1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
|
//
// Copyright (c) Microsoft. All rights reserved.
// Licensed under the MIT license. See LICENSE file in the project root for full license information.
//
// FCall.H
//
//
// FCall is a high-performance alternative to ECall. Unlike ECall, FCall
// methods do not necessarily create a frame. Jitted code calls directly
// to the FCall entry point. It is possible to do operations that need
// to have a frame within an FCall, you need to manually set up the frame
// before you do such operations.
// It is illegal to cause a GC or EH to happen in an FCALL before setting
// up a frame. To prevent accidentally violating this rule, FCALLs turn
// on BEGINGCFORBID, which insures that these things can't happen in a
// checked build without causing an ASSERTE. Once you set up a frame,
// this state is turned off as long as the frame is active, and then is
// turned on again when the frame is torn down. This mechanism should
// be sufficient to insure that the rules are followed.
// In general you set up a frame by using the following macros
// HELPER_METHOD_FRAME_BEGIN_RET*() // Use If the FCALL has a return value
// HELPER_METHOD_FRAME_BEGIN*() // Use If FCALL does not return a value
// HELPER_METHOD_FRAME_END*()
// These macros introduce a scope which is protected by an HelperMethodFrame.
// In this scope you can do EH or GC. There are rules associated with
// their use. In particular
// 1) These macros can only be used in the body of a FCALL (that is
// something using the FCIMPL* or HCIMPL* macros for their decaration.
// 2) You may not perform a 'return' within this scope..
// Compile time errors occur if you try to violate either of these rules.
// The frame that is set up does NOT protect any GC variables (in particular the
// arguments of the FCALL. Thus you need to do an explicit GCPROTECT once the
// frame is established if you need to protect an argument. There are flavors
// of HELPER_METHOD_FRAME that protect a certain number of GC variables. For
// example
// HELPER_METHOD_FRAME_BEGIN_RET_2(arg1, arg2)
// will protect the GC variables arg1, and arg2 as well as erecting the frame.
// Another invariant that you must be aware of is the need to poll to see if
// a GC is needed by some other thread. Unless the FCALL is VERY short,
// every code path through the FCALL must do such a poll. The important
// thing here is that a poll will cause a GC, and thus you can only do it
// when all you GC variables are protected. To make things easier
// HELPER_METHOD_FRAMES that protect things automatically do this poll.
// If you don't need to protect anything HELPER_METHOD_FRAME_BEGIN_0
// will also do the poll.
// Sometimes it is convenient to do the poll a the end of the frame, you
// can use HELPER_METHOD_FRAME_BEGIN_NOPOLL and HELPER_METHOD_FRAME_END_POLL
// to do the poll at the end. If somewhere in the middle is the best
// place you can do that too with HELPER_METHOD_POLL()
// You don't need to erect a helper method frame to do a poll. FC_GC_POLL
// can do this (remember all your GC refs will be trashed).
// Finally if your method is VERY small, you can get away without a poll,
// you have to use FC_GC_POLL_NOT_NEEDED to mark this.
// Use sparingly!
// It is possible to set up the frame as the first operation in the FCALL and
// tear it down as the last operation before returning. This works and is
// reasonably efficient (as good as an ECall), however, if it is the case that
// you can defer the setup of the frame to an unlikely code path (exception path)
// that is much better.
// If you defer setup of the frame, all codepaths leading to the frame setup
// must be wrapped with PERMIT_HELPER_METHOD_FRAME_BEGIN/END. These block
// certain compiler optimizations that interfere with the delayed frame setup.
// These macros are automatically included in the HCIMPL, FCIMPL, and frame
// setup macros.
// <TODO>TODO: we should have a way of doing a trial allocation (an allocation that
// will fail if it would cause a GC). That way even FCALLs that need to allocate
// would not necessarily need to set up a frame. </TODO>
// It is common to only need to set up a frame in order to throw an exception.
// While this can be done by doing
// HELPER_METHOD_FRAME_BEGIN() // Use if FCALL does not return a value
// COMPlusThrow(execpt);
// HELPER_METHOD_FRAME_END()
// It is more efficient (in space) to use convenience macro FCTHROW that does
// this for you (sets up a frame, and does the throw).
// FCTHROW(except)
// Since FCALLS have to conform to the EE calling conventions and not to C
// calling conventions, FCALLS, need to be declared using special macros (FCIMPL*)
// that implement the correct calling conventions. There are variants of these
// macros depending on the number of args, and sometimes the types of the
// arguments.
//------------------------------------------------------------------------
// A very simple example:
//
// FCIMPL2(INT32, Div, INT32 x, INT32 y)
// {
// if (y == 0)
// FCThrow(kDivideByZeroException);
// return x/y;
// }
// FCIMPLEND
//
//
// *** WATCH OUT FOR THESE GOTCHAS: ***
// ------------------------------------
// - In your FCDECL & FCIMPL protos, don't declare a param as type OBJECTREF
// or any of its deriveds. This will break on the checked build because
// __fastcall doesn't enregister C++ objects (which OBJECTREF is).
// Instead, you need to do something like;
//
// FCIMPL(.., .., Object* pObject0)
// OBJECTREF pObject = ObjectToOBJECTREF(pObject0);
// FCIMPL
//
// For similar reasons, use Object* rather than OBJECTREF as a return type.
// Consider either using ObjectToOBJECTREF or calling VALIDATEOBJECTREF
// to make sure your Object* is valid.
//
// - FCThrow() must be called directly from your FCall impl function: it
// cannot be called from a subfunction. Calling from a subfunction breaks
// the VC code parsing workaround that lets us recover the callee saved registers.
// Fortunately, you'll get a compile error complaining about an
// unknown variable "__me".
//
// - If your FCall returns VOID, you must use FCThrowVoid() rather than
// FCThrow(). This is because FCThrow() has to generate an unexecuted
// "return" statement for the code parser.
//
// - If first and/or second argument of your FCall is 64-bit value on x86
// (ie INT64, UINT64 or DOUBLE), you must use "V" versions of FCDECL and
// FCIMPL macros to enregister arguments correctly. For example, FCDECL3_IVI
// must be used for FCalls that take 3 arguments and 2nd argument is INT64.
//
// - You may use structs for protecting multiple OBJECTREF's simultaneously.
// In these cases, you must use a variant of a helper method frame with PROTECT
// in the name, to ensure all the OBJECTREF's in the struct get protected.
// Also, initialize all the OBJECTREF's first. Like this:
//
// FCIMPL4(Object*, COMNlsInfo::nativeChangeCaseString, LocaleIDObject* localeUNSAFE,
// INT_PTR pNativeTextInfo, StringObject* pStringUNSAFE, CLR_BOOL bIsToUpper)
// {
// [ignoring CONTRACT for now]
// struct _gc
// {
// STRINGREF pResult;
// STRINGREF pString;
// LOCALEIDREF pLocale;
// } gc;
// gc.pResult = NULL;
// gc.pString = ObjectToSTRINGREF(pStringUNSAFE);
// gc.pLocale = (LOCALEIDREF)ObjectToOBJECTREF(localeUNSAFE);
//
// HELPER_METHOD_FRAME_BEGIN_RET_PROTECT(gc)
//
// If you forgot the PROTECT part, the macro will only protect the first OBJECTREF,
// introducing a subtle GC hole in your code. Fortunately, we now issue a
// compile-time error if you forget.
// How FCall works:
// ----------------
// An FCall target uses __fastcall or some other calling convention to
// match the IL calling convention exactly. Thus, a call to FCall is a direct
// call to the target w/ no intervening stub or frame.
//
// The tricky part is when FCThrow is called. FCThrow must generate
// a proper method frame before allocating and throwing the exception.
// To do this, it must recover several things:
//
// - The location of the FCIMPL's return address (since that's
// where the frame will be based.)
//
// - The on-entry values of the callee-saved regs; which must
// be recorded in the frame so that GC can update them.
// Depending on how VC compiles your FCIMPL, those values are still
// in the original registers or saved on the stack.
//
// To figure out which, FCThrow() generates the code:
//
// while (NULL == __FCThrow(__me, ...)) {};
// return 0;
//
// The "return" statement will never execute; but its presence guarantees
// that VC will follow the __FCThrow() call with a VC epilog
// that restores the callee-saved registers using a pretty small
// and predictable set of Intel opcodes. __FCThrow() parses this
// epilog and simulates its execution to recover the callee saved
// registers.
//
// The while loop is to prevent the compiler from doing tail call optimizations.
// The helper frame interpretter needs the frame to be present.
//
// - The MethodDesc* that this FCall implements. This MethodDesc*
// is part of the frame and ensures that the FCall will appear
// in the exception's stack trace. To get this, FCDECL declares
// a static local __me, initialized to point to the FC target itself.
// This address is exactly what's stored in the ECall lookup tables;
// so __FCThrow() simply does a reverse lookup on that table to recover
// the MethodDesc*.
//
#if !defined(__FCall_h__) && !defined(CLR_STANDALONE_BINDER)
#define __FCall_h__
#include "gms.h"
#include "runtimeexceptionkind.h"
#include "debugreturn.h"
#include "stackprobe.h"
//==============================================================================================
// These macros defeat compiler optimizations that might mix nonvolatile
// register loads and stores with other code in the function body. This
// creates problems for the frame setup code, which assumes that any
// nonvolatiles that are saved at the point of the frame setup will be
// re-loaded when the frame is popped.
//
// Currently this is only known to be an issue on AMD64. It's uncertain
// whether it is an issue on x86.
//==============================================================================================
#if defined(_TARGET_AMD64_) && !defined(FEATURE_PAL)
//
// On AMD64 this is accomplished by including a setjmp anywhere in a function.
// Doesn't matter whether it is reachable or not, and in fact in optimized
// builds the setjmp is removed altogether.
//
#include <setjmp.h>
//
// Use of setjmp is temporary, we will eventually have compiler intrinsics to
// disable the optimizations. Besides, we don't actually execute setjmp in
// these macros (or anywhere else in the VM on AMD64).
//
#pragma warning(disable:4611) // interaction between '_setjmp' and C++ object destruction is non-portable
#ifdef _DEBUG
//
// Linked list of unmanaged methods preceeding a HelperMethodFrame push. This
// is linked onto the current Thread. Each list entry is stack-allocated so it
// can be associated with an unmanaged frame. Each unmanaged frame needs to be
// associated with at least one list entry.
//
struct HelperMethodFrameCallerList
{
HelperMethodFrameCallerList *pCaller;
};
#endif // _DEBUG
//
// Resets the Thread state at a new managed -> fcall transition.
//
class FCallTransitionState
{
public:
FCallTransitionState () NOT_DEBUG({ LIMITED_METHOD_CONTRACT; });
~FCallTransitionState () NOT_DEBUG({ LIMITED_METHOD_CONTRACT; });
#ifdef _DEBUG
private:
Thread *m_pThread;
HelperMethodFrameCallerList *m_pPreviousHelperMethodFrameCallerList;
#endif // _DEBUG
};
//
// Pushes/pops state for each caller.
//
class PermitHelperMethodFrameState
{
public:
PermitHelperMethodFrameState () NOT_DEBUG({ LIMITED_METHOD_CONTRACT; });
~PermitHelperMethodFrameState () NOT_DEBUG({ LIMITED_METHOD_CONTRACT; });
static VOID CheckHelperMethodFramePermitted () NOT_DEBUG({ LIMITED_METHOD_CONTRACT; });
#ifdef _DEBUG
private:
Thread *m_pThread;
HelperMethodFrameCallerList m_ListEntry;
#endif // _DEBUG
};
//
// Resets the Thread state after the HelperMethodFrame is pushed. At this
// point, the HelperMethodFrame is capable of unwinding to the managed code,
// so we can reset the Thread state for any nested fcalls.
