1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
|
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
/*
* gcenv.os.cpp
*
* GCToOSInterface implementation
*
*
*/
#include "common.h"
#include "gcenv.h"
#ifndef FEATURE_PAL
#include <Psapi.h>
#endif
#ifdef Sleep
#undef Sleep
#endif // Sleep
#include "env/gcenv.os.h"
#define MAX_PTR ((uint8_t*)(~(ptrdiff_t)0))
// Initialize the interface implementation
// Return:
// true if it has succeeded, false if it has failed
bool GCToOSInterface::Initialize()
{
LIMITED_METHOD_CONTRACT;
return true;
}
// Shutdown the interface implementation
void GCToOSInterface::Shutdown()
{
LIMITED_METHOD_CONTRACT;
}
// Get numeric id of the current thread if possible on the
// current platform. It is indended for logging purposes only.
// Return:
// Numeric id of the current thread or 0 if the
uint64_t GCToOSInterface::GetCurrentThreadIdForLogging()
{
LIMITED_METHOD_CONTRACT;
return ::GetCurrentThreadId();
}
// Get id of the process
// Return:
// Id of the current process
uint32_t GCToOSInterface::GetCurrentProcessId()
{
LIMITED_METHOD_CONTRACT;
return ::GetCurrentProcessId();
}
// Set ideal affinity for the current thread
// Parameters:
// affinity - ideal processor affinity for the thread
// Return:
// true if it has succeeded, false if it has failed
bool GCToOSInterface::SetCurrentThreadIdealAffinity(GCThreadAffinity* affinity)
{
LIMITED_METHOD_CONTRACT;
bool success = true;
#if !defined(FEATURE_CORESYSTEM)
SetThreadIdealProcessor(GetCurrentThread(), (DWORD)affinity->Processor);
#elif !defined(FEATURE_PAL)
PROCESSOR_NUMBER proc;
if (affinity->Group != -1)
{
proc.Group = (WORD)affinity->Group;
proc.Number = (BYTE)affinity->Processor;
proc.Reserved = 0;
success = !!SetThreadIdealProcessorEx(GetCurrentThread(), &proc, NULL);
}
else
{
if (GetThreadIdealProcessorEx(GetCurrentThread(), &proc))
{
proc.Number = (BYTE)affinity->Processor;
success = !!SetThreadIdealProcessorEx(GetCurrentThread(), &proc, &proc);
}
}
#endif
return success;
}
// Get the number of the current processor
uint32_t GCToOSInterface::GetCurrentProcessorNumber()
{
LIMITED_METHOD_CONTRACT;
_ASSERTE(CanGetCurrentProcessorNumber());
return ::GetCurrentProcessorNumber();
}
// Check if the OS supports getting current processor number
bool GCToOSInterface::CanGetCurrentProcessorNumber()
{
LIMITED_METHOD_CONTRACT;
#ifdef FEATURE_PAL
return PAL_HasGetCurrentProcessorNumber();
#else
// on all Windows platforms we support this API exists
return true;
#endif
}
// Flush write buffers of processors that are executing threads of the current process
void GCToOSInterface::FlushProcessWriteBuffers()
{
LIMITED_METHOD_CONTRACT;
::FlushProcessWriteBuffers();
}
// Break into a debugger
void GCToOSInterface::DebugBreak()
{
LIMITED_METHOD_CONTRACT;
::DebugBreak();
}
// Get number of logical processors
uint32_t GCToOSInterface::GetLogicalCpuCount()
{
LIMITED_METHOD_CONTRACT;
return ::GetLogicalCpuCount();
}
// Causes the calling thread to sleep for the specified number of milliseconds
// Parameters:
// sleepMSec - time to sleep before switching to another thread
void GCToOSInterface::Sleep(uint32_t sleepMSec)
{
LIMITED_METHOD_CONTRACT;
__SwitchToThread(sleepMSec, 0);
}
// Causes the calling thread to yield execution to another thread that is ready to run on the current processor.
// Parameters:
// switchCount - number of times the YieldThread was called in a loop
void GCToOSInterface::YieldThread(uint32_t switchCount)
{
LIMITED_METHOD_CONTRACT;
__SwitchToThread(0, switchCount);
}
// Reserve virtual memory range.
