: " << e.message << std::endl;
        return 1;
    }
    return 0;
}