1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
|
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
#ifndef _SIMD_H_
#define _SIMD_H_
// Underlying hardware information
// This type is used to control
// 1. The length of System.Numerics.Vector<T>.
// 2. Codegen of System.Numerics.Vectors.
// 3. Codegen of floating-point arithmetics (VEX-encoding or not).
//
// Note
// - Hardware SIMD support is classified to the levels. Do not directly use
// InstructionSet (instr.h) for System.Numerics.Vectors.
// - Values of SIMDLevel have strictly increasing order that each SIMD level
// is a superset of the previous levels.
enum SIMDLevel
{
SIMD_Not_Supported = 0,
#ifdef _TARGET_XARCH_
// SSE2 - The min bar of SIMD ISA on x86/x64.
// Vector<T> length is 128-bit.
// Floating-point instructions are legacy SSE encoded.
SIMD_SSE2_Supported = 1,
// SSE4 - RyuJIT may generate SSE3, SSSE3, SSE4.1 and SSE4.2 instructions for certain intrinsics.
// Vector<T> length is 128-bit.
// Floating-point instructions are legacy SSE encoded.
SIMD_SSE4_Supported = 2,
// AVX2 - Hardware has AVX and AVX2 instruction set.
// Vector<T> length is 256-bit and SIMD instructions are VEX-256 encoded.
// Floating-point instructions are VEX-128 encoded.
SIMD_AVX2_Supported = 3
#endif
};
#ifdef FEATURE_SIMD
#ifdef DEBUG
extern const char* const simdIntrinsicNames[];
#endif
enum SIMDIntrinsicID
{
#define SIMD_INTRINSIC(m, i, id, n, r, ac, arg1, arg2, arg3, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10) SIMDIntrinsic##id,
#include "simdintrinsiclist.h"
};
// Static info about a SIMD intrinsic
struct SIMDIntrinsicInfo
{
SIMDIntrinsicID id;
const char* methodName;
bool isInstMethod;
var_types retType;
unsigned char argCount;
var_types argType[SIMD_INTRINSIC_MAX_MODELED_PARAM_COUNT];
var_types supportedBaseTypes[SIMD_INTRINSIC_MAX_BASETYPE_COUNT];
};
#ifdef _TARGET_XARCH_
// SSE2 Shuffle control byte to shuffle vector <W, Z, Y, X>
// These correspond to shuffle immediate byte in shufps SSE2 instruction.
#define SHUFFLE_XXXX 0x00 // 00 00 00 00
#define SHUFFLE_XXZX 0x08 // 00 00 10 00
#define SHUFFLE_XXWW 0x0F // 00 00 11 11
#define SHUFFLE_XYZW 0x1B // 00 01 10 11
#define SHUFFLE_YXYX 0x44 // 01 00 01 00
#define SHUFFLE_YWXZ 0x72 // 01 11 00 10
#define SHUFFLE_YYZZ 0x5A // 01 01 10 10
#define SHUFFLE_ZXXX 0x80 // 10 00 00 00
#define SHUFFLE_ZXXY 0x81 // 10 00 00 01
#define SHUFFLE_ZWXY 0xB1 // 10 11 00 01
#define SHUFFLE_WYZX 0xD8 // 11 01 10 00
#define SHUFFLE_WWYY 0xF5 // 11 11 01 01
#define SHUFFLE_ZZXX 0xA0 // 10 10 00 00
#endif
#endif // FEATURE_SIMD
#endif //_SIMD_H_
|