summaryrefslogtreecommitdiff
path: root/src/jit/simd.cpp
blob: 3d265ee12da5a2047504a98cf98d09fce0e5525b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.

//
//   SIMD Support
//
// IMPORTANT NOTES AND CAVEATS:
//
// This implementation is preliminary, and may change dramatically.
//
// New JIT types, TYP_SIMDxx, are introduced, and the SIMD intrinsics are created as GT_SIMD nodes.
// Nodes of SIMD types will be typed as TYP_SIMD* (e.g. TYP_SIMD8, TYP_SIMD16, etc.).
//
// Note that currently the "reference implementation" is the same as the runtime dll.  As such, it is currently
// providing implementations for those methods not currently supported by the JIT as intrinsics.
//
// These are currently recognized using string compares, in order to provide an implementation in the JIT
// without taking a dependency on the VM.
// Furthermore, in the CTP, in order to limit the impact of doing these string compares
// against assembly names, we only look for the SIMDVector assembly if we are compiling a class constructor.  This
// makes it somewhat more "pay for play" but is a significant usability compromise.
// This has been addressed for RTM by doing the assembly recognition in the VM.
// --------------------------------------------------------------------------------------

#include "jitpch.h"
#include "simd.h"

#ifdef _MSC_VER
#pragma hdrstop
#endif

#ifdef FEATURE_SIMD

// Intrinsic Id to intrinsic info map
const SIMDIntrinsicInfo simdIntrinsicInfoArray[] = {
#define SIMD_INTRINSIC(mname, inst, id, name, retType, argCount, arg1, arg2, arg3, t1, t2, t3, t4, t5, t6, t7, t8, t9, \
                       t10)                                                                                            \
    {SIMDIntrinsic##id, mname, inst, retType, argCount, arg1, arg2, arg3, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10},
#include "simdintrinsiclist.h"
};

//------------------------------------------------------------------------
// getSIMDVectorLength: Get the length (number of elements of base type) of
//                      SIMD Vector given its size and base (element) type.
//
// Arguments:
//    simdSize   - size of the SIMD vector
//    baseType   - type of the elements of the SIMD vector
//
// static
int Compiler::getSIMDVectorLength(unsigned simdSize, var_types baseType)
{
    return simdSize / genTypeSize(baseType);
}

//------------------------------------------------------------------------
// Get the length (number of elements of base type) of SIMD Vector given by typeHnd.
//
// Arguments:
//    typeHnd  - type handle of the SIMD vector
//
int Compiler::getSIMDVectorLength(CORINFO_CLASS_HANDLE typeHnd)
{
    unsigned  sizeBytes = 0;
    var_types baseType  = getBaseTypeAndSizeOfSIMDType(typeHnd, &sizeBytes);
    return getSIMDVectorLength(sizeBytes, baseType);
}

//------------------------------------------------------------------------
// Get the preferred alignment of SIMD vector type for better performance.
//
// Arguments:
//    typeHnd  - type handle of the SIMD vector
//
int Compiler::getSIMDTypeAlignment(var_types simdType)
{
#ifdef _TARGET_XARCH_
    // Fixed length vectors have the following alignment preference
    // Vector2   = 8 byte alignment
    // Vector3/4 = 16-byte alignment
    unsigned size = genTypeSize(simdType);

    // preferred alignment for SSE2 128-bit vectors is 16-bytes
    if (size == 8)
    {
        return 8;
    }
    else if (size <= 16)
    {
        assert((size == 12) || (size == 16));
        return 16;
    }
    else
    {
        assert(size == 32);
        return 32;
    }
#elif defined(_TARGET_ARM64_)
    return 16;
#else
    assert(!"getSIMDTypeAlignment() unimplemented on target arch");
    unreached();
#endif
}

//----------------------------------------------------------------------------------
// Return the base type and size of SIMD vector type given its type handle.
//
// Arguments:
//    typeHnd   - The handle of the type we're interested in.
//    sizeBytes - out param
//
// Return Value:
//    base type of SIMD vector.
//    sizeBytes if non-null is set to size in bytes.
//
// TODO-Throughput: current implementation parses class name to find base type. Change
//         this when we implement  SIMD intrinsic identification for the final
//         product.
//
var_types Compiler::getBaseTypeAndSizeOfSIMDType(CORINFO_CLASS_HANDLE typeHnd, unsigned* sizeBytes /*= nullptr */)
{
    assert(featureSIMD);

    if (m_simdHandleCache == nullptr)
    {
        if (impInlineInfo == nullptr)
        {
            m_simdHandleCache = new (this, CMK_Generic) SIMDHandlesCache();
        }
        else
        {
            // Steal the inliner compiler's cache (create it if not available).

            if (impInlineInfo->InlineRoot->m_simdHandleCache == nullptr)
            {
                impInlineInfo->InlineRoot->m_simdHandleCache = new (this, CMK_Generic) SIMDHandlesCache();
            }

            m_simdHandleCache = impInlineInfo->InlineRoot->m_simdHandleCache;
        }
    }

    if (typeHnd == nullptr)
    {
        return TYP_UNKNOWN;
    }

    // fast path search using cached type handles of important types
    var_types simdBaseType = TYP_UNKNOWN;
    unsigned  size         = 0;