// Parameters:
// address - starting virtual address, it can be NULL to let the function choose the starting address
// size - size of the virtual memory range
// alignment - requested memory alignment
// flags - flags to control special settings like write watching
// Return:
// Starting virtual address of the reserved range
void* GCToOSInterface::VirtualReserve(size_t size, size_t alignment, uint32_t flags)
{
LIMITED_METHOD_CONTRACT;
DWORD memFlags = (flags & VirtualReserveFlags::WriteWatch) ? (MEM_RESERVE | MEM_WRITE_WATCH) : MEM_RESERVE;
if (alignment == 0)
{
return ::ClrVirtualAlloc(0, size, memFlags, PAGE_READWRITE);
}
else
{
return ::ClrVirtualAllocAligned(0, size, memFlags, PAGE_READWRITE, alignment);
}
}
// Release virtual memory range previously reserved using VirtualReserve
// Parameters:
// address - starting virtual address
// size - size of the virtual memory range
// Return:
// true if it has succeeded, false if it has failed
bool GCToOSInterface::VirtualRelease(void* address, size_t size)
{
LIMITED_METHOD_CONTRACT;
UNREFERENCED_PARAMETER(size);
return !!::ClrVirtualFree(address, 0, MEM_RELEASE);
}
// Commit virtual memory range. It must be part of a range reserved using VirtualReserve.
// Parameters:
// address - starting virtual address
// size - size of the virtual memory range
// Return:
// true if it has succeeded, false if it has failed
bool GCToOSInterface::VirtualCommit(void* address, size_t size)
{
LIMITED_METHOD_CONTRACT;
return ::ClrVirtualAlloc(address, size, MEM_COMMIT, PAGE_READWRITE) != NULL;
}
// Decomit virtual memory range.
// Parameters:
// address - starting virtual address
// size - size of the virtual memory range
// Return:
// true if it has succeeded, false if it has failed
bool GCToOSInterface::VirtualDecommit(void* address, size_t size)
{
LIMITED_METHOD_CONTRACT;
return !!::ClrVirtualFree(address, size, MEM_DECOMMIT);
}
// Reset virtual memory range. Indicates that data in the memory range specified by address and size is no
// longer of interest, but it should not be decommitted.
// Parameters:
// address - starting virtual address
// size - size of the virtual memory range
// unlock - true if the memory range should also be unlocked
// Return:
// true if it has succeeded, false if it has failed
bool GCToOSInterface::VirtualReset(void * address, size_t size, bool unlock)
{
LIMITED_METHOD_CONTRACT;
bool success = ::ClrVirtualAlloc(address, size, MEM_RESET, PAGE_READWRITE) != NULL;
#ifndef FEATURE_PAL
if (success && unlock)
{
// Remove the page range from the working set
::VirtualUnlock(address, size);
}
#endif // FEATURE_PAL
return success;
}
// Check if the OS supports write watching
bool GCToOSInterface::SupportsWriteWatch()
{
LIMITED_METHOD_CONTRACT;
bool writeWatchSupported = false;
// check if the OS supports write-watch.
// Drawbridge does not support write-watch so we still need to do the runtime detection for them.
// Otherwise, all currently supported OSes do support write-watch.
void* mem = VirtualReserve (g_SystemInfo.dwAllocationGranularity, 0, VirtualReserveFlags::WriteWatch);
if (mem != NULL)
{
VirtualRelease (mem, g_SystemInfo.dwAllocationGranularity);
writeWatchSupported = true;
}
return writeWatchSupported;
}
// Reset the write tracking state for the specified virtual memory range.
// Parameters:
// address - starting virtual address
// size - size of the virtual memory range
void GCToOSInterface::ResetWriteWatch(void* address, size_t size)
{
LIMITED_METHOD_CONTRACT;
::ResetWriteWatch(address, size);
}
// Retrieve addresses of the pages that are written to in a region of virtual memory
// Parameters:
// resetState - true indicates to reset the write tracking state
// address - starting virtual address
// size - size of the virtual memory range
// pageAddresses - buffer that receives an array of page addresses in the memory region
// pageAddressesCount - on input, size of the lpAddresses array, in array elements
// on output, the number of page addresses that are returned in the array.
// Return:
// true if it has succeeded, false if it has failed
bool GCToOSInterface::GetWriteWatch(bool resetState, void* address, size_t size, void** pageAddresses, uintptr_t* pageAddressesCount)
{
LIMITED_METHOD_CONTRACT;
uint32_t flags = resetState ? 1 : 0;
ULONG granularity;
bool success = ::GetWriteWatch(flags, address, size, pageAddresses, (ULONG_PTR*)pageAddressesCount, &granularity) == 0;
_ASSERTE (granularity == OS_PAGE_SIZE);
return success;
}
// Get size of the largest cache on the processor die
// Parameters:
// trueSize - true to return true cache size, false to return scaled up size based on
// the processor architecture
// Return:
// Size of the cache
size_t GCToOSInterface::GetLargestOnDieCacheSize(bool trueSize)
{
LIMITED_METHOD_CONTRACT;
return ::GetLargestOnDieCacheSize(trueSize);
}
// Get affinity mask of the current process
// Parameters:
// processMask - affinity mask for the specified process
// systemMask - affinity mask for the system
// Return:
// true if it has succeeded, false if it has failed
// Remarks:
// A process affinity mask is a bit vector in which each bit represents the processors that
// a process is allowed to run on. A system affinity mask is a bit vector in which each bit
// represents the processors that are configured into a system.