//
class CompletedFCallTransitionState
{
public:
CompletedFCallTransitionState () NOT_DEBUG({ LIMITED_METHOD_CONTRACT; });
~CompletedFCallTransitionState () NOT_DEBUG({ LIMITED_METHOD_CONTRACT; });
#ifdef _DEBUG
private:
HelperMethodFrameCallerList *m_pLastHelperMethodFrameCallerList;
#endif // _DEBUG
};
#define PERMIT_HELPER_METHOD_FRAME_BEGIN() \
if (1) \
{ \
PermitHelperMethodFrameState ___PermitHelperMethodFrameState;
#define PERMIT_HELPER_METHOD_FRAME_END() \
} \
else \
{ \
jmp_buf ___jmpbuf; \
setjmp(___jmpbuf); \
__assume(0); \
}
#define FCALL_TRANSITION_BEGIN() \
FCallTransitionState ___FCallTransitionState; \
PERMIT_HELPER_METHOD_FRAME_BEGIN();
#define FCALL_TRANSITION_END() \
PERMIT_HELPER_METHOD_FRAME_END();
#define CHECK_HELPER_METHOD_FRAME_PERMITTED() \
PermitHelperMethodFrameState::CheckHelperMethodFramePermitted(); \
CompletedFCallTransitionState ___CompletedFCallTransitionState;
#else // unsupported processor
#define PERMIT_HELPER_METHOD_FRAME_BEGIN()
#define PERMIT_HELPER_METHOD_FRAME_END()
#define FCALL_TRANSITION_BEGIN()
#define FCALL_TRANSITION_END()
#define CHECK_HELPER_METHOD_FRAME_PERMITTED()
#endif // unsupported processor
//==============================================================================================
// This is where FCThrow ultimately ends up. Never call this directly.
// Use the FCThrow() macros. __FCThrowArgument is the helper to throw ArgumentExceptions
// with a resource taken from the managed resource manager.
//==============================================================================================
LPVOID __FCThrow(LPVOID me, enum RuntimeExceptionKind reKind, UINT resID, LPCWSTR arg1, LPCWSTR arg2, LPCWSTR arg3);
LPVOID __FCThrowArgument(LPVOID me, enum RuntimeExceptionKind reKind, LPCWSTR argumentName, LPCWSTR resourceName);
//==============================================================================================
// FDECLn: A set of macros for generating header declarations for FC targets.
// Use FIMPLn for the actual body.
//==============================================================================================
// Note: on the x86, these defs reverse all but the first two arguments
// (IL stack calling convention is reversed from __fastcall.)
// Calling convention for varargs
#define F_CALL_VA_CONV __cdecl
#ifdef _TARGET_X86_
// Choose the appropriate calling convention for FCALL helpers on the basis of the JIT calling convention
#ifdef __GNUC__
#define F_CALL_CONV __attribute__((stdcall, regparm(3)))
#else
#define F_CALL_CONV __fastcall
#endif
#if defined(__GNUC__)
// GCC fastcall convention is different from MSVC fastcall convention. GCC can use up to 3 registers to
// store parameters. The registers used are EAX, EDX, ECX. Dummy parameters and reordering of the
// actual parameters in the FCALL signature is used to make the calling convention to look like in MSVC.
#define FCDECL0(rettype, funcname) rettype F_CALL_CONV funcname()
#define FCDECL1(rettype, funcname, a1) rettype F_CALL_CONV funcname(int /* EAX */, int /* EDX */, a1)
#define FCDECL1_V(rettype, funcname, a1) rettype F_CALL_CONV funcname(int /* EAX */, int /* EDX */, int /* ECX */, a1)
#define FCDECL2(rettype, funcname, a1, a2) rettype F_CALL_CONV funcname(int /* EAX */, a2, a1)
#define FCDECL2VA(rettype, funcname, a1, a2) rettype F_CALL_VA_CONV funcname(a1, a2, ...)
#define FCDECL2_VV(rettype, funcname, a1, a2) rettype F_CALL_CONV funcname(int /* EAX */, int /* EDX */, int /* ECX */, a2, a1)
#define FCDECL2_VI(rettype, funcname, a1, a2) rettype F_CALL_CONV funcname(int /* EAX */, int /* EDX */, a2, a1)
#define FCDECL2_IV(rettype, funcname, a1, a2) rettype F_CALL_CONV funcname(int /* EAX */, int /* EDX */, a1, a2)
#define FCDECL3(rettype, funcname, a1, a2, a3) rettype F_CALL_CONV funcname(int /* EAX */, a2, a1, a3)
#define FCDECL3_IIV(rettype, funcname, a1, a2, a3) rettype F_CALL_CONV funcname(int /* EAX */, a2, a1, a3)
#define FCDECL3_VII(rettype, funcname, a1, a2, a3) rettype F_CALL_CONV funcname(int /* EAX */, a3, a2, a1)
#define FCDECL3_IVV(rettype, funcname, a1, a2, a3) rettype F_CALL_CONV funcname(int /* EAX */, int /* EDX */, a1, a3, a2)
#define FCDECL3_IVI(rettype, funcname, a1, a2, a3) rettype F_CALL_CONV funcname(int /* EAX */, a3, a1, a2)
#define FCDECL3_VVI(rettype, funcname, a1, a2, a3) rettype F_CALL_CONV funcname(int /* EAX */, int /* EDX */, a3, a2, a1)
#define FCDECL4(rettype, funcname, a1, a2, a3, a4) rettype F_CALL_CONV funcname(int /* EAX */, a2, a1, a4, a3)
#define FCDECL5(rettype, funcname, a1, a2, a3, a4, a5) rettype F_CALL_CONV funcname(int /* EAX */, a2, a1, a5, a4, a3)
#define FCDECL6(rettype, funcname, a1, a2, a3, a4, a5, a6) rettype F_CALL_CONV funcname(int /* EAX */, a2, a1, a6, a5, a4, a3)
#define FCDECL7(rettype, funcname, a1, a2, a3, a4, a5, a6, a7) rettype F_CALL_CONV funcname(int /* EAX */, a2, a1, a7, a6, a5, a4, a3)
#define FCDECL8(rettype, funcname, a1, a2, a3, a4, a5, a6, a7, a8) rettype F_CALL_CONV funcname(int /* EAX */, a2, a1, a8, a7, a6, a5, a4, a3)
#define FCDECL9(rettype, funcname, a1, a2, a3, a4, a5, a6, a7, a8, a9) rettype F_CALL_CONV funcname(int /* EAX */, a2, a1, a9, a8, a7, a6, a5, a4, a3)
#define FCDECL10(rettype,funcname, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10) rettype F_CALL_CONV funcname(int /* EAX */, a2, a1, a10, a9, a8, a7, a6, a5, a4, a3)
#define FCDECL11(rettype,funcname, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11) rettype F_CALL_CONV funcname(int /* EAX */, a2, a1, a11, a10, a9, a8, a7, a6, a5, a4, a3)
#define FCDECL12(rettype,funcname, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12) rettype F_CALL_CONV funcname(int /* EAX */, a2, a1, a12, a11, a10, a9, a8, a7, a6, a5, a4, a3)
#define FCDECL13(rettype,funcname, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13) rettype F_CALL_CONV funcname(int /* EAX */, a2, a1, a13, a12, a11, a10, a9, a8, a7, a6, a5, a4, a3)
#define FCDECL14(rettype,funcname, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14) rettype F_CALL_CONV funcname(int /* EAX */, a2, a1, a14, a13, a12, a11, a10, a9, a8, a7, a6, a5, a4, a3)
#define FCDECL5_IVI(rettype, funcname, a1, a2, a3, a4, a5) rettype F_CALL_CONV funcname(int /* EAX */, a3, a1, a5, a4, a2)
#define FCDECL5_VII(rettype, funcname, a1, a2, a3, a4, a5) rettype F_CALL_CONV funcname(int /* EAX */, a3, a2, a5, a4, a1)
#else // __GNUC__
#define FCDECL0(rettype, funcname) rettype F_CALL_CONV funcname()
#define FCDECL1(rettype, funcname, a1) rettype F_CALL_CONV funcname(a1)
#define FCDECL1_V(rettype, funcname, a1) rettype F_CALL_CONV funcname(a1)
#define FCDECL2(rettype, funcname, a1, a2) rettype F_CALL_CONV funcname(a1, a2)
#define FCDECL2VA(rettype, funcname, a1, a2) rettype F_CALL_VA_CONV funcname(a1, a2, ...)