    // TODO - Optimize SIMD type recognition by IntrinsicAttribute
    if (isSIMDClass(typeHnd))
    {
        // The most likely to be used type handles are looked up first followed by
        // less likely to be used type handles
        if (typeHnd == m_simdHandleCache->SIMDFloatHandle)
        {
            simdBaseType = TYP_FLOAT;
            JITDUMP("  Known type SIMD Vector<Float>\n");
        }
        else if (typeHnd == m_simdHandleCache->SIMDIntHandle)
        {
            simdBaseType = TYP_INT;
            JITDUMP("  Known type SIMD Vector<Int>\n");
        }
        else if (typeHnd == m_simdHandleCache->SIMDVector2Handle)
        {
            simdBaseType = TYP_FLOAT;
            size         = 2 * genTypeSize(TYP_FLOAT);
            assert(size == roundUp(info.compCompHnd->getClassSize(typeHnd), TARGET_POINTER_SIZE));
            JITDUMP("  Known type Vector2\n");
        }
        else if (typeHnd == m_simdHandleCache->SIMDVector3Handle)
        {
            simdBaseType = TYP_FLOAT;
            size         = 3 * genTypeSize(TYP_FLOAT);
            assert(size == info.compCompHnd->getClassSize(typeHnd));
            JITDUMP("  Known type Vector3\n");
        }
        else if (typeHnd == m_simdHandleCache->SIMDVector4Handle)
        {
            simdBaseType = TYP_FLOAT;
            size         = 4 * genTypeSize(TYP_FLOAT);
            assert(size == roundUp(info.compCompHnd->getClassSize(typeHnd), TARGET_POINTER_SIZE));
            JITDUMP("  Known type Vector4\n");
        }
        else if (typeHnd == m_simdHandleCache->SIMDVectorHandle)
        {
            JITDUMP("  Known type Vector\n");
        }
        else if (typeHnd == m_simdHandleCache->SIMDUShortHandle)
        {
            simdBaseType = TYP_USHORT;
            JITDUMP("  Known type SIMD Vector<ushort>\n");
        }
        else if (typeHnd == m_simdHandleCache->SIMDUByteHandle)
        {
            simdBaseType = TYP_UBYTE;
            JITDUMP("  Known type SIMD Vector<ubyte>\n");
        }
        else if (typeHnd == m_simdHandleCache->SIMDDoubleHandle)
        {
            simdBaseType = TYP_DOUBLE;
            JITDUMP("  Known type SIMD Vector<Double>\n");
        }
        else if (typeHnd == m_simdHandleCache->SIMDLongHandle)
        {
            simdBaseType = TYP_LONG;
            JITDUMP("  Known type SIMD Vector<Long>\n");
        }
        else if (typeHnd == m_simdHandleCache->SIMDShortHandle)
        {
            simdBaseType = TYP_SHORT;
            JITDUMP("  Known type SIMD Vector<short>\n");
        }
        else if (typeHnd == m_simdHandleCache->SIMDByteHandle)
        {
            simdBaseType = TYP_BYTE;
            JITDUMP("  Known type SIMD Vector<byte>\n");
        }
        else if (typeHnd == m_simdHandleCache->SIMDUIntHandle)
        {
            simdBaseType = TYP_UINT;
            JITDUMP("  Known type SIMD Vector<uint>\n");
        }
        else if (typeHnd == m_simdHandleCache->SIMDULongHandle)
        {
            simdBaseType = TYP_ULONG;
            JITDUMP("  Known type SIMD Vector<ulong>\n");
        }

        // slow path search
        if (simdBaseType == TYP_UNKNOWN)
        {
            // Doesn't match with any of the cached type handles.
            // Obtain base type by parsing fully qualified class name.
            //
            // TODO-Throughput: implement product shipping solution to query base type.
            WCHAR  className[256] = {0};
            WCHAR* pbuf           = &className[0];
            int    len            = _countof(className);
            info.compCompHnd->appendClassName(&pbuf, &len, typeHnd, TRUE, FALSE, FALSE);
            noway_assert(pbuf < &className[256]);
            JITDUMP("SIMD Candidate Type %S\n", className);

            if (wcsncmp(className, W("System.Numerics."), 16) == 0)
            {
                if (wcsncmp(&(className[16]), W("Vector`1["), 9) == 0)
                {
                    if (wcsncmp(&(className[25]), W("System.Single"), 13) == 0)
                    {
                        m_simdHandleCache->SIMDFloatHandle = typeHnd;
                        simdBaseType                       = TYP_FLOAT;
                        JITDUMP("  Found type SIMD Vector<Float>\n");
                    }
                    else if (wcsncmp(&(className[25]), W("System.Int32"), 12) == 0)
                    {
                        m_simdHandleCache->SIMDIntHandle = typeHnd;
                        simdBaseType                     = TYP_INT;
                        JITDUMP("  Found type SIMD Vector<Int>\n");
                    }
                    else if (wcsncmp(&(className[25]), W("System.UInt16"), 13) == 0)
                    {
                        m_simdHandleCache->SIMDUShortHandle = typeHnd;
                        simdBaseType                        = TYP_USHORT;
                        JITDUMP("  Found type SIMD Vector<ushort>\n");
                    }
                    else if (wcsncmp(&(className[25]), W("System.Byte"), 11) == 0)
                    {
                        m_simdHandleCache->SIMDUByteHandle = typeHnd;
                        simdBaseType                       = TYP_UBYTE;
                        JITDUMP("  Found type SIMD Vector<ubyte>\n");
                    }
                    else if (wcsncmp(&(className[25]), W("System.Double"), 13) == 0)
                    {
                        m_simdHandleCache->SIMDDoubleHandle = typeHnd;
                        simdBaseType                        = TYP_DOUBLE;
                        JITDUMP("  Found type SIMD Vector<Double>\n");
                    }
                    else if (wcsncmp(&(className[25]), W("System.Int64"), 12) == 0)
                    {
                        m_simdHandleCache->SIMDLongHandle = typeHnd;
                        simdBaseType                      = TYP_LONG;
                        JITDUMP("  Found type SIMD Vector<Long>\n");
                    }
                    else if (wcsncmp(&(className[25]), W("System.Int16"), 12) == 0)
                    {
                        m_simdHandleCache->SIMDShortHandle = typeHnd;
                        simdBaseType                       = TYP_SHORT;
                        JITDUMP("  Found type SIMD Vector<short>\n");
                    }
                    else if (wcsncmp(&(className[25]), W("System.SByte"), 12) == 0)
                    {
                        m_simdHandleCache->SIMDByteHandle = typeHnd;
                        simdBaseType                      = TYP_BYTE;
                        JITDUMP("  Found type SIMD Vector<byte>\n");
                    }
                    else if (wcsncmp(&(className[25]), W("System.UInt32"), 13) == 0)
                    {
                        m_simdHandleCache->SIMDUIntHandle = typeHnd;
                        simdBaseType                      = TYP_UINT;
                        JITDUMP("  Found type SIMD Vector<uint>\n");
                    }
                    else if (wcsncmp(&(className[25]), W("System.UInt64"), 13) == 0)
                    {
                        m_simdHandleCache->SIMDULongHandle = typeHnd;
                        simdBaseType                       = TYP_ULONG;
                        JITDUMP("  Found type SIMD Vector<ulong>\n");
                    }
                    else
                    {
                        JITDUMP("  Unknown SIMD Vector<T>\n");
                    }
                }
                else if (wcsncmp(&(className[16]), W("Vector2"), 8) == 0)
                {
                    m_simdHandleCache->SIMDVector2Handle = typeHnd;

