1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
|
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
/*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX XX
XX Utils.h XX
XX XX
XX Has miscellaneous utility functions XX
XX XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
*/
#ifndef _UTILS_H_
#define _UTILS_H_
#include "iallocator.h"
#include "hostallocator.h"
#include "cycletimer.h"
// Needed for unreached()
#include "error.h"
#ifdef _TARGET_64BIT_
#define BitScanForwardPtr BitScanForward64
#else
#define BitScanForwardPtr BitScanForward
#endif
template <typename T, int size>
unsigned ArrLen(T (&)[size])
{
return size;
}
// return true if arg is a power of 2
template <typename T>
inline bool isPow2(T i)
{
return (i > 0 && ((i - 1) & i) == 0);
}
// Adapter for iterators to a type that is compatible with C++11
// range-based for loops.
template <typename TIterator>
class IteratorPair
{
TIterator m_begin;
TIterator m_end;
public:
IteratorPair(TIterator begin, TIterator end) : m_begin(begin), m_end(end)
{
}
inline TIterator begin()
{
return m_begin;
}
inline TIterator end()
{
return m_end;
}
};
template <typename TIterator>
inline IteratorPair<TIterator> MakeIteratorPair(TIterator begin, TIterator end)
{
return IteratorPair<TIterator>(begin, end);
}
// Recursive template definition to calculate the base-2 logarithm
// of a constant value.
template <unsigned val, unsigned acc = 0>
struct ConstLog2
{
enum
{
value = ConstLog2<val / 2, acc + 1>::value
};
};
template <unsigned acc>
struct ConstLog2<0, acc>
{
enum
{
value = acc
};
};
template <unsigned acc>
struct ConstLog2<1, acc>
{
enum
{
value = acc
};
};
inline const char* dspBool(bool b)
{
return (b) ? "true" : "false";
}
#ifdef FEATURE_CORECLR
#ifdef _CRT_ABS_DEFINED
// we don't have the full standard library
inline int64_t abs(int64_t t)
{
return t > 0 ? t : -t;
}
#endif
#endif // FEATURE_CORECLR
template <typename T>
int signum(T val)
{
if (val < T(0))
{
return -1;
}
else if (val > T(0))
{
return 1;
}
else
{
return 0;
}
}
#if defined(DEBUG) || defined(INLINE_DATA)
// ConfigMethodRange describes a set of methods, specified via their
// hash codes. This can be used for binary search and/or specifying an
// explicit method set.
//
// Note method hash codes are not necessarily unique. For instance
// many IL stubs may have the same hash.
//
// If range string is null or just whitespace, range includes all
// methods.
//
// Parses values as decimal numbers.
//
// Examples:
//
// [string with just spaces] : all methods
// 12345678 : a single method
// 12345678-23456789 : a range of methods
// 99998888 12345678-23456789 : a range of methods plus a single method
class ConfigMethodRange
{
public:
// Default capacity
enum
{
DEFAULT_CAPACITY = 50
};
// Does the range include this method's hash?
bool Contains(class ICorJitInfo* info, CORINFO_METHOD_HANDLE method);
// Ensure the range string has been parsed.
void EnsureInit(const wchar_t* rangeStr, unsigned capacity = DEFAULT_CAPACITY)
{
// Make sure that the memory was zero initialized
assert(m_inited == 0 || m_inited == 1);
if (!m_inited)
{
InitRanges(rangeStr, capacity);
assert(m_inited == 1);
}
}
// Error checks
bool Error() const
{
return m_badChar != 0;
}
size_t BadCharIndex() const
{
return m_badChar - 1;
}
private:
struct Range
{
unsigned m_low;
unsigned m_high;
};
void InitRanges(const wchar_t* rangeStr, unsigned capacity);
unsigned m_entries; // number of entries in the range array
unsigned m_lastRange; // count of low-high pairs
unsigned m_inited; // 1 if range string has been parsed
size_t m_badChar; // index + 1 of any bad character in range string
Range* m_ranges; // ranges of functions to include
};
#endif // defined(DEBUG) || defined(INLINE_DATA)
class Compiler;
/*****************************************************************************
* Fixed bit vector class
*/
class FixedBitVect
{
private:
UINT bitVectSize;
UINT bitVect[];
// bitChunkSize() - Returns number of bits in a bitVect chunk
static UINT bitChunkSize();
// bitNumToBit() - Returns a bit mask of the given bit number
static UINT bitNumToBit(UINT bitNum);
public:
// bitVectInit() - Initializes a bit vector of a given size
static FixedBitVect* bitVectInit(UINT size, Compiler* comp);
// bitVectSet() - Sets the given bit
void bitVectSet(UINT bitNum);
// bitVectTest() - Tests the given bit
bool bitVectTest(UINT bitNum);
// bitVectOr() - Or in the given bit vector
void bitVectOr(FixedBitVect* bv);
// bitVectAnd() - And with passed in bit vector
void bitVectAnd(FixedBitVect& bv);
// bitVectGetFirst() - Find the first bit on and return the bit num.