#define FCDECL2_VV(rettype, funcname, a1, a2) rettype F_CALL_CONV funcname(a2, a1)
#define FCDECL2_VI(rettype, funcname, a1, a2) rettype F_CALL_CONV funcname(a2, a1)
#define FCDECL2_IV(rettype, funcname, a1, a2) rettype F_CALL_CONV funcname(a1, a2)
#define FCDECL3(rettype, funcname, a1, a2, a3) rettype F_CALL_CONV funcname(a1, a2, a3)
#define FCDECL3_IIV(rettype, funcname, a1, a2, a3) rettype F_CALL_CONV funcname(a1, a2, a3)
#define FCDECL3_VII(rettype, funcname, a1, a2, a3) rettype F_CALL_CONV funcname(a2, a3, a1)
#define FCDECL3_IVV(rettype, funcname, a1, a2, a3) rettype F_CALL_CONV funcname(a1, a3, a2)
#define FCDECL3_IVI(rettype, funcname, a1, a2, a3) rettype F_CALL_CONV funcname(a1, a3, a2)
#define FCDECL3_VVI(rettype, funcname, a1, a2, a3) rettype F_CALL_CONV funcname(a2, a1, a3)
#define FCDECL4(rettype, funcname, a1, a2, a3, a4) rettype F_CALL_CONV funcname(a1, a2, a4, a3)
#define FCDECL5(rettype, funcname, a1, a2, a3, a4, a5) rettype F_CALL_CONV funcname(a1, a2, a5, a4, a3)
#define FCDECL6(rettype, funcname, a1, a2, a3, a4, a5, a6) rettype F_CALL_CONV funcname(a1, a2, a6, a5, a4, a3)
#define FCDECL7(rettype, funcname, a1, a2, a3, a4, a5, a6, a7) rettype F_CALL_CONV funcname(a1, a2, a7, a6, a5, a4, a3)
#define FCDECL8(rettype, funcname, a1, a2, a3, a4, a5, a6, a7, a8) rettype F_CALL_CONV funcname(a1, a2, a8, a7, a6, a5, a4, a3)
#define FCDECL9(rettype, funcname, a1, a2, a3, a4, a5, a6, a7, a8, a9) rettype F_CALL_CONV funcname(a1, a2, a9, a8, a7, a6, a5, a4, a3)
#define FCDECL10(rettype,funcname, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10) rettype F_CALL_CONV funcname(a1, a2, a10, a9, a8, a7, a6, a5, a4, a3)
#define FCDECL11(rettype,funcname, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11) rettype F_CALL_CONV funcname(a1, a2, a11, a10, a9, a8, a7, a6, a5, a4, a3)
#define FCDECL12(rettype,funcname, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12) rettype F_CALL_CONV funcname(a1, a2, a12, a11, a10, a9, a8, a7, a6, a5, a4, a3)
#define FCDECL13(rettype,funcname, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13) rettype F_CALL_CONV funcname(a1, a2, a13, a12, a11, a10, a9, a8, a7, a6, a5, a4, a3)
#define FCDECL14(rettype,funcname, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14) rettype F_CALL_CONV funcname(a1, a2, a14, a13, a12, a11, a10, a9, a8, a7, a6, a5, a4, a3)
#define FCDECL5_IVI(rettype, funcname, a1, a2, a3, a4, a5) rettype F_CALL_CONV funcname(a1, a3, a5, a4, a2)
#define FCDECL5_VII(rettype, funcname, a1, a2, a3, a4, a5) rettype F_CALL_CONV funcname(a2, a3, a5, a4, a1)
#endif // __GNUC__
#if 0
//
// don't use something like this... directly calling an FCALL from within the runtime breaks stackwalking because
// the FCALL reverse mapping only gets established in ECall::GetFCallImpl and that codepath is circumvented by
// directly calling and FCALL
// See below for usage of FC_CALL_INNER (used in SecurityStackWalk::Check presently)
//
#define FCCALL0(funcname) funcname()
#define FCCALL1(funcname, a1) funcname(a1)
#define FCCALL2(funcname, a1, a2) funcname(a1, a2)
#define FCCALL3(funcname, a1, a2, a3) funcname(a1, a2, a3)
#define FCCALL4(funcname, a1, a2, a3, a4) funcname(a1, a2, a4, a3)
#define FCCALL5(funcname, a1, a2, a3, a4, a5) funcname(a1, a2, a5, a4, a3)
#define FCCALL6(funcname, a1, a2, a3, a4, a5, a6) funcname(a1, a2, a6, a5, a4, a3)
#define FCCALL7(funcname, a1, a2, a3, a4, a5, a6, a7) funcname(a1, a2, a7, a6, a5, a4, a3)
#define FCCALL8(funcname, a1, a2, a3, a4, a5, a6, a7, a8) funcname(a1, a2, a8, a7, a6, a5, a4, a3)
#define FCCALL9(funcname, a1, a2, a3, a4, a5, a6, a7, a8, a9) funcname(a1, a2, a9, a8, a7, a6, a5, a4, a3)
#define FCCALL10(funcname, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10) funcname(a1, a2, a10, a9, a8, a7, a6, a5, a4, a3)
#define FCCALL11(funcname, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11) funcname(a1, a2, a11, a10, a9, a8, a7, a6, a5, a4, a3)
#define FCCALL12(funcname, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12) funcname(a1, a2, a12, a11, a10, a9, a8, a7, a6, a5, a4, a3)
#endif // 0
#else // !_TARGET_X86
#define F_CALL_CONV
#define FCDECL0(rettype, funcname) rettype funcname()
#define FCDECL1(rettype, funcname, a1) rettype funcname(a1)
#define FCDECL1_V(rettype, funcname, a1) rettype funcname(a1)
#define FCDECL2(rettype, funcname, a1, a2) rettype funcname(a1, a2)
#define FCDECL2VA(rettype, funcname, a1, a2) rettype funcname(a1, a2, ...)
#define FCDECL2_VV(rettype, funcname, a1, a2) rettype funcname(a1, a2)
#define FCDECL2_VI(rettype, funcname, a1, a2) rettype funcname(a1, a2)
#define FCDECL2_IV(rettype, funcname, a1, a2) rettype funcname(a1, a2)
#define FCDECL3(rettype, funcname, a1, a2, a3) rettype funcname(a1, a2, a3)
#define FCDECL3_IIV(rettype, funcname, a1, a2, a3) rettype funcname(a1, a2, a3)
#define FCDECL3_VII(rettype, funcname, a1, a2, a3) rettype funcname(a1, a2, a3)
#define FCDECL3_IVV(rettype, funcname, a1, a2, a3) rettype funcname(a1, a2, a3)
#define FCDECL3_IVI(rettype, funcname, a1, a2, a3) rettype funcname(a1, a2, a3)
#define FCDECL3_VVI(rettype, funcname, a1, a2, a3) rettype funcname(a1, a2, a3)
#define FCDECL4(rettype, funcname, a1, a2, a3, a4) rettype funcname(a1, a2, a3, a4)
#define FCDECL5(rettype, funcname, a1, a2, a3, a4, a5) rettype funcname(a1, a2, a3, a4, a5)
#define FCDECL6(rettype, funcname, a1, a2, a3, a4, a5, a6) rettype funcname(a1, a2, a3, a4, a5, a6)
#define FCDECL7(rettype, funcname, a1, a2, a3, a4, a5, a6, a7) rettype funcname(a1, a2, a3, a4, a5, a6, a7)
#define FCDECL8(rettype, funcname, a1, a2, a3, a4, a5, a6, a7, a8) rettype funcname(a1, a2, a3, a4, a5, a6, a7, a8)
#define FCDECL9(rettype, funcname, a1, a2, a3, a4, a5, a6, a7, a8, a9) rettype funcname(a1, a2, a3, a4, a5, a6, a7, a8, a9)
#define FCDECL10(rettype,funcname, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10) rettype funcname(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10)
#define FCDECL11(rettype,funcname, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11) rettype funcname(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11)
#define FCDECL12(rettype,funcname, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12) rettype funcname(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12)
#define FCDECL13(rettype,funcname, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13) rettype funcname(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13)
#define FCDECL14(rettype,funcname, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14) rettype funcname(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14)
#define FCDECL5_IVI(rettype, funcname, a1, a2, a3, a4, a5) rettype funcname(a1, a2, a3, a4, a5)
#define FCDECL5_VII(rettype, funcname, a1, a2, a3, a4, a5) rettype funcname(a1, a2, a3, a4, a5)
#endif // _TARGET_X86_
#define HELPER_FRAME_DECL(x) FrameWithCookie<HelperMethodFrame_##x##OBJ> __helperframe
// use the capture state machinery if the architecture has one
//
// For a normal build we create a loop (see explaination on RestoreState below)
// We don't want a loop here for PREFAST since that causes
// warning 263: Using _alloca in a loop
// And we can't use DEBUG_OK_TO_RETURN for PREFAST because the PREFAST version
// requires that you already be in a DEBUG_ASSURE_NO_RETURN_BEGIN scope
#define HelperMethodFrame_0OBJ HelperMethodFrame
#define HELPER_FRAME_ARGS(attribs) __me, attribs
#define FORLAZYMACHSTATE(x) x
#if defined(_PREFAST_)
#define FORLAZYMACHSTATE_BEGINLOOP(x) x
#define FORLAZYMACHSTATE_ENDLOOP(x)
#define FORLAZYMACHSTATE_DEBUG_OK_TO_RETURN_BEGIN
#define FORLAZYMACHSTATE_DEBUG_OK_TO_RETURN_END
#else
#define FORLAZYMACHSTATE_BEGINLOOP(x) x do
#define FORLAZYMACHSTATE_ENDLOOP(x) while(x)
#define FORLAZYMACHSTATE_DEBUG_OK_TO_RETURN_BEGIN DEBUG_OK_TO_RETURN_BEGIN(LAZYMACHSTATE)
#define FORLAZYMACHSTATE_DEBUG_OK_TO_RETURN_END DEBUG_OK_TO_RETURN_END(LAZYMACHSTATE)
#endif
// BEGIN: before gcpoll
//FCallGCCanTriggerNoDtor __fcallGcCanTrigger;
//__fcallGcCanTrigger.Enter();
// END: after gcpoll
//__fcallGcCanTrigger.Leave(__FUNCTION__, __FILE__, __LINE__);
// We have to put DEBUG_OK_TO_RETURN_BEGIN around the FORLAZYMACHSTATE
// to allow the HELPER_FRAME to be installed inside an SO_INTOLERANT region
// which does not allow a return. The return is used by FORLAZYMACHSTATE
// to capture the state, but is not an actual return, so it is ok.
#define HELPER_METHOD_FRAME_BEGIN_EX_BODY(ret, helperFrame, gcpoll, allowGC) \
FORLAZYMACHSTATE_BEGINLOOP(int alwaysZero = 0;) \
{ \
INDEBUG(static BOOL __haveCheckedRestoreState = FALSE;) \
PERMIT_HELPER_METHOD_FRAME_BEGIN(); \
CHECK_HELPER_METHOD_FRAME_PERMITTED(); \
helperFrame; \
FORLAZYMACHSTATE_DEBUG_OK_TO_RETURN_BEGIN; \
FORLAZYMACHSTATE(CAPTURE_STATE(__helperframe.MachineState(), ret);) \
FORLAZYMACHSTATE_DEBUG_OK_TO_RETURN_END; \
INDEBUG(__helperframe.SetAddrOfHaveCheckedRestoreState(&__haveCheckedRestoreState)); \
DEBUG_ASSURE_NO_RETURN_BEGIN(HELPER_METHOD_FRAME); \
INCONTRACT(FCallGCCanTrigger::Enter()); \
__helperframe.Push(); \
MAKE_CURRENT_THREAD_AVAILABLE_EX(__helperframe.GetThread()); \
#define HELPER_METHOD_FRAME_BEGIN_EX(ret, helperFrame, gcpoll, allowGC) \
HELPER_METHOD_FRAME_BEGIN_EX_BODY(ret, helperFrame, gcpoll, allowGC) \
TESTHOOKCALL(AppDomainCanBeUnloaded(GET_THREAD()->GetDomain()->GetId().m_dwId,!allowGC)); \
/* <TODO>TODO TURN THIS ON!!! </TODO> */ \
/* gcpoll; */ \
INSTALL_UNWIND_AND_CONTINUE_HANDLER_FOR_HMF(&__helperframe);
#define HELPER_METHOD_FRAME_BEGIN_EX_NOTHROW(ret, helperFrame, gcpoll, allowGC, probeFailExpr) \
HELPER_METHOD_FRAME_BEGIN_EX_BODY(ret, helperFrame, gcpoll, allowGC) \
/* <TODO>TODO TURN THIS ON!!! </TODO> */ \
/* gcpoll; */ \
BEGIN_SO_INTOLERANT_CODE_NOTHROW(GET_THREAD(), probeFailExpr);
// The while(__helperframe.RestoreState() needs a bit of explanation.
// The issue is insuring that the same machine state (which registers saved)
// exists when the machine state is probed (when the frame is created, and
// when it is actually used (when the frame is popped. We do this by creating
// a flow of control from use to def. Note that 'RestoreState' always returns false
// we never actually loop, but the compiler does not know that, and thus
// will be forced to make the keep the state of register spills the same at
// the two locations.