                    simdBaseType = TYP_FLOAT;
                    size         = 2 * genTypeSize(TYP_FLOAT);
                    assert(size == roundUp(info.compCompHnd->getClassSize(typeHnd), TARGET_POINTER_SIZE));
                    JITDUMP(" Found Vector2\n");
                }
                else if (wcsncmp(&(className[16]), W("Vector3"), 8) == 0)
                {
                    m_simdHandleCache->SIMDVector3Handle = typeHnd;

                    simdBaseType = TYP_FLOAT;
                    size         = 3 * genTypeSize(TYP_FLOAT);
                    assert(size == info.compCompHnd->getClassSize(typeHnd));
                    JITDUMP(" Found Vector3\n");
                }
                else if (wcsncmp(&(className[16]), W("Vector4"), 8) == 0)
                {
                    m_simdHandleCache->SIMDVector4Handle = typeHnd;

                    simdBaseType = TYP_FLOAT;
                    size         = 4 * genTypeSize(TYP_FLOAT);
                    assert(size == roundUp(info.compCompHnd->getClassSize(typeHnd), TARGET_POINTER_SIZE));
                    JITDUMP(" Found Vector4\n");
                }
                else if (wcsncmp(&(className[16]), W("Vector"), 6) == 0)
                {
                    m_simdHandleCache->SIMDVectorHandle = typeHnd;
                    JITDUMP(" Found type Vector\n");
                }
                else
                {
                    JITDUMP("  Unknown SIMD Type\n");
                }
            }
        }
        if (simdBaseType != TYP_UNKNOWN && sizeBytes != nullptr)
        {
            // If not a fixed size vector then its size is same as SIMD vector
            // register length in bytes
            if (size == 0)
            {
                size = getSIMDVectorRegisterByteLength();
            }

            *sizeBytes = size;
            setUsesSIMDTypes(true);
        }
    }
#ifdef FEATURE_HW_INTRINSICS
    else if (isIntrinsicType(typeHnd))
    {
        const size_t Vector64SizeBytes  = 64 / 8;
        const size_t Vector128SizeBytes = 128 / 8;
        const size_t Vector256SizeBytes = 256 / 8;

#if defined(_TARGET_XARCH_)
        static_assert_no_msg(YMM_REGSIZE_BYTES == Vector256SizeBytes);
        static_assert_no_msg(XMM_REGSIZE_BYTES == Vector128SizeBytes);