// A process affinity mask is a subset of the system affinity mask. A process is only allowed
// to run on the processors configured into a system. Therefore, the process affinity mask cannot
// specify a 1 bit for a processor when the system affinity mask specifies a 0 bit for that processor.
bool GCToOSInterface::GetCurrentProcessAffinityMask(uintptr_t* processMask, uintptr_t* systemMask)
{
LIMITED_METHOD_CONTRACT;
#ifndef FEATURE_PAL
return !!::GetProcessAffinityMask(GetCurrentProcess(), (PDWORD_PTR)processMask, (PDWORD_PTR)systemMask);
#else
return false;
#endif
}
// Get number of processors assigned to the current process
// Return:
// The number of processors
uint32_t GCToOSInterface::GetCurrentProcessCpuCount()
{
LIMITED_METHOD_CONTRACT;
return ::GetCurrentProcessCpuCount();
}
// Return the size of the user-mode portion of the virtual address space of this process.
// Return:
// non zero if it has succeeded, 0 if it has failed
size_t GCToOSInterface::GetVirtualMemoryLimit()
{
LIMITED_METHOD_CONTRACT;
MEMORYSTATUSEX memStatus;
::GetProcessMemoryLoad(&memStatus);
return (size_t)memStatus.ullTotalVirtual;
}
static size_t g_RestrictedPhysicalMemoryLimit = (size_t)MAX_PTR;
#ifndef FEATURE_PAL
typedef BOOL (WINAPI *PGET_PROCESS_MEMORY_INFO)(HANDLE handle, PROCESS_MEMORY_COUNTERS* memCounters, uint32_t cb);
static PGET_PROCESS_MEMORY_INFO GCGetProcessMemoryInfo = 0;
typedef BOOL (WINAPI *PIS_PROCESS_IN_JOB)(HANDLE processHandle, HANDLE jobHandle, BOOL* result);
typedef BOOL (WINAPI *PQUERY_INFORMATION_JOB_OBJECT)(HANDLE jobHandle, JOBOBJECTINFOCLASS jobObjectInfoClass, void* lpJobObjectInfo, DWORD cbJobObjectInfoLength, LPDWORD lpReturnLength);
static size_t GetRestrictedPhysicalMemoryLimit()
{
LIMITED_METHOD_CONTRACT;
// The limit was cached already
if (g_RestrictedPhysicalMemoryLimit != (size_t)MAX_PTR)
return g_RestrictedPhysicalMemoryLimit;
size_t job_physical_memory_limit = (size_t)MAX_PTR;
BOOL in_job_p = FALSE;
HINSTANCE hinstKernel32 = 0;
PIS_PROCESS_IN_JOB GCIsProcessInJob = 0;
PQUERY_INFORMATION_JOB_OBJECT GCQueryInformationJobObject = 0;
GCIsProcessInJob = &(::IsProcessInJob);
if (!GCIsProcessInJob(GetCurrentProcess(), NULL, &in_job_p))
goto exit;
if (in_job_p)
{
hinstKernel32 = WszLoadLibrary(L"kernel32.dll");
if (!hinstKernel32)
goto exit;
GCGetProcessMemoryInfo = (PGET_PROCESS_MEMORY_INFO)GetProcAddress(hinstKernel32, "K32GetProcessMemoryInfo");
if (!GCGetProcessMemoryInfo)
goto exit;
GCQueryInformationJobObject = &(::QueryInformationJobObject);
if (!GCQueryInformationJobObject)
goto exit;
JOBOBJECT_EXTENDED_LIMIT_INFORMATION limit_info;
if (GCQueryInformationJobObject (NULL, JobObjectExtendedLimitInformation, &limit_info,
sizeof(limit_info), NULL))
{
size_t job_memory_limit = (size_t)MAX_PTR;
size_t job_process_memory_limit = (size_t)MAX_PTR;
size_t job_workingset_limit = (size_t)MAX_PTR;
// Notes on the NT job object:
//
// You can specific a bigger process commit or working set limit than
// job limit which is pointless so we use the smallest of all 3 as
// to calculate our "physical memory load" or "available physical memory"
// when running inside a job object, ie, we treat this as the amount of physical memory
// our process is allowed to use.