#define HELPER_METHOD_FRAME_END_EX_BODY(gcpoll,allowGC) \
/* <TODO>TODO TURN THIS ON!!! </TODO> */ \
/* gcpoll; */ \
__helperframe.Pop(); \
DEBUG_ASSURE_NO_RETURN_END(HELPER_METHOD_FRAME); \
INCONTRACT(FCallGCCanTrigger::Leave(__FUNCTION__, __FILE__, __LINE__)); \
FORLAZYMACHSTATE(alwaysZero = \
HelperMethodFrameRestoreState(INDEBUG_COMMA(&__helperframe) \
__helperframe.MachineState());) \
PERMIT_HELPER_METHOD_FRAME_END() \
} FORLAZYMACHSTATE_ENDLOOP(alwaysZero);
#define HELPER_METHOD_FRAME_END_EX(gcpoll,allowGC) \
UNINSTALL_UNWIND_AND_CONTINUE_HANDLER; \
TESTHOOKCALL(AppDomainCanBeUnloaded(GET_THREAD()->GetDomain()->GetId().m_dwId,!allowGC)); \
HELPER_METHOD_FRAME_END_EX_BODY(gcpoll,allowGC);
#define HELPER_METHOD_FRAME_END_EX_NOTHROW(gcpoll,allowGC) \
END_SO_INTOLERANT_CODE; \
HELPER_METHOD_FRAME_END_EX_BODY(gcpoll,allowGC);
#define HELPER_METHOD_FRAME_BEGIN_ATTRIB(attribs) \
HELPER_METHOD_FRAME_BEGIN_EX( \
return, \
HELPER_FRAME_DECL(0)(HELPER_FRAME_ARGS(attribs)), \
HELPER_METHOD_POLL(),TRUE)
#define HELPER_METHOD_FRAME_BEGIN_0() \
HELPER_METHOD_FRAME_BEGIN_ATTRIB(Frame::FRAME_ATTR_NONE)
#define HELPER_METHOD_FRAME_BEGIN_ATTRIB_NOPOLL(attribs) \
HELPER_METHOD_FRAME_BEGIN_EX( \
return, \
HELPER_FRAME_DECL(0)(HELPER_FRAME_ARGS(attribs)), \
{},FALSE)
#define HELPER_METHOD_FRAME_BEGIN_NOPOLL() HELPER_METHOD_FRAME_BEGIN_ATTRIB_NOPOLL(Frame::FRAME_ATTR_NONE)
#define HELPER_METHOD_FRAME_BEGIN_ATTRIB_1(attribs, arg1) \
static_assert(sizeof(arg1) == sizeof(OBJECTREF), "GC protecting structs of multiple OBJECTREFs requires a PROTECT variant of the HELPER METHOD FRAME macro");\
HELPER_METHOD_FRAME_BEGIN_EX( \
return, \
HELPER_FRAME_DECL(1)(HELPER_FRAME_ARGS(attribs), \
(OBJECTREF*) &arg1), \
HELPER_METHOD_POLL(),TRUE)
#define HELPER_METHOD_FRAME_BEGIN_1(arg1) HELPER_METHOD_FRAME_BEGIN_ATTRIB_1(Frame::FRAME_ATTR_NONE, arg1)
#define HELPER_METHOD_FRAME_BEGIN_ATTRIB_2(attribs, arg1, arg2) \
static_assert(sizeof(arg1) == sizeof(OBJECTREF), "GC protecting structs of multiple OBJECTREFs requires a PROTECT variant of the HELPER METHOD FRAME macro");\
static_assert(sizeof(arg2) == sizeof(OBJECTREF), "GC protecting structs of multiple OBJECTREFs requires a PROTECT variant of the HELPER METHOD FRAME macro");\
HELPER_METHOD_FRAME_BEGIN_EX( \
return, \
HELPER_FRAME_DECL(2)(HELPER_FRAME_ARGS(attribs), \
(OBJECTREF*) &arg1, (OBJECTREF*) &arg2), \
HELPER_METHOD_POLL(),TRUE)
#define HELPER_METHOD_FRAME_BEGIN_2(arg1, arg2) HELPER_METHOD_FRAME_BEGIN_ATTRIB_2(Frame::FRAME_ATTR_NONE, arg1, arg2)
#define HELPER_METHOD_FRAME_BEGIN_PROTECT(gc) \
HELPER_METHOD_FRAME_BEGIN_EX( \
return, \
HELPER_FRAME_DECL(PROTECT)(HELPER_FRAME_ARGS(Frame::FRAME_ATTR_NONE), \
(OBJECTREF*)&(gc), sizeof(gc)/sizeof(OBJECTREF)), \
HELPER_METHOD_POLL(),TRUE)
#define HELPER_METHOD_FRAME_BEGIN_RET_ATTRIB_NOPOLL(attribs) \
HELPER_METHOD_FRAME_BEGIN_EX( \
return 0, \
HELPER_FRAME_DECL(0)(HELPER_FRAME_ARGS(attribs)), \
{},FALSE)
#define HELPER_METHOD_FRAME_BEGIN_RET_VC_ATTRIB_NOPOLL(attribs) \
HELPER_METHOD_FRAME_BEGIN_EX( \
FC_RETURN_VC(), \
HELPER_FRAME_DECL(0)(HELPER_FRAME_ARGS(attribs)), \
{},FALSE)
#define HELPER_METHOD_FRAME_BEGIN_RET_ATTRIB(attribs) \
HELPER_METHOD_FRAME_BEGIN_EX( \
return 0, \
HELPER_FRAME_DECL(0)(HELPER_FRAME_ARGS(attribs)), \
HELPER_METHOD_POLL(),TRUE)
#define HELPER_METHOD_FRAME_BEGIN_RET_0() \
HELPER_METHOD_FRAME_BEGIN_RET_ATTRIB(Frame::FRAME_ATTR_NONE)
#define HELPER_METHOD_FRAME_BEGIN_RET_VC_0() \
HELPER_METHOD_FRAME_BEGIN_EX( \
FC_RETURN_VC(), \
HELPER_FRAME_DECL(0)(HELPER_FRAME_ARGS(Frame::FRAME_ATTR_NONE)), \
HELPER_METHOD_POLL(),TRUE)
#define HELPER_METHOD_FRAME_BEGIN_RET_ATTRIB_1(attribs, arg1) \
static_assert(sizeof(arg1) == sizeof(OBJECTREF), "GC protecting structs of multiple OBJECTREFs requires a PROTECT variant of the HELPER METHOD FRAME macro");\
HELPER_METHOD_FRAME_BEGIN_EX( \
return 0, \
HELPER_FRAME_DECL(1)(HELPER_FRAME_ARGS(attribs), \
(OBJECTREF*) &arg1), \
HELPER_METHOD_POLL(),TRUE)
#define HELPER_METHOD_FRAME_BEGIN_RET_NOTHROW_1(probeFailExpr, arg1) \
static_assert(sizeof(arg1) == sizeof(OBJECTREF), "GC protecting structs of multiple OBJECTREFs requires a PROTECT variant of the HELPER METHOD FRAME macro");\
HELPER_METHOD_FRAME_BEGIN_EX_NOTHROW( \
return 0, \
HELPER_FRAME_DECL(1)(HELPER_FRAME_ARGS(Frame::FRAME_ATTR_NO_THREAD_ABORT), \
(OBJECTREF*) &arg1), \
HELPER_METHOD_POLL(), TRUE, probeFailExpr)
#define HELPER_METHOD_FRAME_BEGIN_RET_VC_ATTRIB_1(attribs, arg1) \
static_assert(sizeof(arg1) == sizeof(OBJECTREF), "GC protecting structs of multiple OBJECTREFs requires a PROTECT variant of the HELPER METHOD FRAME macro");\
HELPER_METHOD_FRAME_BEGIN_EX( \
FC_RETURN_VC(), \
HELPER_FRAME_DECL(1)(HELPER_FRAME_ARGS(attribs), \
(OBJECTREF*) &arg1), \
HELPER_METHOD_POLL(),TRUE)
#define HELPER_METHOD_FRAME_BEGIN_RET_ATTRIB_2(attribs, arg1, arg2) \
static_assert(sizeof(arg1) == sizeof(OBJECTREF), "GC protecting structs of multiple OBJECTREFs requires a PROTECT variant of the HELPER METHOD FRAME macro");\
static_assert(sizeof(arg2) == sizeof(OBJECTREF), "GC protecting structs of multiple OBJECTREFs requires a PROTECT variant of the HELPER METHOD FRAME macro");\
HELPER_METHOD_FRAME_BEGIN_EX( \
return 0, \
HELPER_FRAME_DECL(2)(HELPER_FRAME_ARGS(attribs), \
(OBJECTREF*) &arg1, (OBJECTREF*) &arg2), \
HELPER_METHOD_POLL(),TRUE)
#define HELPER_METHOD_FRAME_BEGIN_RET_VC_ATTRIB_2(attribs, arg1, arg2) \
static_assert(sizeof(arg1) == sizeof(OBJECTREF), "GC protecting structs of multiple OBJECTREFs requires a PROTECT variant of the HELPER METHOD FRAME macro");\
static_assert(sizeof(arg2) == sizeof(OBJECTREF), "GC protecting structs of multiple OBJECTREFs requires a PROTECT variant of the HELPER METHOD FRAME macro");\
HELPER_METHOD_FRAME_BEGIN_EX( \
FC_RETURN_VC(), \
HELPER_FRAME_DECL(2)(HELPER_FRAME_ARGS(attribs), \
(OBJECTREF*) &arg1, (OBJECTREF*) &arg2), \
HELPER_METHOD_POLL(),TRUE)
#define HELPER_METHOD_FRAME_BEGIN_RET_ATTRIB_PROTECT(attribs, gc) \
HELPER_METHOD_FRAME_BEGIN_EX( \
return 0, \
HELPER_FRAME_DECL(PROTECT)(HELPER_FRAME_ARGS(attribs), \
(OBJECTREF*)&(gc), sizeof(gc)/sizeof(OBJECTREF)), \
HELPER_METHOD_POLL(),TRUE)
#define HELPER_METHOD_FRAME_BEGIN_RET_VC_NOPOLL() \
HELPER_METHOD_FRAME_BEGIN_RET_VC_ATTRIB_NOPOLL(Frame::FRAME_ATTR_NONE)
#define HELPER_METHOD_FRAME_BEGIN_RET_NOPOLL() \
HELPER_METHOD_FRAME_BEGIN_RET_ATTRIB_NOPOLL(Frame::FRAME_ATTR_NONE)
#define HELPER_METHOD_FRAME_BEGIN_RET_1(arg1) \
static_assert(sizeof(arg1) == sizeof(OBJECTREF), "GC protecting structs of multiple OBJECTREFs requires a PROTECT variant of the HELPER METHOD FRAME macro");\
HELPER_METHOD_FRAME_BEGIN_RET_ATTRIB_1(Frame::FRAME_ATTR_NONE, arg1)
#define HELPER_METHOD_FRAME_BEGIN_RET_VC_1(arg1) \
static_assert(sizeof(arg1) == sizeof(OBJECTREF), "GC protecting structs of multiple OBJECTREFs requires a PROTECT variant of the HELPER METHOD FRAME macro");\
HELPER_METHOD_FRAME_BEGIN_RET_VC_ATTRIB_1(Frame::FRAME_ATTR_NONE, arg1)
#define HELPER_METHOD_FRAME_BEGIN_RET_2(arg1, arg2) \
static_assert(sizeof(arg1) == sizeof(OBJECTREF), "GC protecting structs of multiple OBJECTREFs requires a PROTECT variant of the HELPER METHOD FRAME macro");\
static_assert(sizeof(arg2) == sizeof(OBJECTREF), "GC protecting structs of multiple OBJECTREFs requires a PROTECT variant of the HELPER METHOD FRAME macro");\
HELPER_METHOD_FRAME_BEGIN_RET_ATTRIB_2(Frame::FRAME_ATTR_NONE, arg1, arg2)
#define HELPER_METHOD_FRAME_BEGIN_RET_VC_2(arg1, arg2) \
static_assert(sizeof(arg1) == sizeof(OBJECTREF), "GC protecting structs of multiple OBJECTREFs requires a PROTECT variant of the HELPER METHOD FRAME macro");\
static_assert(sizeof(arg2) == sizeof(OBJECTREF), "GC protecting structs of multiple OBJECTREFs requires a PROTECT variant of the HELPER METHOD FRAME macro");\
HELPER_METHOD_FRAME_BEGIN_RET_VC_ATTRIB_2(Frame::FRAME_ATTR_NONE, arg1, arg2)
#define HELPER_METHOD_FRAME_BEGIN_RET_PROTECT(gc) \
HELPER_METHOD_FRAME_BEGIN_RET_ATTRIB_PROTECT(Frame::FRAME_ATTR_NONE, gc)
#define HELPER_METHOD_FRAME_END() HELPER_METHOD_FRAME_END_EX({},FALSE)
#define HELPER_METHOD_FRAME_END_POLL() HELPER_METHOD_FRAME_END_EX(HELPER_METHOD_POLL(),TRUE)
#define HELPER_METHOD_FRAME_END_NOTHROW()HELPER_METHOD_FRAME_END_EX_NOTHROW({},FALSE)
// This is the fastest way to do a GC poll if you have already erected a HelperMethodFrame
#define HELPER_METHOD_POLL() { __helperframe.Poll(); INCONTRACT(__fCallCheck.SetDidPoll()); }
// The HelperMethodFrame knows how to get its return address. Let other code get at it, too.