        if (typeHnd == m_simdHandleCache->Vector256FloatHandle)
        {
            simdBaseType = TYP_FLOAT;
            size         = Vector256SizeBytes;
            JITDUMP("  Known type Vector256<float>\n");
        }
        else if (typeHnd == m_simdHandleCache->Vector256DoubleHandle)
        {
            simdBaseType = TYP_DOUBLE;
            size         = Vector256SizeBytes;
            JITDUMP("  Known type Vector256<double>\n");
        }
        else if (typeHnd == m_simdHandleCache->Vector256IntHandle)
        {
            simdBaseType = TYP_INT;
            size         = Vector256SizeBytes;
            JITDUMP("  Known type Vector256<int>\n");
        }
        else if (typeHnd == m_simdHandleCache->Vector256UIntHandle)
        {
            simdBaseType = TYP_UINT;
            size         = Vector256SizeBytes;
            JITDUMP("  Known type Vector256<uint>\n");
        }
        else if (typeHnd == m_simdHandleCache->Vector256ShortHandle)
        {
            simdBaseType = TYP_SHORT;
            size         = Vector256SizeBytes;
            JITDUMP("  Known type Vector256<short>\n");
        }
        else if (typeHnd == m_simdHandleCache->Vector256UShortHandle)
        {
            simdBaseType = TYP_USHORT;
            size         = Vector256SizeBytes;
            JITDUMP("  Known type Vector256<ushort>\n");
        }
        else if (typeHnd == m_simdHandleCache->Vector256ByteHandle)
        {
            simdBaseType = TYP_BYTE;
            size         = Vector256SizeBytes;
            JITDUMP("  Known type Vector256<sbyte>\n");
        }
        else if (typeHnd == m_simdHandleCache->Vector256UByteHandle)
        {
            simdBaseType = TYP_UBYTE;
            size         = Vector256SizeBytes;
            JITDUMP("  Known type Vector256<byte>\n");
        }
        else if (typeHnd == m_simdHandleCache->Vector256LongHandle)
        {
            simdBaseType = TYP_LONG;
            size         = Vector256SizeBytes;
            JITDUMP("  Known type Vector256<long>\n");
        }
        else if (typeHnd == m_simdHandleCache->Vector256ULongHandle)
        {
            simdBaseType = TYP_ULONG;
            size         = Vector256SizeBytes;
            JITDUMP("  Known type Vector256<ulong>\n");
        }
        else
#endif // defined(_TARGET_XARCH)
            if (typeHnd == m_simdHandleCache->Vector128FloatHandle)
        {
            simdBaseType = TYP_FLOAT;
            size         = Vector128SizeBytes;
            JITDUMP("  Known type Vector128<float>\n");
        }
        else if (typeHnd == m_simdHandleCache->Vector128DoubleHandle)
        {
            simdBaseType = TYP_DOUBLE;
            size         = Vector128SizeBytes;
            JITDUMP("  Known type Vector128<double>\n");
        }
        else if (typeHnd == m_simdHandleCache->Vector128IntHandle)
        {
            simdBaseType = TYP_INT;
            size         = Vector128SizeBytes;
            JITDUMP("  Known type Vector128<int>\n");
        }
        else if (typeHnd == m_simdHandleCache->Vector128UIntHandle)
        {
            simdBaseType = TYP_UINT;
            size         = Vector128SizeBytes;
            JITDUMP("  Known type Vector128<uint>\n");
        }
        else if (typeHnd == m_simdHandleCache->Vector128ShortHandle)
        {
            simdBaseType = TYP_SHORT;
            size         = Vector128SizeBytes;
            JITDUMP("  Known type Vector128<short>\n");
        }
        else if (typeHnd == m_simdHandleCache->Vector128UShortHandle)
        {
            simdBaseType = TYP_USHORT;
            size         = Vector128SizeBytes;
            JITDUMP("  Known type Vector128<ushort>\n");
        }
        else if (typeHnd == m_simdHandleCache->Vector128ByteHandle)
        {
            simdBaseType = TYP_BYTE;
            size         = Vector128SizeBytes;
            JITDUMP("  Known type Vector128<sbyte>\n");
        }
        else if (typeHnd == m_simdHandleCache->Vector128UByteHandle)
        {
            simdBaseType = TYP_UBYTE;
            size         = Vector128SizeBytes;
            JITDUMP("  Known type Vector128<byte>\n");
        }
        else if (typeHnd == m_simdHandleCache->Vector128LongHandle)
        {
            simdBaseType = TYP_LONG;
            size         = Vector128SizeBytes;
            JITDUMP("  Known type Vector128<long>\n");
        }
        else if (typeHnd == m_simdHandleCache->Vector128ULongHandle)
        {
            simdBaseType = TYP_ULONG;
            size         = Vector128SizeBytes;
            JITDUMP("  Known type Vector128<ulong>\n");
        }
        else
#if defined(_TARGET_ARM64_)
            if (typeHnd == m_simdHandleCache->Vector64FloatHandle)
        {
            simdBaseType = TYP_FLOAT;
            size         = Vector64SizeBytes;
            JITDUMP("  Known type Vector64<float>\n");
        }
        else if (typeHnd == m_simdHandleCache->Vector64IntHandle)
        {
            simdBaseType = TYP_INT;
            size         = Vector64SizeBytes;
            JITDUMP("  Known type Vector64<int>\n");
        }
        else if (typeHnd == m_simdHandleCache->Vector64UIntHandle)
        {
            simdBaseType = TYP_UINT;
            size         = Vector64SizeBytes;
            JITDUMP("  Known type Vector64<uint>\n");
        }
        else if (typeHnd == m_simdHandleCache->Vector64ShortHandle)
        {
            simdBaseType = TYP_SHORT;
            size         = Vector64SizeBytes;
            JITDUMP("  Known type Vector64<short>\n");
        }
        else if (typeHnd == m_simdHandleCache->Vector64UShortHandle)
        {
            simdBaseType = TYP_USHORT;
            size         = Vector64SizeBytes;
            JITDUMP("  Known type Vector64<ushort>\n");
        }
        else if (typeHnd == m_simdHandleCache->Vector64ByteHandle)
        {
            simdBaseType = TYP_BYTE;
            size         = Vector64SizeBytes;
            JITDUMP("  Known type Vector64<sbyte>\n");
        }
        else if (typeHnd == m_simdHandleCache->Vector64UByteHandle)
        {
            simdBaseType = TYP_UBYTE;
            size         = Vector64SizeBytes;
            JITDUMP("  Known type Vector64<byte>\n");
        }
#endif // defined(_TARGET_ARM64_)

        // slow path search
        if (simdBaseType == TYP_UNKNOWN)
        {
            // Doesn't match with any of the cached type handles.
            const char*          className   = getClassNameFromMetadata(typeHnd, nullptr);
            CORINFO_CLASS_HANDLE baseTypeHnd = getTypeInstantiationArgument(typeHnd, 0);

            if (baseTypeHnd != nullptr)
            {
                CorInfoType type = info.compCompHnd->getTypeForPrimitiveNumericClass(baseTypeHnd);

                JITDUMP("HW Intrinsic SIMD Candidate Type %s with Base Type %s\n", className,
                        getClassNameFromMetadata(baseTypeHnd, nullptr));