//
// The commit limit is already reflected by default when you run in a
// job but the physical memory load is not.
//
if ((limit_info.BasicLimitInformation.LimitFlags & JOB_OBJECT_LIMIT_JOB_MEMORY) != 0)
job_memory_limit = limit_info.JobMemoryLimit;
if ((limit_info.BasicLimitInformation.LimitFlags & JOB_OBJECT_LIMIT_PROCESS_MEMORY) != 0)
job_process_memory_limit = limit_info.ProcessMemoryLimit;
if ((limit_info.BasicLimitInformation.LimitFlags & JOB_OBJECT_LIMIT_WORKINGSET) != 0)
job_workingset_limit = limit_info.BasicLimitInformation.MaximumWorkingSetSize;
job_physical_memory_limit = min (job_memory_limit, job_process_memory_limit);
job_physical_memory_limit = min (job_physical_memory_limit, job_workingset_limit);
MEMORYSTATUSEX ms;
::GetProcessMemoryLoad(&ms);
// A sanity check in case someone set a larger limit than there is actual physical memory.
job_physical_memory_limit = (size_t) min (job_physical_memory_limit, ms.ullTotalPhys);
}
}
exit:
if (job_physical_memory_limit == (size_t)MAX_PTR)
{
job_physical_memory_limit = 0;
FreeLibrary(hinstKernel32);
}
VolatileStore(&g_RestrictedPhysicalMemoryLimit, job_physical_memory_limit);
return g_RestrictedPhysicalMemoryLimit;
}
#else
static size_t GetRestrictedPhysicalMemoryLimit()
{
LIMITED_METHOD_CONTRACT;
// The limit was cached already
if (g_RestrictedPhysicalMemoryLimit != (size_t)MAX_PTR)
return g_RestrictedPhysicalMemoryLimit;
size_t memory_limit = PAL_GetRestrictedPhysicalMemoryLimit();
VolatileStore(&g_RestrictedPhysicalMemoryLimit, memory_limit);
return g_RestrictedPhysicalMemoryLimit;
}
#endif // FEATURE_PAL
// Get the physical memory that this process can use.
// Return:
// non zero if it has succeeded, 0 if it has failed
uint64_t GCToOSInterface::GetPhysicalMemoryLimit()
{
LIMITED_METHOD_CONTRACT;
size_t restricted_limit = GetRestrictedPhysicalMemoryLimit();
if (restricted_limit != 0)
return restricted_limit;
MEMORYSTATUSEX memStatus;
::GetProcessMemoryLoad(&memStatus);
return memStatus.ullTotalPhys;
}
// Get memory status
// Parameters:
// memory_load - A number between 0 and 100 that specifies the approximate percentage of physical memory
// that is in use (0 indicates no memory use and 100 indicates full memory use).
// available_physical - The amount of physical memory currently available, in bytes.
// available_page_file - The maximum amount of memory the current process can commit, in bytes.
// Remarks:
// Any parameter can be null.
void GCToOSInterface::GetMemoryStatus(uint32_t* memory_load, uint64_t* available_physical, uint64_t* available_page_file)
{
LIMITED_METHOD_CONTRACT;
uint64_t restricted_limit = GetRestrictedPhysicalMemoryLimit();
if (restricted_limit != 0)
{
size_t workingSetSize;
BOOL status = FALSE;
#ifndef FEATURE_PAL
PROCESS_MEMORY_COUNTERS pmc;
status = GCGetProcessMemoryInfo(GetCurrentProcess(), &pmc, sizeof(pmc));
workingSetSize = pmc.WorkingSetSize;
#else
status = PAL_GetWorkingSetSize(&workingSetSize);
#endif
if(status)
{
if (memory_load)
*memory_load = (uint32_t)((float)workingSetSize * 100.0 / (float)restricted_limit);
if (available_physical)
{
if(workingSetSize > restricted_limit)
*available_physical = 0;
else
*available_physical = restricted_limit - workingSetSize;
}
// Available page file doesn't mean much when physical memory is restricted since
// we don't know how much of it is available to this process so we are not going to
// bother to make another OS call for it.