// (Uses comma operator to call InsureInit & discard result.
#define HELPER_METHOD_FRAME_GET_RETURN_ADDRESS() \
( static_cast<UINT_PTR>( (__helperframe.InsureInit(false, NULL)), (__helperframe.MachineState()->GetRetAddr()) ) )
// Very short routines, or routines that are guarenteed to force GC or EH
// don't need to poll the GC. USE VERY SPARINGLY!!!
#define FC_GC_POLL_NOT_NEEDED() INCONTRACT(__fCallCheck.SetNotNeeded())
Object* FC_GCPoll(void* me, Object* objToProtect = NULL);
#define FC_GC_POLL_EX(ret) \
{ \
INCONTRACT(Thread::TriggersGC(GetThread());) \
INCONTRACT(__fCallCheck.SetDidPoll();) \
if (g_TrapReturningThreads.LoadWithoutBarrier()) \
{ \
if (FC_GCPoll(__me)) \
return ret; \
while (0 == FC_NO_TAILCALL) { }; /* side effect the compile can't remove */ \
} \
}
#define FC_GC_POLL() FC_GC_POLL_EX(;)
#define FC_GC_POLL_RET() FC_GC_POLL_EX(0)
#define FC_GC_POLL_AND_RETURN_OBJREF(obj) \
{ \
INCONTRACT(__fCallCheck.SetDidPoll();) \
Object* __temp = OBJECTREFToObject(obj); \
if (g_TrapReturningThreads.LoadWithoutBarrier()) \
{ \
__temp = FC_GCPoll(__me, __temp); \
while (0 == FC_NO_TAILCALL) { }; /* side effect the compile can't remove */ \
} \
return __temp; \
}
#if defined(ENABLE_CONTRACTS)
#define FC_CAN_TRIGGER_GC() FCallGCCanTrigger::Enter()
#define FC_CAN_TRIGGER_GC_END() FCallGCCanTrigger::Leave(__FUNCTION__, __FILE__, __LINE__)
#define FC_CAN_TRIGGER_GC_HAVE_THREAD(thread) FCallGCCanTrigger::Enter(thread)
#define FC_CAN_TRIGGER_GC_HAVE_THREADEND(thread) FCallGCCanTrigger::Leave(thread, __FUNCTION__, __FILE__, __LINE__)
// turns on forbidGC for the lifetime of the instance
class ForbidGC {
protected:
Thread *m_pThread;
public:
ForbidGC(const char *szFile, int lineNum);
~ForbidGC();
};
// this little helper class checks to make certain
// 1) ForbidGC is set throughout the routine.
// 2) Sometime during the routine, a GC poll is done
class FCallCheck : public ForbidGC {
public:
FCallCheck(const char *szFile, int lineNum);
~FCallCheck();
void SetDidPoll() {LIMITED_METHOD_CONTRACT; didGCPoll = true; }
void SetNotNeeded() {LIMITED_METHOD_CONTRACT; notNeeded = true; }
private:
#ifdef _DEBUG
DWORD unbreakableLockCount;
#endif
bool didGCPoll; // GC poll was done
bool notNeeded; // GC poll not needed
unsigned __int64 startTicks; // tick count at begining of FCall
};
// FC_COMMON_PROLOG is used for both FCalls and HCalls
#define FC_COMMON_PROLOG(target, assertFn) \
/* The following line has to be first. We do not want to trash last error */ \
DWORD __lastError = ::GetLastError(); \
static void* __cache = 0; \
assertFn(__cache, (LPVOID)target); \
{ \
Thread *_pThread = GetThread(); \
Thread::ObjectRefFlush(_pThread); \
/*_ASSERTE (_pThread->IsSOTolerant() ||*/ \
/* _pThread->HasThreadStateNC(Thread::TSNC_DisableSOCheckInHCALL)); */ \
} \
FCallCheck __fCallCheck(__FILE__, __LINE__); \
FCALL_TRANSITION_BEGIN(); \
::SetLastError(__lastError); \
void FCallAssert(void*& cache, void* target);
void HCallAssert(void*& cache, void* target);
#else
#define FC_COMMON_PROLOG(target, assertFn) FCALL_TRANSITION_BEGIN()
#define FC_CAN_TRIGGER_GC()
#define FC_CAN_TRIGGER_GC_END()
#endif // ENABLE_CONTRACTS
// #FC_INNER
// Macros that allows fcall to be split into two function to avoid the helper frame overhead on common fast
// codepaths.
//
// The helper routine needs to know the name of the routine that called it so that it can look up the name of
// the managed routine this code is associted with (for managed stack traces). This is passed with the
// FC_INNER_PROLOG macro.
//
// The helper can set up a HELPER_METHOD_FRAME, but should pass the
// Frame::FRAME_ATTR_EXACT_DEPTH|Frame::FRAME_ATTR_CAPTURE_DEPTH_2 which indicates the exact number of
// unwinds to do to get back to managed code. Currently we only support depth 2 which means that the
// HELPER_METHOD_FRAME needs to be set up in the function directly called by the FCALL. The helper should
// use the NOINLINE macro to prevent the compiler from inlining it into the FCALL (which would obviously
// mess up the unwind count).
//
// The other invarient that needs to hold is that the epilog walker needs to be able to get from the call to
// the helper routine to the end of the FCALL using trivial heurisitics. The easiest (and only supported)
// way of doing this is to place your helper right before a return (eg at the end of the method). Generally
// this is not a problem at all, since the FCALL itself will pick off some common case and then tail-call to
// the helper for everything else. You must use the code:FC_INNER_RETURN macros to do the call, to insure
// that the C++ compiler does not tail-call optimize the call to the inner function and mess up the stack
// depth.
//
// see code:ObjectNative::GetClass for an example
//
#define FC_INNER_PROLOG(outterfuncname) \
LPVOID __me; \
__me = GetEEFuncEntryPointMacro(outterfuncname); \
FC_CAN_TRIGGER_GC(); \
INCONTRACT(FCallCheck __fCallCheck(__FILE__, __LINE__));
// This variant should be used for inner fcall functions that have the
// __me value passed as an argument to the function. This allows
// inner functions to be shared across multiple fcalls.
#define FC_INNER_PROLOG_NO_ME_SETUP() \
FC_CAN_TRIGGER_GC(); \
INCONTRACT(FCallCheck __fCallCheck(__FILE__, __LINE__));
#define FC_INNER_EPILOG() \
FC_CAN_TRIGGER_GC_END();
// If you are using FC_INNER, and you are tail calling to the helper method (a common case), then you need
// to use the FC_INNER_RETURN macros (there is one for methods that return a value and another if the
// function returns void). This macro's purpose is to inhibit any tail calll optimization the C++ compiler
// might do, which would otherwise confuse the epilog walker.
//
// * See #FC_INNER for more
extern int FC_NO_TAILCALL;
#define FC_INNER_RETURN(type, expr) \
type __retVal = expr; \
while (0 == FC_NO_TAILCALL) { }; /* side effect the compile can't remove */ \
return(__retVal);
#define FC_INNER_RETURN_VOID(stmt) \
stmt; \
while (0 == FC_NO_TAILCALL) { }; /* side effect the compile can't remove */ \
return;
//==============================================================================================
// FIMPLn: A set of macros for generating the proto for the actual
// implementation (use FDECLN for header protos.)
//
// The hidden "__me" variable lets us recover the original MethodDesc*
// so any thrown exceptions will have the correct stack trace. FCThrow()
// passes this along to __FCThrowInternal().
//==============================================================================================
#define GetEEFuncEntryPointMacro(func) ((LPVOID)(func))
#define FCIMPL_PROLOG(funcname) \
LPVOID __me; \
__me = GetEEFuncEntryPointMacro(funcname); \
FC_COMMON_PROLOG(__me, FCallAssert)
#if defined(_DEBUG) && !defined(CROSSGEN_COMPILE)
// Build the list of all fcalls signatures. It is used in binder.cpp to verify
// compatibility of managed and unmanaged fcall signatures. The check is currently done
// for x86 only.