#if defined(_TARGET_XARCH_)
                if (strcmp(className, "Vector256`1") == 0)
                {
                    size = Vector256SizeBytes;
                    switch (type)
                    {
                        case CORINFO_TYPE_FLOAT:
                            m_simdHandleCache->Vector256FloatHandle = typeHnd;
                            simdBaseType                            = TYP_FLOAT;
                            JITDUMP("  Found type Hardware Intrinsic SIMD Vector256<float>\n");
                            break;
                        case CORINFO_TYPE_DOUBLE:
                            m_simdHandleCache->Vector256DoubleHandle = typeHnd;
                            simdBaseType                             = TYP_DOUBLE;
                            JITDUMP("  Found type Hardware Intrinsic SIMD Vector256<double>\n");
                            break;
                        case CORINFO_TYPE_INT:
                            m_simdHandleCache->Vector256IntHandle = typeHnd;
                            simdBaseType                          = TYP_INT;
                            JITDUMP("  Found type Hardware Intrinsic SIMD Vector256<int>\n");
                            break;
                        case CORINFO_TYPE_UINT:
                            m_simdHandleCache->Vector256UIntHandle = typeHnd;
                            simdBaseType                           = TYP_UINT;
                            JITDUMP("  Found type Hardware Intrinsic SIMD Vector256<uint>\n");
                            break;
                        case CORINFO_TYPE_SHORT:
                            m_simdHandleCache->Vector256ShortHandle = typeHnd;
                            simdBaseType                            = TYP_SHORT;
                            JITDUMP("  Found type Hardware Intrinsic SIMD Vector256<short>\n");
                            break;
                        case CORINFO_TYPE_USHORT:
                            m_simdHandleCache->Vector256UShortHandle = typeHnd;
                            simdBaseType                             = TYP_USHORT;
                            JITDUMP("  Found type Hardware Intrinsic SIMD Vector256<ushort>\n");
                            break;
                        case CORINFO_TYPE_LONG:
                            m_simdHandleCache->Vector256LongHandle = typeHnd;
                            simdBaseType                           = TYP_LONG;
                            JITDUMP("  Found type Hardware Intrinsic SIMD Vector256<long>\n");
                            break;
                        case CORINFO_TYPE_ULONG:
                            m_simdHandleCache->Vector256ULongHandle = typeHnd;
                            simdBaseType                            = TYP_ULONG;
                            JITDUMP("  Found type Hardware Intrinsic SIMD Vector256<ulong>\n");
                            break;
                        case CORINFO_TYPE_UBYTE:
                            m_simdHandleCache->Vector256UByteHandle = typeHnd;
                            simdBaseType                            = TYP_UBYTE;
                            JITDUMP("  Found type Hardware Intrinsic SIMD Vector256<byte>\n");
                            break;
                        case CORINFO_TYPE_BYTE:
                            m_simdHandleCache->Vector256ByteHandle = typeHnd;
                            simdBaseType                           = TYP_BYTE;
                            JITDUMP("  Found type Hardware Intrinsic SIMD Vector256<sbyte>\n");
                            break;

                        default:
                            JITDUMP("  Unknown Hardware Intrinsic SIMD Type Vector256<T>\n");
                    }
                }
                else
#endif // defined(_TARGET_XARCH_)
                    if (strcmp(className, "Vector128`1") == 0)
                {
                    size = Vector128SizeBytes;
                    switch (type)
                    {
                        case CORINFO_TYPE_FLOAT:
                            m_simdHandleCache->Vector128FloatHandle = typeHnd;
                            simdBaseType                            = TYP_FLOAT;
                            JITDUMP("  Found type Hardware Intrinsic SIMD Vector128<float>\n");
                            break;
                        case CORINFO_TYPE_DOUBLE:
                            m_simdHandleCache->Vector128DoubleHandle = typeHnd;
                            simdBaseType                             = TYP_DOUBLE;
                            JITDUMP("  Found type Hardware Intrinsic SIMD Vector128<double>\n");
                            break;
                        case CORINFO_TYPE_INT:
                            m_simdHandleCache->Vector128IntHandle = typeHnd;
                            simdBaseType                          = TYP_INT;
                            JITDUMP("  Found type Hardware Intrinsic SIMD Vector128<int>\n");
                            break;
                        case CORINFO_TYPE_UINT:
                            m_simdHandleCache->Vector128UIntHandle = typeHnd;
                            simdBaseType                           = TYP_UINT;
                            JITDUMP("  Found type Hardware Intrinsic SIMD Vector128<uint>\n");
                            break;
                        case CORINFO_TYPE_SHORT:
                            m_simdHandleCache->Vector128ShortHandle = typeHnd;
                            simdBaseType                            = TYP_SHORT;
                            JITDUMP("  Found type Hardware Intrinsic SIMD Vector128<short>\n");
                            break;
                        case CORINFO_TYPE_USHORT:
                            m_simdHandleCache->Vector128UShortHandle = typeHnd;
                            simdBaseType                             = TYP_USHORT;
                            JITDUMP("  Found type Hardware Intrinsic SIMD Vector128<ushort>\n");
                            break;
                        case CORINFO_TYPE_LONG:
                            m_simdHandleCache->Vector128LongHandle = typeHnd;
                            simdBaseType                           = TYP_LONG;
                            JITDUMP("  Found type Hardware Intrinsic SIMD Vector128<long>\n");
                            break;
                        case CORINFO_TYPE_ULONG:
                            m_simdHandleCache->Vector128ULongHandle = typeHnd;
                            simdBaseType                            = TYP_ULONG;
                            JITDUMP("  Found type Hardware Intrinsic SIMD Vector128<ulong>\n");
                            break;
                        case CORINFO_TYPE_UBYTE:
                            m_simdHandleCache->Vector128UByteHandle = typeHnd;
                            simdBaseType                            = TYP_UBYTE;
                            JITDUMP("  Found type Hardware Intrinsic SIMD Vector128<byte>\n");
                            break;
                        case CORINFO_TYPE_BYTE:
                            m_simdHandleCache->Vector128ByteHandle = typeHnd;
                            simdBaseType                           = TYP_BYTE;
                            JITDUMP("  Found type Hardware Intrinsic SIMD Vector128<sbyte>\n");
                            break;