// Return -1 if no bits found.
UINT bitVectGetFirst();
// bitVectGetNext() - Find the next bit on given previous bit and return bit num.
// Return -1 if no bits found.
UINT bitVectGetNext(UINT bitNumPrev);
// bitVectGetNextAndClear() - Find the first bit on, clear it and return it.
// Return -1 if no bits found.
UINT bitVectGetNextAndClear();
};
/******************************************************************************
* A specialized version of sprintf_s to simplify conversion to SecureCRT
*
* pWriteStart -> A pointer to the first byte to which data is written.
* pBufStart -> the start of the buffer into which the data is written. If
* composing a complex string with multiple calls to sprintf, this
* should not change.
* cbBufSize -> The size of the overall buffer (i.e. the size of the buffer
* pointed to by pBufStart). For subsequent calls, this does not
* change.
* fmt -> The format string
* ... -> Arguments.
*
* returns -> number of bytes successfully written, not including the null
* terminator. Calls NO_WAY on error.
*/
int SimpleSprintf_s(__in_ecount(cbBufSize - (pWriteStart - pBufStart)) char* pWriteStart,
__in_ecount(cbBufSize) char* pBufStart,
size_t cbBufSize,
__in_z const char* fmt,
...);
#ifdef DEBUG
void hexDump(FILE* dmpf, const char* name, BYTE* addr, size_t size);
#endif // DEBUG
/******************************************************************************
* ScopedSetVariable: A simple class to set and restore a variable within a scope.
* For example, it can be used to set a 'bool' flag to 'true' at the beginning of a
* function and automatically back to 'false' either at the end the function, or at
* any other return location. The variable should not be changed during the scope:
* the destructor asserts that the value at destruction time is the same one we set.
* Usage: ScopedSetVariable<bool> _unused_name(&variable, true);
*/
template <typename T>
class ScopedSetVariable
{
public:
ScopedSetVariable(T* pVariable, T value) : m_pVariable(pVariable)
{
m_oldValue = *m_pVariable;
*m_pVariable = value;
INDEBUG(m_value = value;)
}
~ScopedSetVariable()
{
assert(*m_pVariable == m_value); // Assert that the value didn't change between ctor and dtor
*m_pVariable = m_oldValue;
}
private:
#ifdef DEBUG
T m_value; // The value we set the variable to (used for assert).
#endif // DEBUG
T m_oldValue; // The old value, to restore the variable to.
T* m_pVariable; // Address of the variable to change
};
/******************************************************************************
* PhasedVar: A class to represent a variable that has phases, in particular,
* a write phase where the variable is computed, and a read phase where the
* variable is used. Once the variable has been read, it can no longer be changed.
* Reading the variable essentially commits everyone to using that value forever,
* and it is assumed that subsequent changes to the variable would invalidate
* whatever assumptions were made by the previous readers, leading to bad generated code.
* These assumptions are asserted in DEBUG builds.
* The phase ordering is clean for AMD64, but not for x86/ARM. So don't do the phase
* ordering asserts for those platforms.
*/
template <typename T>
class PhasedVar
{
public:
PhasedVar()
#ifdef DEBUG
: m_initialized(false), m_writePhase(true)
#endif // DEBUG
{
}
PhasedVar(T value)
: m_value(value)
#ifdef DEBUG
, m_initialized(true)
, m_writePhase(true)
#endif // DEBUG
{
}
~PhasedVar()
{
#ifdef DEBUG
m_initialized = false;
m_writePhase = true;
#endif // DEBUG
}
// Read the value. Change to the read phase.
// Marked 'const' because we don't change the encapsulated value, even though
// we do change the write phase, which is only for debugging asserts.
operator T() const
{
#ifdef DEBUG
assert(m_initialized);
(const_cast<PhasedVar*>(this))->m_writePhase = false;
#endif // DEBUG
return m_value;
}
// Mark the value as read only; explicitly change the variable to the "read" phase.
void MarkAsReadOnly() const
{
#ifdef DEBUG
assert(m_initialized);
(const_cast<PhasedVar*>(this))->m_writePhase = false;
#endif // DEBUG
}
// When dumping stuff we could try to read a PhasedVariable
// This method tells us whether we should read the PhasedVariable
bool HasFinalValue() const
{
#ifdef DEBUG
return (const_cast<PhasedVar*>(this))->m_writePhase == false;
#else
return true;
#endif // DEBUG
}
// Functions/operators to write the value. Must be in the write phase.