struct FCSigCheck {
public:
FCSigCheck(void* fnc, char* sig)
{
LIMITED_METHOD_CONTRACT;
func = fnc;
signature = sig;
next = g_pFCSigCheck;
g_pFCSigCheck = this;
}
FCSigCheck* next;
void* func;
char* signature;
static FCSigCheck* g_pFCSigCheck;
};
#define FCSIGCHECK(funcname, signature) \
static FCSigCheck UNIQUE_LABEL(FCSigCheck)(GetEEFuncEntryPointMacro(funcname), signature);
#else
#define FCSIGCHECK(funcname, signature)
#endif
#ifdef _TARGET_X86_
#if defined(__GNUC__)
#define FCIMPL0(rettype, funcname) rettype F_CALL_CONV funcname() { FCIMPL_PROLOG(funcname)
#define FCIMPL1(rettype, funcname, a1) rettype F_CALL_CONV funcname(int /* EAX */, int /* EDX */, a1) { FCIMPL_PROLOG(funcname)
#define FCIMPL1_V(rettype, funcname, a1) rettype F_CALL_CONV funcname(int /* EAX */, int /* EDX */, int /* ECX */, a1) { FCIMPL_PROLOG(funcname)
#define FCIMPL2(rettype, funcname, a1, a2) rettype F_CALL_CONV funcname(int /* EAX */, a2, a1) { FCIMPL_PROLOG(funcname)
#define FCIMPL2_VV(rettype, funcname, a1, a2) rettype F_CALL_CONV funcname(int /* EAX */, int /* EDX */, int /* ECX */, a2, a1) { FCIMPL_PROLOG(funcname)
#define FCIMPL2_VI(rettype, funcname, a1, a2) rettype F_CALL_CONV funcname(int /* EAX */, int /* EDX */, a2, a1) { FCIMPL_PROLOG(funcname)
#define FCIMPL2_IV(rettype, funcname, a1, a2) rettype F_CALL_CONV funcname(int /* EAX */, int /* EDX */, a1, a2) { FCIMPL_PROLOG(funcname)
#define FCIMPL3(rettype, funcname, a1, a2, a3) rettype F_CALL_CONV funcname(int /* EAX */, a2, a1, a3) { FCIMPL_PROLOG(funcname)
#define FCIMPL3_IIV(rettype, funcname, a1, a2, a3) rettype F_CALL_CONV funcname(int /* EAX */, a2, a1, a3) { FCIMPL_PROLOG(funcname)
#define FCIMPL3_VII(rettype, funcname, a1, a2, a3) rettype F_CALL_CONV funcname(int /* EAX */, a3, a2, a1) { FCIMPL_PROLOG(funcname)
#define FCIMPL3_IVV(rettype, funcname, a1, a2, a3) rettype F_CALL_CONV funcname(int /* EAX */, int /* EDX */, a1, a3, a2) { FCIMPL_PROLOG(funcname)
#define FCIMPL3_IVI(rettype, funcname, a1, a2, a3) rettype F_CALL_CONV funcname(int /* EAX */, a3, a1, a2) { FCIMPL_PROLOG(funcname)
#define FCIMPL3_VVI(rettype, funcname, a1, a2, a3) rettype F_CALL_CONV funcname(int /* EAX */, int /* EDX */, a3, a2, a1) { FCIMPL_PROLOG(funcname)
#define FCIMPL4(rettype, funcname, a1, a2, a3, a4) rettype F_CALL_CONV funcname(int /* EAX */, a2, a1, a4, a3) { FCIMPL_PROLOG(funcname)
#define FCIMPL5(rettype, funcname, a1, a2, a3, a4, a5) rettype F_CALL_CONV funcname(int /* EAX */, a2, a1, a5, a4, a3) { FCIMPL_PROLOG(funcname)
#define FCIMPL6(rettype, funcname, a1, a2, a3, a4, a5, a6) rettype F_CALL_CONV funcname(int /* EAX */, a2, a1, a6, a5, a4, a3) { FCIMPL_PROLOG(funcname)
#define FCIMPL7(rettype, funcname, a1, a2, a3, a4, a5, a6, a7) rettype F_CALL_CONV funcname(int /* EAX */, a2, a1, a7, a6, a5, a4, a3) { FCIMPL_PROLOG(funcname)
#define FCIMPL8(rettype, funcname, a1, a2, a3, a4, a5, a6, a7, a8) rettype F_CALL_CONV funcname(int /* EAX */, a2, a1, a8, a7, a6, a5, a4, a3) { FCIMPL_PROLOG(funcname)
#define FCIMPL9(rettype, funcname, a1, a2, a3, a4, a5, a6, a7, a8, a9) rettype F_CALL_CONV funcname(int /* EAX */, a2, a1, a9, a8, a7, a6, a5, a4, a3) { FCIMPL_PROLOG(funcname)
#define FCIMPL10(rettype,funcname, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10) rettype F_CALL_CONV funcname(int /* EAX */, a2, a1, a10, a9, a8, a7, a6, a5, a4, a3) { FCIMPL_PROLOG(funcname)
#define FCIMPL11(rettype,funcname, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11) rettype F_CALL_CONV funcname(int /* EAX */, a2, a1, a11, a10, a9, a8, a7, a6, a5, a4, a3) { FCIMPL_PROLOG(funcname)
#define FCIMPL12(rettype,funcname, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12) rettype F_CALL_CONV funcname(int /* EAX */, a2, a1, a12, a11, a10, a9, a8, a7, a6, a5, a4, a3) { FCIMPL_PROLOG(funcname)
#define FCIMPL13(rettype,funcname, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13) rettype F_CALL_CONV funcname(int /* EAX */, a2, a1, a13, a12, a11, a10, a9, a8, a7, a6, a5, a4, a3) { FCIMPL_PROLOG(funcname)
#define FCIMPL14(rettype,funcname, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14) rettype F_CALL_CONV funcname(int /* EAX */, a2, a1, a14, a13, a12, a11, a10, a9, a8, a7, a6, a5, a4, a3) { FCIMPL_PROLOG(funcname)
#define FCIMPL5_IVI(rettype, funcname, a1, a2, a3, a4, a5) rettype F_CALL_CONV funcname(int /* EAX */, a3, a1, a5, a4, a2) { FCIMPL_PROLOG(funcname)
#define FCIMPL5_VII(rettype, funcname, a1, a2, a3, a4, a5) rettype F_CALL_CONV funcname(int /* EAX */, a3, a2, a5, a4, a1) { FCIMPL_PROLOG(funcname)
#else // __GNUC__
#define FCIMPL0(rettype, funcname) FCSIGCHECK(funcname, #rettype) \
rettype F_CALL_CONV funcname() { FCIMPL_PROLOG(funcname)
#define FCIMPL1(rettype, funcname, a1) FCSIGCHECK(funcname, #rettype "," #a1) \
rettype F_CALL_CONV funcname(a1) { FCIMPL_PROLOG(funcname)
#define FCIMPL1_V(rettype, funcname, a1) FCSIGCHECK(funcname, #rettype "," "V" #a1) \
rettype F_CALL_CONV funcname(a1) { FCIMPL_PROLOG(funcname)
#define FCIMPL2(rettype, funcname, a1, a2) FCSIGCHECK(funcname, #rettype "," #a1 "," #a2) \
rettype F_CALL_CONV funcname(a1, a2) { FCIMPL_PROLOG(funcname)
#define FCIMPL2VA(rettype, funcname, a1, a2) FCSIGCHECK(funcname, #rettype "," #a1 "," #a2 "," "...") \
rettype F_CALL_VA_CONV funcname(a1, a2, ...) { FCIMPL_PROLOG(funcname)
#define FCIMPL2_VV(rettype, funcname, a1, a2) FCSIGCHECK(funcname, #rettype "," "V" #a1 "," "V" #a2) \
rettype F_CALL_CONV funcname(a2, a1) { FCIMPL_PROLOG(funcname)
#define FCIMPL2_VI(rettype, funcname, a1, a2) FCSIGCHECK(funcname, #rettype "," "V" #a1 "," #a2) \
rettype F_CALL_CONV funcname(a2, a1) { FCIMPL_PROLOG(funcname)
#define FCIMPL2_IV(rettype, funcname, a1, a2) FCSIGCHECK(funcname, #rettype "," #a1 "," "V" #a2) \
rettype F_CALL_CONV funcname(a1, a2) { FCIMPL_PROLOG(funcname)
#define FCIMPL3(rettype, funcname, a1, a2, a3) FCSIGCHECK(funcname, #rettype "," #a1 "," #a2 "," #a3) \
rettype F_CALL_CONV funcname(a1, a2, a3) { FCIMPL_PROLOG(funcname)
#define FCIMPL3_IIV(rettype, funcname, a1, a2, a3) FCSIGCHECK(funcname, #rettype "," #a1 "," #a2 "," "V" #a3) \
rettype F_CALL_CONV funcname(a1, a2, a3) { FCIMPL_PROLOG(funcname)
#define FCIMPL3_VII(rettype, funcname, a1, a2, a3) FCSIGCHECK(funcname, #rettype "," "V" #a1 "," #a2 "," #a3) \
rettype F_CALL_CONV funcname(a2, a3, a1) { FCIMPL_PROLOG(funcname)
#define FCIMPL3_IVV(rettype, funcname, a1, a2, a3) FCSIGCHECK(funcname, #rettype "," #a1 "," "V" #a2 "," "V" #a3) \
rettype F_CALL_CONV funcname(a1, a3, a2) { FCIMPL_PROLOG(funcname)
#define FCIMPL3_IVI(rettype, funcname, a1, a2, a3) FCSIGCHECK(funcname, #rettype "," #a1 "," "V" #a2 "," #a3) \
rettype F_CALL_CONV funcname(a1, a3, a2) { FCIMPL_PROLOG(funcname)
#define FCIMPL3_VVI(rettype, funcname, a1, a2, a3) FCSIGCHECK(funcname, #rettype "," "V" #a1 "," "V" #a2 "," #a3) \
rettype F_CALL_CONV funcname(a2, a1, a3) { FCIMPL_PROLOG(funcname)
#define FCIMPL4(rettype, funcname, a1, a2, a3, a4) FCSIGCHECK(funcname, #rettype "," #a1 "," #a2 "," #a3 "," #a4) \
rettype F_CALL_CONV funcname(a1, a2, a4, a3) { FCIMPL_PROLOG(funcname)
#define FCIMPL5(rettype, funcname, a1, a2, a3, a4, a5) FCSIGCHECK(funcname, #rettype "," #a1 "," #a2 "," #a3 "," #a4 "," #a5) \
rettype F_CALL_CONV funcname(a1, a2, a5, a4, a3) { FCIMPL_PROLOG(funcname)
#define FCIMPL6(rettype, funcname, a1, a2, a3, a4, a5, a6) FCSIGCHECK(funcname, #rettype "," #a1 "," #a2 "," #a3 "," #a4 "," #a5 "," #a6) \
rettype F_CALL_CONV funcname(a1, a2, a6, a5, a4, a3) { FCIMPL_PROLOG(funcname)
#define FCIMPL7(rettype, funcname, a1, a2, a3, a4, a5, a6, a7) FCSIGCHECK(funcname, #rettype "," #a1 "," #a2 "," #a3 "," #a4 "," #a5 "," #a6 "," #a7) \
rettype F_CALL_CONV funcname(a1, a2, a7, a6, a5, a4, a3) { FCIMPL_PROLOG(funcname)
#define FCIMPL8(rettype, funcname, a1, a2, a3, a4, a5, a6, a7, a8) FCSIGCHECK(funcname, #rettype "," #a1 "," #a2 "," #a3 "," #a4 "," #a5 "," #a6 "," #a7 "," #a8) \
rettype F_CALL_CONV funcname(a1, a2, a8, a7, a6, a5, a4, a3) { FCIMPL_PROLOG(funcname)
#define FCIMPL9(rettype, funcname, a1, a2, a3, a4, a5, a6, a7, a8, a9) FCSIGCHECK(funcname, #rettype "," #a1 "," #a2 "," #a3 "," #a4 "," #a5 "," #a6 "," #a7 "," #a8 "," #a9) \
rettype F_CALL_CONV funcname(a1, a2, a9, a8, a7, a6, a5, a4, a3) { FCIMPL_PROLOG(funcname)
#define FCIMPL10(rettype,funcname, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10) FCSIGCHECK(funcname, #rettype "," #a1 "," #a2 "," #a3 "," #a4 "," #a5 "," #a6 "," #a7 "," #a8 "," #a9 "," #a10) \
rettype F_CALL_CONV funcname(a1, a2, a10, a9, a8, a7, a6, a5, a4, a3) { FCIMPL_PROLOG(funcname)
#define FCIMPL11(rettype,funcname, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11) FCSIGCHECK(funcname, #rettype "," #a1 "," #a2 "," #a3 "," #a4 "," #a5 "," #a6 "," #a7 "," #a8 "," #a9 "," #a10 "," #a11) \
rettype F_CALL_CONV funcname(a1, a2, a11, a10, a9, a8, a7, a6, a5, a4, a3) { FCIMPL_PROLOG(funcname)
#define FCIMPL12(rettype,funcname, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12) FCSIGCHECK(funcname, #rettype "," #a1 "," #a2 "," #a3 "," #a4 "," #a5 "," #a6 "," #a7 "," #a8 "," #a9 "," #a10 "," #a11 "," #a12) \