                        default:
                            JITDUMP("  Unknown Hardware Intrinsic SIMD Type Vector128<T>\n");
                    }
                }
#if defined(_TARGET_ARM64_)
                else if (strcmp(className, "Vector64`1") == 0)
                {
                    size = Vector64SizeBytes;
                    switch (type)
                    {
                        case CORINFO_TYPE_FLOAT:
                            m_simdHandleCache->Vector64FloatHandle = typeHnd;
                            simdBaseType                           = TYP_FLOAT;
                            JITDUMP("  Found type Hardware Intrinsic SIMD Vector64<float>\n");
                            break;
                        case CORINFO_TYPE_INT:
                            m_simdHandleCache->Vector64IntHandle = typeHnd;
                            simdBaseType                         = TYP_INT;
                            JITDUMP("  Found type Hardware Intrinsic SIMD Vector64<int>\n");
                            break;
                        case CORINFO_TYPE_UINT:
                            m_simdHandleCache->Vector64UIntHandle = typeHnd;
                            simdBaseType                          = TYP_UINT;
                            JITDUMP("  Found type Hardware Intrinsic SIMD Vector64<uint>\n");
                            break;
                        case CORINFO_TYPE_SHORT:
                            m_simdHandleCache->Vector64ShortHandle = typeHnd;
                            simdBaseType                           = TYP_SHORT;
                            JITDUMP("  Found type Hardware Intrinsic SIMD Vector64<short>\n");
                            break;
                        case CORINFO_TYPE_USHORT:
                            m_simdHandleCache->Vector64UShortHandle = typeHnd;
                            simdBaseType                            = TYP_USHORT;
                            JITDUMP("  Found type Hardware Intrinsic SIMD Vector64<ushort>\n");
                            break;
                        case CORINFO_TYPE_UBYTE:
                            m_simdHandleCache->Vector64UByteHandle = typeHnd;
                            simdBaseType                           = TYP_UBYTE;
                            JITDUMP("  Found type Hardware Intrinsic SIMD Vector64<byte>\n");
                            break;
                        case CORINFO_TYPE_BYTE:
                            m_simdHandleCache->Vector64ByteHandle = typeHnd;
                            simdBaseType                          = TYP_BYTE;
                            JITDUMP("  Found type Hardware Intrinsic SIMD Vector64<sbyte>\n");
                            break;

                        default:
                            JITDUMP("  Unknown Hardware Intrinsic SIMD Type Vector64<T>\n");
                    }
                }
#endif // defined(_TARGET_ARM64_)
            }
        }

        if (sizeBytes != nullptr)
        {
            *sizeBytes = size;
        }

        if (simdBaseType != TYP_UNKNOWN)
        {
            setUsesSIMDTypes(true);
        }
    }
#endif // FEATURE_HW_INTRINSICS

    return simdBaseType;
}

//--------------------------------------------------------------------------------------
// getSIMDIntrinsicInfo: get SIMD intrinsic info given the method handle.
//
// Arguments:
//    inOutTypeHnd    - The handle of the type on which the method is invoked.  This is an in-out param.
//    methodHnd       - The handle of the method we're interested in.
//    sig             - method signature info
//    isNewObj        - whether this call represents a newboj constructor call
//    argCount        - argument count - out pram
//    baseType        - base type of the intrinsic - out param
//    sizeBytes       - size of SIMD vector type on which the method is invoked - out param
//
// Return Value:
//    SIMDIntrinsicInfo struct initialized corresponding to methodHnd.
//    Sets SIMDIntrinsicInfo.id to SIMDIntrinsicInvalid if methodHnd doesn't correspond
//    to any SIMD intrinsic.  Also, sets the out params inOutTypeHnd, argCount, baseType and
//    sizeBytes.
//
//    Note that VectorMath class doesn't have a base type and first argument of the method
//    determines the SIMD vector type on which intrinsic is invoked. In such a case inOutTypeHnd
//    is modified by this routine.
//
// TODO-Throughput: The current implementation is based on method name string parsing.
//         Although we now have type identification from the VM, the parsing of intrinsic names
//         could be made more efficient.
//
const SIMDIntrinsicInfo* Compiler::getSIMDIntrinsicInfo(CORINFO_CLASS_HANDLE* inOutTypeHnd,
                                                        CORINFO_METHOD_HANDLE methodHnd,
                                                        CORINFO_SIG_INFO*     sig,
                                                        bool                  isNewObj,
                                                        unsigned*             argCount,
                                                        var_types*            baseType,
                                                        unsigned*             sizeBytes)
{
    assert(featureSIMD);
    assert(baseType != nullptr);
    assert(sizeBytes != nullptr);

    // get baseType and size of the type
    CORINFO_CLASS_HANDLE typeHnd = *inOutTypeHnd;
    *baseType                    = getBaseTypeAndSizeOfSIMDType(typeHnd, sizeBytes);

    if (typeHnd == m_simdHandleCache->SIMDVectorHandle)
    {
        // All of the supported intrinsics on this static class take a first argument that's a vector,
        // which determines the baseType.
        // The exception is the IsHardwareAccelerated property, which is handled as a special case.
        assert(*baseType == TYP_UNKNOWN);
        if (sig->numArgs == 0)
        {
            const SIMDIntrinsicInfo* hwAccelIntrinsicInfo = &(simdIntrinsicInfoArray[SIMDIntrinsicHWAccel]);
            if ((strcmp(eeGetMethodName(methodHnd, nullptr), hwAccelIntrinsicInfo->methodName) == 0) &&
                JITtype2varType(sig->retType) == hwAccelIntrinsicInfo->retType)
            {
                // Sanity check
                assert(hwAccelIntrinsicInfo->argCount == 0 && hwAccelIntrinsicInfo->isInstMethod == false);
                return hwAccelIntrinsicInfo;
            }
            return nullptr;
        }
        else
        {
            typeHnd       = info.compCompHnd->getArgClass(sig, sig->args);
            *inOutTypeHnd = typeHnd;
            *baseType     = getBaseTypeAndSizeOfSIMDType(typeHnd, sizeBytes);
        }
    }

    if (*baseType == TYP_UNKNOWN)
    {
        JITDUMP("NOT a SIMD Intrinsic: unsupported baseType\n");
        return nullptr;
    }