if (available_page_file)
*available_page_file = 0;
return;
}
}
MEMORYSTATUSEX ms;
::GetProcessMemoryLoad(&ms);
if (memory_load != NULL)
*memory_load = ms.dwMemoryLoad;
if (available_physical != NULL)
*available_physical = ms.ullAvailPhys;
if (available_page_file != NULL)
*available_page_file = ms.ullAvailPageFile;
}
// Get a high precision performance counter
// Return:
// The counter value
int64_t GCToOSInterface::QueryPerformanceCounter()
{
LIMITED_METHOD_CONTRACT;
LARGE_INTEGER ts;
if (!::QueryPerformanceCounter(&ts))
{
DebugBreak();
_ASSERTE(!"Fatal Error - cannot query performance counter.");
EEPOLICY_HANDLE_FATAL_ERROR(COR_E_EXECUTIONENGINE); // TODO: fatal error
}
return ts.QuadPart;
}
// Get a frequency of the high precision performance counter
// Return:
// The counter frequency
int64_t GCToOSInterface::QueryPerformanceFrequency()
{
LIMITED_METHOD_CONTRACT;
LARGE_INTEGER frequency;
if (!::QueryPerformanceFrequency(&frequency))
{
DebugBreak();
_ASSERTE(!"Fatal Error - cannot query performance counter.");
EEPOLICY_HANDLE_FATAL_ERROR(COR_E_EXECUTIONENGINE); // TODO: fatal error
}
return frequency.QuadPart;
}
// Get a time stamp with a low precision
// Return:
// Time stamp in milliseconds
uint32_t GCToOSInterface::GetLowPrecisionTimeStamp()
{
LIMITED_METHOD_CONTRACT;
return ::GetTickCount();
}
// Parameters of the GC thread stub
struct GCThreadStubParam
{
GCThreadFunction GCThreadFunction;
void* GCThreadParam;
};
// GC thread stub to convert GC thread function to an OS specific thread function
static DWORD WINAPI GCThreadStub(void* param)
{
WRAPPER_NO_CONTRACT;
GCThreadStubParam *stubParam = (GCThreadStubParam*)param;
GCThreadFunction function = stubParam->GCThreadFunction;
void* threadParam = stubParam->GCThreadParam;
delete stubParam;
function(threadParam);
return 0;
}
// Create a new thread
// Parameters:
// function - the function to be executed by the thread
// param - parameters of the thread
// affinity - processor affinity of the thread
// Return:
// true if it has succeeded, false if it has failed
bool GCToOSInterface::CreateThread(GCThreadFunction function, void* param, GCThreadAffinity* affinity)
{
LIMITED_METHOD_CONTRACT;
uint32_t thread_id;
NewHolder<GCThreadStubParam> stubParam = new (nothrow) GCThreadStubParam();
if (stubParam == NULL)
{
return false;
}
stubParam->GCThreadFunction = function;
stubParam->GCThreadParam = param;
HANDLE gc_thread = Thread::CreateUtilityThread(Thread::StackSize_Medium, GCThreadStub, stubParam, CREATE_SUSPENDED, (DWORD*)&thread_id);
if (!gc_thread)
{
return false;
}
stubParam.SuppressRelease();
SetThreadPriority(gc_thread, /* THREAD_PRIORITY_ABOVE_NORMAL );*/ THREAD_PRIORITY_HIGHEST );
#ifndef FEATURE_PAL
if (affinity->Group != GCThreadAffinity::None)
{
_ASSERTE(affinity->Processor != GCThreadAffinity::None);
GROUP_AFFINITY ga;
ga.Group = (WORD)affinity->Group;
ga.Reserved[0] = 0; // reserve must be filled with zero
ga.Reserved[1] = 0; // otherwise call may fail
ga.Reserved[2] = 0;
ga.Mask = (size_t)1 << affinity->Processor;
CPUGroupInfo::SetThreadGroupAffinity(gc_thread, &ga, NULL);
}
else if (affinity->Processor != GCThreadAffinity::None)
{
SetThreadAffinityMask(gc_thread, (DWORD_PTR)1 << affinity->Processor);
}
#endif // !FEATURE_PAL
ResumeThread(gc_thread);
CloseHandle(gc_thread);
return true;
}
// Initialize the critical section
void CLRCriticalSection::Initialize()
{
WRAPPER_NO_CONTRACT;
UnsafeInitializeCriticalSection(&m_cs);
}
// Destroy the critical section
void CLRCriticalSection::Destroy()
{
WRAPPER_NO_CONTRACT;
UnsafeDeleteCriticalSection(&m_cs);
}
// Enter the critical section. Blocks until the section can be entered.
void CLRCriticalSection::Enter()
{
WRAPPER_NO_CONTRACT;
UnsafeEnterCriticalSection(&m_cs);
}
// Leave the critical section
void CLRCriticalSection::Leave()
{
WRAPPER_NO_CONTRACT;
UnsafeLeaveCriticalSection(&m_cs);
}
|