rettype F_CALL_CONV funcname(a1, a2, a12, a11, a10, a9, a8, a7, a6, a5, a4, a3) { FCIMPL_PROLOG(funcname)
#define FCIMPL13(rettype,funcname, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13) FCSIGCHECK(funcname, #rettype "," #a1 "," #a2 "," #a3 "," #a4 "," #a5 "," #a6 "," #a7 "," #a8 "," #a9 "," #a10 "," #a11 "," #a12 "," #a13) \
rettype F_CALL_CONV funcname(a1, a2, a13, a12, a11, a10, a9, a8, a7, a6, a5, a4, a3) { FCIMPL_PROLOG(funcname)
#define FCIMPL14(rettype,funcname, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14) FCSIGCHECK(funcname, #rettype "," #a1 "," #a2 "," #a3 "," #a4 "," #a5 "," #a6 "," #a7 "," #a8 "," #a9 "," #a10 "," #a11 "," #a12 "," #a13 "," #a14) \
rettype F_CALL_CONV funcname(a1, a2, a14, a13, a12, a11, a10, a9, a8, a7, a6, a5, a4, a3) { FCIMPL_PROLOG(funcname)
#define FCIMPL5_IVI(rettype, funcname, a1, a2, a3, a4, a5) FCSIGCHECK(funcname, #rettype "," #a1 "," "V" #a2 "," #a3 "," #a4 "," #a5) \
rettype F_CALL_CONV funcname(a1, a3, a5, a4, a2) { FCIMPL_PROLOG(funcname)
#define FCIMPL5_VII(rettype, funcname, a1, a2, a3, a4, a5) FCSIGCHECK(funcname, #rettype "," "V" #a1 "," #a2 "," #a3 "," #a4 "," #a5) \
rettype F_CALL_CONV funcname(a2, a3, a5, a4, a1) { FCIMPL_PROLOG(funcname)
#endif // __GNUC__
#else // !_TARGET_X86_
//
// non-x86 platforms don't have messed-up calling convention swizzling
//
#define FCIMPL0(rettype, funcname) rettype funcname() { FCIMPL_PROLOG(funcname)
#define FCIMPL1(rettype, funcname, a1) rettype funcname(a1) { FCIMPL_PROLOG(funcname)
#define FCIMPL1_V(rettype, funcname, a1) rettype funcname(a1) { FCIMPL_PROLOG(funcname)
#define FCIMPL2(rettype, funcname, a1, a2) rettype funcname(a1, a2) { FCIMPL_PROLOG(funcname)
#define FCIMPL2VA(rettype, funcname, a1, a2) rettype funcname(a1, a2, ...) { FCIMPL_PROLOG(funcname)
#define FCIMPL2_VV(rettype, funcname, a1, a2) rettype funcname(a1, a2) { FCIMPL_PROLOG(funcname)
#define FCIMPL2_VI(rettype, funcname, a1, a2) rettype funcname(a1, a2) { FCIMPL_PROLOG(funcname)
#define FCIMPL2_IV(rettype, funcname, a1, a2) rettype funcname(a1, a2) { FCIMPL_PROLOG(funcname)
#define FCIMPL3(rettype, funcname, a1, a2, a3) rettype funcname(a1, a2, a3) { FCIMPL_PROLOG(funcname)
#define FCIMPL3_IIV(rettype, funcname, a1, a2, a3) rettype funcname(a1, a2, a3) { FCIMPL_PROLOG(funcname)
#define FCIMPL3_IVV(rettype, funcname, a1, a2, a3) rettype funcname(a1, a2, a3) { FCIMPL_PROLOG(funcname)
#define FCIMPL3_VII(rettype, funcname, a1, a2, a3) rettype funcname(a1, a2, a3) { FCIMPL_PROLOG(funcname)
#define FCIMPL3_IVI(rettype, funcname, a1, a2, a3) rettype funcname(a1, a2, a3) { FCIMPL_PROLOG(funcname)
#define FCIMPL3_VVI(rettype, funcname, a1, a2, a3) rettype funcname(a1, a2, a3) { FCIMPL_PROLOG(funcname)
#define FCIMPL4(rettype, funcname, a1, a2, a3, a4) rettype funcname(a1, a2, a3, a4) { FCIMPL_PROLOG(funcname)
#define FCIMPL5(rettype, funcname, a1, a2, a3, a4, a5) rettype funcname(a1, a2, a3, a4, a5) { FCIMPL_PROLOG(funcname)
#define FCIMPL6(rettype, funcname, a1, a2, a3, a4, a5, a6) rettype funcname(a1, a2, a3, a4, a5, a6) { FCIMPL_PROLOG(funcname)
#define FCIMPL7(rettype, funcname, a1, a2, a3, a4, a5, a6, a7) rettype funcname(a1, a2, a3, a4, a5, a6, a7) { FCIMPL_PROLOG(funcname)
#define FCIMPL8(rettype, funcname, a1, a2, a3, a4, a5, a6, a7, a8) rettype funcname(a1, a2, a3, a4, a5, a6, a7, a8) { FCIMPL_PROLOG(funcname)
#define FCIMPL9(rettype, funcname, a1, a2, a3, a4, a5, a6, a7, a8, a9) rettype funcname(a1, a2, a3, a4, a5, a6, a7, a8, a9) { FCIMPL_PROLOG(funcname)
#define FCIMPL10(rettype,funcname, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10) rettype funcname(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10) { FCIMPL_PROLOG(funcname)
#define FCIMPL11(rettype,funcname, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11) rettype funcname(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11) { FCIMPL_PROLOG(funcname)
#define FCIMPL12(rettype,funcname, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12) rettype funcname(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12) { FCIMPL_PROLOG(funcname)
#define FCIMPL13(rettype,funcname, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13) rettype funcname(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13) { FCIMPL_PROLOG(funcname)
#define FCIMPL14(rettype,funcname, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14) rettype funcname(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14) { FCIMPL_PROLOG(funcname)
#define FCIMPL5_IVI(rettype, funcname, a1, a2, a3, a4, a5) rettype funcname(a1, a2, a3, a4, a5) { FCIMPL_PROLOG(funcname)
#define FCIMPL5_VII(rettype, funcname, a1, a2, a3, a4, a5) rettype funcname(a1, a2, a3, a4, a5) { FCIMPL_PROLOG(funcname)
#endif
//==============================================================================================
// Use this to terminte an FCIMPLEND.
//==============================================================================================
#define FCIMPL_EPILOG() FCALL_TRANSITION_END()
#define FCIMPLEND FCIMPL_EPILOG(); }
#define HCIMPL_PROLOG(funcname) LPVOID __me; __me = 0; FC_COMMON_PROLOG(funcname, HCallAssert)
// HCIMPL macros are just like their FCIMPL counterparts, however
// they do not remember the function they come from. Thus they will not
// show up in a stack trace. This is what you want for JIT helpers and the like
#ifdef _TARGET_X86_
#if defined(__GNUC__)
#define HCIMPL0(rettype, funcname) rettype F_CALL_CONV funcname() { HCIMPL_PROLOG(funcname)
#define HCIMPL1(rettype, funcname, a1) rettype F_CALL_CONV funcname(int /* EAX */, int /* EDX */, a1) { HCIMPL_PROLOG(funcname)
#define HCIMPL1_RAW(rettype, funcname, a1) rettype F_CALL_CONV funcname(int /* EAX */, int /* EDX */, a1) {
#define HCIMPL1_V(rettype, funcname, a1) rettype F_CALL_CONV funcname(int /* EAX */, int /* EDX */, int /* ECX */, a1) { HCIMPL_PROLOG(funcname)
#define HCIMPL2(rettype, funcname, a1, a2) rettype F_CALL_CONV funcname(int /* EAX */, a2, a1) { HCIMPL_PROLOG(funcname)
#define HCIMPL2_RAW(rettype, funcname, a1, a2) rettype F_CALL_CONV funcname(int /* EAX */, a2, a1) {
#define HCIMPL2_VV(rettype, funcname, a1, a2) rettype F_CALL_CONV funcname(int /* EAX */, int /* EDX */, int /* ECX */, a2, a1) { HCIMPL_PROLOG(funcname)
#define HCIMPL2_IV(rettype, funcname, a1, a2) rettype F_CALL_CONV funcname(int /* EAX */, int /* EDX */, a1, a2) { HCIMPL_PROLOG(funcname)
#define HCIMPL2VA(rettype, funcname, a1, a2) rettype F_CALL_VA_CONV funcname(a1, a2, ...) { HCIMPL_PROLOG(funcname)
#define HCIMPL3(rettype, funcname, a1, a2, a3) rettype F_CALL_CONV funcname(int /* EAX */, a2, a1, a3) { HCIMPL_PROLOG(funcname)
#define HCIMPL4(rettype, funcname, a1, a2, a3, a4) rettype F_CALL_CONV funcname(int /* EAX */, a2, a1, a4, a3) { HCIMPL_PROLOG(funcname)
#define HCIMPL5(rettype, funcname, a1, a2, a3, a4, a5) rettype F_CALL_CONV funcname(int /* EAX */, a2, a1, a5, a4, a3) { HCIMPL_PROLOG(funcname)
#define HCCALL1(funcname, a1) funcname(0, 0, a1)
#define HCCALL1_V(funcname, a1) funcname(0, 0, 0, a1)
#define HCCALL2(funcname, a1, a2) funcname(0, a2, a1)
#define HCCALL3(funcname, a1, a2, a3) funcname(0, a2, a1, a3)
#define HCCALL4(funcname, a1, a2, a3, a4) funcname(0, a2, a1, a4, a3)
#define HCCALL5(funcname, a1, a2, a3, a4, a5) funcname(0, a2, a1, a5, a4, a3)
#define HCCALL1_PTR(rettype, funcptr, a1) rettype (F_CALL_CONV * funcptr)(int /* EAX */, int /* EDX */, a1)
#define HCCALL2_PTR(rettype, funcptr, a1, a2) rettype (F_CALL_CONV * funcptr)(int /* EAX */, a2, a1)
#else
#define HCIMPL0(rettype, funcname) rettype F_CALL_CONV funcname() { HCIMPL_PROLOG(funcname)
#define HCIMPL1(rettype, funcname, a1) rettype F_CALL_CONV funcname(a1) { HCIMPL_PROLOG(funcname)
#define HCIMPL1_RAW(rettype, funcname, a1) rettype F_CALL_CONV funcname(a1) {
#define HCIMPL1_V(rettype, funcname, a1) rettype F_CALL_CONV funcname(a1) { HCIMPL_PROLOG(funcname)
#define HCIMPL2(rettype, funcname, a1, a2) rettype F_CALL_CONV funcname(a1, a2) { HCIMPL_PROLOG(funcname)
#define HCIMPL2_RAW(rettype, funcname, a1, a2) rettype F_CALL_CONV funcname(a1, a2) {
#define HCIMPL2_VV(rettype, funcname, a1, a2) rettype F_CALL_CONV funcname(a2, a1) { HCIMPL_PROLOG(funcname)
#define HCIMPL2_IV(rettype, funcname, a1, a2) rettype F_CALL_CONV funcname(a1, a2) { HCIMPL_PROLOG(funcname)
#define HCIMPL2VA(rettype, funcname, a1, a2) rettype F_CALL_VA_CONV funcname(a1, a2, ...) { HCIMPL_PROLOG(funcname)
#define HCIMPL3(rettype, funcname, a1, a2, a3) rettype F_CALL_CONV funcname(a1, a2, a3) { HCIMPL_PROLOG(funcname)
#define HCIMPL4(rettype, funcname, a1, a2, a3, a4) rettype F_CALL_CONV funcname(a1, a2, a4, a3) { HCIMPL_PROLOG(funcname)
#define HCIMPL5(rettype, funcname, a1, a2, a3, a4, a5) rettype F_CALL_CONV funcname(a1, a2, a5, a4, a3) { HCIMPL_PROLOG(funcname)
#define HCCALL1(funcname, a1) funcname(a1)
#define HCCALL1_V(funcname, a1) funcname(a1)
#define HCCALL2(funcname, a1, a2) funcname(a1, a2)
#define HCCALL3(funcname, a1, a2, a3) funcname(a1, a2, a3)
#define HCCALL4(funcname, a1, a2, a3, a4) funcname(a1, a2, a4, a3)