    // account for implicit "this" arg
    *argCount = sig->numArgs;
    if (sig->hasThis())
    {
        *argCount += 1;
    }

    // Get the Intrinsic Id by parsing method name.
    //
    // TODO-Throughput: replace sequential search by binary search by arranging entries
    // sorted by method name.
    SIMDIntrinsicID intrinsicId = SIMDIntrinsicInvalid;
    const char*     methodName  = eeGetMethodName(methodHnd, nullptr);
    for (int i = SIMDIntrinsicNone + 1; i < SIMDIntrinsicInvalid; ++i)
    {
        if (strcmp(methodName, simdIntrinsicInfoArray[i].methodName) == 0)
        {
            // Found an entry for the method; further check whether it is one of
            // the supported base types.
            bool found = false;
            for (int j = 0; j < SIMD_INTRINSIC_MAX_BASETYPE_COUNT; ++j)
            {
                // Convention: if there are fewer base types supported than MAX_BASETYPE_COUNT,
                // the end of the list is marked by TYP_UNDEF.
                if (simdIntrinsicInfoArray[i].supportedBaseTypes[j] == TYP_UNDEF)
                {
                    break;
                }

                if (simdIntrinsicInfoArray[i].supportedBaseTypes[j] == *baseType)
                {
                    found = true;
                    break;
                }
            }

            if (!found)
            {
                continue;
            }

            // Now, check the arguments.
            unsigned int fixedArgCnt    = simdIntrinsicInfoArray[i].argCount;
            unsigned int expectedArgCnt = fixedArgCnt;

            // First handle SIMDIntrinsicInitN, where the arg count depends on the type.
            // The listed arg types include the vector and the first two init values, which is the expected number
            // for Vector2.  For other cases, we'll check their types here.
            if (*argCount > expectedArgCnt)
            {
                if (i == SIMDIntrinsicInitN)
                {
                    if (*argCount == 3 && typeHnd == m_simdHandleCache->SIMDVector2Handle)
                    {
                        expectedArgCnt = 3;
                    }
                    else if (*argCount == 4 && typeHnd == m_simdHandleCache->SIMDVector3Handle)
                    {
                        expectedArgCnt = 4;
                    }
                    else if (*argCount == 5 && typeHnd == m_simdHandleCache->SIMDVector4Handle)
                    {
                        expectedArgCnt = 5;
                    }
                }
                else if (i == SIMDIntrinsicInitFixed)
                {
                    if (*argCount == 4 && typeHnd == m_simdHandleCache->SIMDVector4Handle)
                    {
                        expectedArgCnt = 4;
                    }
                }
            }
            if (*argCount != expectedArgCnt)
            {
                continue;
            }

            // Validate the types of individual args passed are what is expected of.
            // If any of the types don't match with what is expected, don't consider
            // as an intrinsic.  This will make an older JIT with SIMD capabilities
            // resilient to breaking changes to SIMD managed API.
            //
            // Note that from IL type stack, args get popped in right to left order
            // whereas args get listed in method signatures in left to right order.

            int stackIndex = (expectedArgCnt - 1);

            // Track the arguments from the signature - we currently only use this to distinguish
            // integral and pointer types, both of which will by TYP_I_IMPL on the importer stack.
            CORINFO_ARG_LIST_HANDLE argLst = sig->args;

            CORINFO_CLASS_HANDLE argClass;
            for (unsigned int argIndex = 0; found == true && argIndex < expectedArgCnt; argIndex++)
            {
                bool isThisPtr = ((argIndex == 0) && sig->hasThis());

                // In case of "newobj SIMDVector<T>(T val)", thisPtr won't be present on type stack.
                // We don't check anything in that case.
                if (!isThisPtr || !isNewObj)
                {
                    GenTree*  arg     = impStackTop(stackIndex).val;
                    var_types argType = arg->TypeGet();

                    var_types expectedArgType;
                    if (argIndex < fixedArgCnt)
                    {
                        // Convention:
                        //   - intrinsicInfo.argType[i] == TYP_UNDEF - intrinsic doesn't have a valid arg at position i
                        //   - intrinsicInfo.argType[i] == TYP_UNKNOWN - arg type should be same as basetype
                        // Note that we pop the args off in reverse order.
                        expectedArgType = simdIntrinsicInfoArray[i].argType[argIndex];
                        assert(expectedArgType != TYP_UNDEF);
                        if (expectedArgType == TYP_UNKNOWN)
                        {
                            // The type of the argument will be genActualType(*baseType).
                            expectedArgType = genActualType(*baseType);
                            argType         = genActualType(argType);
                        }
                    }
                    else
                    {
                        expectedArgType = *baseType;
                    }

                    if (!isThisPtr && argType == TYP_I_IMPL)
                    {
                        // The reference implementation has a constructor that takes a pointer.
                        // We don't want to recognize that one.  This requires us to look at the CorInfoType
                        // in order to distinguish a signature with a pointer argument from one with an
                        // integer argument of pointer size, both of which will be TYP_I_IMPL on the stack.
                        // TODO-Review: This seems quite fragile.  We should consider beefing up the checking
                        // here.
                        CorInfoType corType = strip(info.compCompHnd->getArgType(sig, argLst, &argClass));
                        if (corType == CORINFO_TYPE_PTR)
                        {
                            found = false;
                        }
                    }

                    if (varTypeIsSIMD(argType))
                    {
                        argType = TYP_STRUCT;
                    }
                    if (argType != expectedArgType)
                    {
                        found = false;
                    }
                }
                if (argIndex != 0 || !sig->hasThis())
                {
                    argLst = info.compCompHnd->getArgNext(argLst);
                }
                stackIndex--;
            }