PhasedVar& operator=(const T& value)
{
#ifdef DEBUG
assert(m_writePhase);
m_initialized = true;
#endif // DEBUG
m_value = value;
return *this;
}
PhasedVar& operator&=(const T& value)
{
#ifdef DEBUG
assert(m_writePhase);
m_initialized = true;
#endif // DEBUG
m_value &= value;
return *this;
}
// Note: if you need more <op>= functions, you can define them here, like operator&=
// Assign a value, but don't assert if we're not in the write phase, and
// don't change the phase (if we're actually in the read phase, we'll stay
// in the read phase). This is a dangerous function, and overrides the main
// benefit of this class. Use it wisely!
void OverrideAssign(const T& value)
{
#ifdef DEBUG
m_initialized = true;
#endif // DEBUG
m_value = value;
}
// We've decided that this variable can go back to write phase, even if it has been
// written. This can be used, for example, for variables set and read during frame
// layout calculation, as long as it is before final layout, such that anything
// being calculated is just an estimate anyway. Obviously, it must be used carefully,
// since it overrides the main benefit of this class.
void ResetWritePhase()
{
#ifdef DEBUG
m_writePhase = true;
#endif // DEBUG
}
private:
// Don't allow a copy constructor. (This could be allowed, but only add it once it is actually needed.)
PhasedVar(const PhasedVar& o)
{
unreached();
}
T m_value;
#ifdef DEBUG
bool m_initialized; // true once the variable has been initialized, that is, written once.
bool m_writePhase; // true if we are in the (initial) "write" phase. Once the value is read, this changes to false,
// and can't be changed back.
#endif // DEBUG
};
class HelperCallProperties
{
private:
bool m_isPure[CORINFO_HELP_COUNT];
bool m_noThrow[CORINFO_HELP_COUNT];
bool m_nonNullReturn[CORINFO_HELP_COUNT];
bool m_isAllocator[CORINFO_HELP_COUNT];
bool m_mutatesHeap[CORINFO_HELP_COUNT];
bool m_mayRunCctor[CORINFO_HELP_COUNT];
bool m_mayFinalize[CORINFO_HELP_COUNT];
void init();
public:
HelperCallProperties()
{
init();
}
bool IsPure(CorInfoHelpFunc helperId)
{
assert(helperId > CORINFO_HELP_UNDEF);
assert(helperId < CORINFO_HELP_COUNT);
return m_isPure[helperId];
}
bool NoThrow(CorInfoHelpFunc helperId)
{
assert(helperId > CORINFO_HELP_UNDEF);
assert(helperId < CORINFO_HELP_COUNT);
return m_noThrow[helperId];
}
bool NonNullReturn(CorInfoHelpFunc helperId)
{
assert(helperId > CORINFO_HELP_UNDEF);
assert(helperId < CORINFO_HELP_COUNT);
return m_nonNullReturn[helperId];
}
bool IsAllocator(CorInfoHelpFunc helperId)
{
assert(helperId > CORINFO_HELP_UNDEF);
assert(helperId < CORINFO_HELP_COUNT);
return m_isAllocator[helperId];
}
bool MutatesHeap(CorInfoHelpFunc helperId)
{
assert(helperId > CORINFO_HELP_UNDEF);
assert(helperId < CORINFO_HELP_COUNT);
return m_mutatesHeap[helperId];
}
bool MayRunCctor(CorInfoHelpFunc helperId)
{
assert(helperId > CORINFO_HELP_UNDEF);
assert(helperId < CORINFO_HELP_COUNT);
return m_mayRunCctor[helperId];
}
bool MayFinalize(CorInfoHelpFunc helperId)
{
assert(helperId > CORINFO_HELP_UNDEF);
assert(helperId < CORINFO_HELP_COUNT);
return m_mayFinalize[helperId];
}
};
//*****************************************************************************
// AssemblyNamesList2: Parses and stores a list of Assembly names, and provides
// a function for determining whether a given assembly name is part of the list.
//
// This is a clone of the AssemblyNamesList class that exists in the VM's utilcode,
// modified to use the JIT's memory allocator and throw on out of memory behavior.
// It is named AssemblyNamesList2 to avoid a name conflict with the VM version.
// It might be preferable to adapt the VM's code to be more flexible (for example,
// by using an IAllocator), but the string handling code there is heavily macroized,
// and for the small usage we have of this class, investing in genericizing the VM
// implementation didn't seem worth it.
//*****************************************************************************
class AssemblyNamesList2
{
struct AssemblyName
{
char* m_assemblyName;
AssemblyName* m_next;
};
AssemblyName* m_pNames; // List of names
HostAllocator m_alloc; // HostAllocator to use in this class
public:
// Take a Unicode string list of assembly names, parse it, and store it.