#define HCCALL5(funcname, a1, a2, a3, a4, a5) funcname(a1, a2, a5, a4, a3)
#define HCCALL1_PTR(rettype, funcptr, a1) rettype (F_CALL_CONV * funcptr)(a1)
#define HCCALL2_PTR(rettype, funcptr, a1, a2) rettype (F_CALL_CONV * funcptr)(a1, a2)
#endif
#else // !_TARGET_X86_
//
// non-x86 platforms don't have messed-up calling convention swizzling
//
#define HCIMPL0(rettype, funcname) rettype F_CALL_CONV funcname() { HCIMPL_PROLOG(funcname)
#define HCIMPL1(rettype, funcname, a1) rettype F_CALL_CONV funcname(a1) { HCIMPL_PROLOG(funcname)
#define HCIMPL1_RAW(rettype, funcname, a1) rettype F_CALL_CONV funcname(a1) {
#define HCIMPL1_V(rettype, funcname, a1) rettype F_CALL_CONV funcname(a1) { HCIMPL_PROLOG(funcname)
#define HCIMPL2(rettype, funcname, a1, a2) rettype F_CALL_CONV funcname(a1, a2) { HCIMPL_PROLOG(funcname)
#define HCIMPL2_RAW(rettype, funcname, a1, a2) rettype F_CALL_CONV funcname(a1, a2) {
#define HCIMPL2_VV(rettype, funcname, a1, a2) rettype F_CALL_CONV funcname(a1, a2) { HCIMPL_PROLOG(funcname)
#define HCIMPL2_IV(rettype, funcname, a1, a2) rettype F_CALL_CONV funcname(a1, a2) { HCIMPL_PROLOG(funcname)
#define HCIMPL2VA(rettype, funcname, a1, a2) rettype F_CALL_VA_CONV funcname(a1, a2, ...) { HCIMPL_PROLOG(funcname)
#define HCIMPL3(rettype, funcname, a1, a2, a3) rettype F_CALL_CONV funcname(a1, a2, a3) { HCIMPL_PROLOG(funcname)
#define HCIMPL4(rettype, funcname, a1, a2, a3, a4) rettype F_CALL_CONV funcname(a1, a2, a3, a4) { HCIMPL_PROLOG(funcname)
#define HCIMPL5(rettype, funcname, a1, a2, a3, a4, a5) rettype F_CALL_CONV funcname(a1, a2, a3, a4, a5) { HCIMPL_PROLOG(funcname)
#define HCCALL1(funcname, a1) funcname(a1)
#define HCCALL1_V(funcname, a1) funcname(a1)
#define HCCALL2(funcname, a1, a2) funcname(a1, a2)
#define HCCALL3(funcname, a1, a2, a3) funcname(a1, a2, a3)
#define HCCALL4(funcname, a1, a2, a3, a4) funcname(a1, a2, a3, a4)
#define HCCALL5(funcname, a1, a2, a3, a4, a5) funcname(a1, a2, a3, a4, a5)
#define HCCALL1_PTR(rettype, funcptr, a1) rettype (F_CALL_CONV * funcptr)(a1)
#define HCCALL2_PTR(rettype, funcptr, a1, a2) rettype (F_CALL_CONV * funcptr)(a1, a2)
#endif
#define HCIMPLEND_RAW }
#define HCIMPLEND FCALL_TRANSITION_END(); }
//==============================================================================================
// Throws an exception from an FCall. See rexcep.h for a list of valid
// exception codes.
//==============================================================================================
#define FCThrow(reKind) FCThrowEx(reKind, 0, 0, 0, 0)
//==============================================================================================
// This version lets you attach a message with inserts (similar to
// COMPlusThrow()).
//==============================================================================================
#define FCThrowEx(reKind, resID, arg1, arg2, arg3) \
{ \
while (NULL == \
__FCThrow(__me, reKind, resID, arg1, arg2, arg3)) {}; \
return 0; \
}
//==============================================================================================
// Like FCThrow but can be used for a VOID-returning FCall. The only
// difference is in the "return" statement.
//==============================================================================================
#define FCThrowVoid(reKind) FCThrowExVoid(reKind, 0, 0, 0, 0)
//==============================================================================================
// This version lets you attach a message with inserts (similar to
// COMPlusThrow()).
//==============================================================================================
#define FCThrowExVoid(reKind, resID, arg1, arg2, arg3) \
{ \
while (NULL == \
__FCThrow(__me, reKind, resID, arg1, arg2, arg3)) {}; \
return; \
}
// Use FCThrowRes to throw an exception with a localized error message from the
// ResourceManager in managed code.
#define FCThrowRes(reKind, resourceName) FCThrowArgumentEx(reKind, NULL, resourceName)
#define FCThrowArgumentNull(argName) FCThrowArgumentEx(kArgumentNullException, argName, NULL)
#define FCThrowArgumentOutOfRange(argName, message) FCThrowArgumentEx(kArgumentOutOfRangeException, argName, message)
#define FCThrowArgument(argName, message) FCThrowArgumentEx(kArgumentException, argName, message)
#define FCThrowArgumentEx(reKind, argName, resourceName) \
{ \
while (NULL == \
__FCThrowArgument(__me, reKind, argName, resourceName)) {}; \
return 0; \
}
// Use FCThrowRes to throw an exception with a localized error message from the
// ResourceManager in managed code.
#define FCThrowResVoid(reKind, resourceName) FCThrowArgumentVoidEx(reKind, NULL, resourceName)
#define FCThrowArgumentNullVoid(argName) FCThrowArgumentVoidEx(kArgumentNullException, argName, NULL)
#define FCThrowArgumentOutOfRangeVoid(argName, message) FCThrowArgumentVoidEx(kArgumentOutOfRangeException, argName, message)
#define FCThrowArgumentVoid(argName, message) FCThrowArgumentVoidEx(kArgumentException, argName, message)
#define FCThrowArgumentVoidEx(reKind, argName, resourceName) \
{ \
while (NULL == \
__FCThrowArgument(__me, reKind, argName, resourceName)) {}; \
return; \
}
// The x86 JIT calling convention expects returned small types (e.g. bool) to be
// widened on return. The C/C++ calling convention does not guarantee returned
// small types to be widened. The small types has to be artifically widened on return
// to fit x86 JIT calling convention. Thus fcalls returning small types has to
// use the FC_XXX_RET types to force C/C++ compiler to do the widening.
//
// The most common small return type of FCALLs is bool. The widening of bool is
// especially tricky since the value has to be also normalized. FC_BOOL_RET and
// FC_RETURN_BOOL macros are provided to make it fool-proof. FCALLs returning bool
// should be implemented using following pattern:
// FCIMPL0(FC_BOOL_RET, Foo) // the return type should be FC_BOOL_RET
// BOOL ret;
//
// FC_RETURN_BOOL(ret); // return statements should be FC_RETURN_BOOL
// FCIMPLEND
// This rules are verified in binder.cpp if COMPlus_ConsistencyCheck is set.
#ifdef _PREFAST_
// Use prefast build to ensure that functions returning FC_BOOL_RET
// are using FC_RETURN_BOOL to return it. Missing FC_RETURN_BOOL will
// result into type mismatch error in prefast builds. This will also
// catch misuses of FC_BOOL_RET for other places (e.g. in FCALL parameters).
typedef LPVOID FC_BOOL_RET;
#define FC_RETURN_BOOL(x) do { return (LPVOID)!!(x); } while(0)
#else
#if defined(_TARGET_X86_) || defined(_TARGET_AMD64_)
// The return value is artifically widened on x86 and amd64
typedef INT32 FC_BOOL_RET;
#else
typedef CLR_BOOL FC_BOOL_RET;
#endif
#define FC_RETURN_BOOL(x) do { return !!(x); } while(0)
#endif
#if defined(_TARGET_X86_) || defined(_TARGET_AMD64_)
// The return value is artifically widened on x86 and amd64
typedef UINT32 FC_CHAR_RET;
typedef INT32 FC_INT8_RET;
typedef UINT32 FC_UINT8_RET;
typedef INT32 FC_INT16_RET;
typedef UINT32 FC_UINT16_RET;
#else
typedef CLR_CHAR FC_CHAR_RET;
typedef INT8 FC_INT8_RET;
typedef UINT8 FC_UINT8_RET;
typedef INT16 FC_INT16_RET;
typedef UINT16 FC_UINT16_RET;
#endif
// FC_TypedByRef should be used for TypedReferences in FCall signatures
#ifdef UNIX_AMD64_ABI
// Explicitly pass the TypedReferences by reference
// UNIXTODO: Remove once the proper managed calling convention for struct is in place
#define FC_TypedByRef TypedByRef&
#define FC_DECIMAL DECIMAL&
#else
#define FC_TypedByRef TypedByRef
#define FC_DECIMAL DECIMAL
#endif
// The fcall entrypoints has to be at unique addresses. Use this helper macro to make
// the code of the fcalls unique if you get assert in ecall.cpp that mentions it.
// The parameter of the FCUnique macro is an arbitrary 32-bit random non-zero number.
#define FCUnique(unique) { Volatile<int> u = (unique); while (u.LoadWithoutBarrier() == 0) { }; }
// FCALL contracts come in two forms:
//
// Short form that should be used if the FCALL contract does not have any extras like preconditions, failure injection. Example:
//
// FCIMPL0(void, foo)
// {
// FCALL_CONTRACT;
// ...
//
// Long form that should be used otherwise. Example:
//
// FCIMPL1(void, foo, void *p)
// {
// CONTRACTL {
// FCALL_CHECK;
// PRECONDITION(CheckPointer(p));
// } CONTRACTL_END;
// ...
//
// FCALL_CHECK defines the actual contract conditions required for FCALLs
//
#define FCALL_CHECK \
THROWS; \
DISABLED(GC_TRIGGERS); /* FCALLS with HELPER frames have issues with GC_TRIGGERS */ \
MODE_COOPERATIVE; \
SO_TOLERANT
//
// FCALL_CONTRACT should be the following shortcut:
//
// #define FCALL_CONTRACT CONTRACTL { FCALL_CHECK; } CONTRACTL_END;
//
// Since there is very little value in having runtime contracts in FCalls, FCALL_CONTRACT is defined as static contract only for performance reasons.
//
#define FCALL_CONTRACT \
STATIC_CONTRACT_SO_TOLERANT; \
STATIC_CONTRACT_THROWS; \
/* FCALLS are a special case contract wise, they are "NOTRIGGER, unless you setup a frame" */ \
STATIC_CONTRACT_GC_NOTRIGGER; \
STATIC_CONTRACT_MODE_COOPERATIVE
#endif //__FCall_h__
|