AssemblyNamesList2(const wchar_t* list, HostAllocator alloc);
~AssemblyNamesList2();
// Return 'true' if 'assemblyName' (in UTF-8 format) is in the stored list of assembly names.
bool IsInList(const char* assemblyName);
// Return 'true' if the assembly name list is empty.
bool IsEmpty()
{
return m_pNames == nullptr;
}
};
#ifdef FEATURE_JIT_METHOD_PERF
// When Start() is called time is noted and when ElapsedTime
// is called we know how much time was spent in msecs.
//
class CycleCount
{
private:
double cps; // cycles per second
unsigned __int64 beginCycles; // cycles at stop watch construction
public:
CycleCount();
// Kick off the counter, and if re-entrant will use the latest cycles as starting point.
// If the method returns false, any other query yield unpredictable results.
bool Start();
// Return time elapsed in msecs, if Start returned true.
double ElapsedTime();
private:
// Return true if successful.
bool GetCycles(unsigned __int64* time);
};
// Uses win API QueryPerformanceCounter/QueryPerformanceFrequency.
class PerfCounter
{
LARGE_INTEGER beg;
double freq;
public:
// If the method returns false, any other query yield unpredictable results.
bool Start();
// Return time elapsed from start in millis, if Start returned true.
double ElapsedTime();
};
#endif // FEATURE_JIT_METHOD_PERF
#ifdef DEBUG
/*****************************************************************************
* Return the number of digits in a number of the given base (default base 10).
* Used when outputting strings.
*/
unsigned CountDigits(unsigned num, unsigned base = 10);
#endif // DEBUG
/*****************************************************************************
* Floating point utility class
*/
class FloatingPointUtils
{
public:
static double convertUInt64ToDouble(unsigned __int64 u64);
static float convertUInt64ToFloat(unsigned __int64 u64);
static unsigned __int64 convertDoubleToUInt64(double d);
static double round(double x);
static float round(float x);
};
// The CLR requires that critical section locks be initialized via its ClrCreateCriticalSection API...but
// that can't be called until the CLR is initialized. If we have static data that we'd like to protect by a
// lock, and we have a statically allocated lock to protect that data, there's an issue in how to initialize
// that lock. We could insert an initialize call in the startup path, but one might prefer to keep the code
// more local. For such situations, CritSecObject solves the initialization problem, via a level of
// indirection. A pointer to the lock is initially null, and when we query for the lock pointer via "Val()".
// If the lock has not yet been allocated, this allocates one (here a leaf lock), and uses a
// CompareAndExchange-based lazy-initialization to update the field. If this fails, the allocated lock is
// destroyed. This will work as long as the first locking attempt occurs after enough CLR initialization has
// happened to make ClrCreateCriticalSection calls legal.
class CritSecObject
{
public:
CritSecObject()
{
m_pCs = nullptr;
}
CRITSEC_COOKIE Val()
{
if (m_pCs == nullptr)
{
// CompareExchange-based lazy init.
CRITSEC_COOKIE newCs = ClrCreateCriticalSection(CrstLeafLock, CRST_DEFAULT);
CRITSEC_COOKIE observed = InterlockedCompareExchangeT(&m_pCs, newCs, NULL);
if (observed != nullptr)
{
ClrDeleteCriticalSection(newCs);
}
}
return m_pCs;
}
private:
// CRITSEC_COOKIE is an opaque pointer type.
CRITSEC_COOKIE m_pCs;
// No copying or assignment allowed.
CritSecObject(const CritSecObject&) = delete;
CritSecObject& operator=(const CritSecObject&) = delete;
};
// Stack-based holder for a critial section lock.
// Ensures lock is released.
class CritSecHolder
{
public:
CritSecHolder(CritSecObject& critSec) : m_CritSec(critSec)
{
ClrEnterCriticalSection(m_CritSec.Val());
}
~CritSecHolder()
{
ClrLeaveCriticalSection(m_CritSec.Val());
}
private:
CritSecObject& m_CritSec;
// No copying or assignment allowed.
CritSecHolder(const CritSecHolder&) = delete;
CritSecHolder& operator=(const CritSecHolder&) = delete;
};
namespace MagicDivide
{
uint32_t GetUnsigned32Magic(uint32_t d, bool* add /*out*/, int* shift /*out*/);
#ifdef _TARGET_64BIT_
uint64_t GetUnsigned64Magic(uint64_t d, bool* add /*out*/, int* shift /*out*/);
#endif
int32_t GetSigned32Magic(int32_t d, int* shift /*out*/);
#ifdef _TARGET_64BIT_
int64_t GetSigned64Magic(int64_t d, int* shift /*out*/);
#endif
}
#endif // _UTILS_H_
|