            // Cross check return type and static vs. instance is what we are expecting.
            // If not, don't consider it as an intrinsic.
            // Note that ret type of TYP_UNKNOWN means that it is not known apriori and must be same as baseType
            if (found)
            {
                var_types expectedRetType = simdIntrinsicInfoArray[i].retType;
                if (expectedRetType == TYP_UNKNOWN)
                {
                    // JIT maps uint/ulong type vars to TYP_INT/TYP_LONG.
                    expectedRetType =
                        (*baseType == TYP_UINT || *baseType == TYP_ULONG) ? genActualType(*baseType) : *baseType;
                }

                if (JITtype2varType(sig->retType) != expectedRetType ||
                    sig->hasThis() != simdIntrinsicInfoArray[i].isInstMethod)
                {
                    found = false;
                }
            }

            if (found)
            {
                intrinsicId = (SIMDIntrinsicID)i;
                break;
            }
        }
    }

    if (intrinsicId != SIMDIntrinsicInvalid)
    {
        JITDUMP("Method %s maps to SIMD intrinsic %s\n", methodName, simdIntrinsicNames[intrinsicId]);
        return &simdIntrinsicInfoArray[intrinsicId];
    }
    else
    {
        JITDUMP("Method %s is NOT a SIMD intrinsic\n", methodName);
    }

    return nullptr;
}

// Pops and returns GenTree node from importer's type stack.
// Normalizes TYP_STRUCT value in case of GT_CALL, GT_RET_EXPR and arg nodes.
//
// Arguments:
//    type        -  the type of value that the caller expects to be popped off the stack.
//    expectAddr  -  if true indicates we are expecting type stack entry to be a TYP_BYREF.
//    structType  -  the class handle to use when normalizing if it is not the same as the stack entry class handle;
//                   this can happen for certain scenarios, such as folding away a static cast, where we want the
//                   value popped to have the type that would have been returned.
//
// Notes:
//    If the popped value is a struct, and the expected type is a simd type, it will be set
//    to that type, otherwise it will assert if the type being popped is not the expected type.

GenTree* Compiler::impSIMDPopStack(var_types type, bool expectAddr, CORINFO_CLASS_HANDLE structType)
{
    StackEntry se   = impPopStack();
    typeInfo   ti   = se.seTypeInfo;
    GenTree*   tree = se.val;

    // If expectAddr is true implies what we have on stack is address and we need
    // SIMD type struct that it points to.
    if (expectAddr)
    {
        assert(tree->TypeGet() == TYP_BYREF);
        if (tree->OperGet() == GT_ADDR)
        {
            tree = tree->gtGetOp1();
        }
        else
        {
            tree = gtNewOperNode(GT_IND, type, tree);
        }
    }

    bool isParam = false;

    // If we have a ldobj of a SIMD local we need to transform it.
    if (tree->OperGet() == GT_OBJ)
    {
        GenTree* addr = tree->gtOp.gtOp1;
        if ((addr->OperGet() == GT_ADDR) && isSIMDTypeLocal(addr->gtOp.gtOp1))
        {
            tree = addr->gtOp.gtOp1;
        }
    }

    if (tree->OperGet() == GT_LCL_VAR)
    {
        unsigned   lclNum    = tree->AsLclVarCommon()->GetLclNum();
        LclVarDsc* lclVarDsc = &lvaTable[lclNum];
        isParam              = lclVarDsc->lvIsParam;
    }

    // normalize TYP_STRUCT value
    if (varTypeIsStruct(tree) && ((tree->OperGet() == GT_RET_EXPR) || (tree->OperGet() == GT_CALL) || isParam))
    {
        assert(ti.IsType(TI_STRUCT));

        if (structType == nullptr)
        {
            structType = ti.GetClassHandleForValueClass();
        }

        tree = impNormStructVal(tree, structType, (unsigned)CHECK_SPILL_ALL);
    }

    // Now set the type of the tree to the specialized SIMD struct type, if applicable.
    if (genActualType(tree->gtType) != genActualType(type))
    {
        assert(tree->gtType == TYP_STRUCT);
        tree->gtType = type;
    }
    else if (tree->gtType == TYP_BYREF)
    {
        assert(tree->IsLocal() || (tree->OperGet() == GT_RET_EXPR) || (tree->OperGet() == GT_CALL) ||
               ((tree->gtOper == GT_ADDR) && varTypeIsSIMD(tree->gtGetOp1())));
    }

    return tree;
}

// impSIMDGetFixed: Create a GT_SIMD tree for a Get property of SIMD vector with a fixed index.
//
// Arguments:
//    baseType - The base (element) type of the SIMD vector.
//    simdSize - The total size in bytes of the SIMD vector.
//    index    - The index of the field to get.
//
// Return Value:
//    Returns a GT_SIMD node with the SIMDIntrinsicGetItem intrinsic id.
//
GenTreeSIMD* Compiler::impSIMDGetFixed(var_types simdType, var_types baseType, unsigned simdSize, int index)
{
    assert(simdSize >= ((index + 1) * genTypeSize(baseType)));

    // op1 is a SIMD source.
    GenTree* op1 = impSIMDPopStack(simdType, true);

    GenTree*     op2      = gtNewIconNode(index);
    GenTreeSIMD* simdTree = gtNewSIMDNode(baseType, op1, op2, SIMDIntrinsicGetItem, baseType, simdSize);
    return simdTree;
}

#ifdef _TARGET_XARCH_
// impSIMDLongRelOpEqual: transforms operands and returns the SIMD intrinsic to be applied on
// transformed operands to obtain == comparison result.
//
// Arguments:
//    typeHnd  -  type handle of SIMD vector
//    size     -  SIMD vector size
//    op1      -  in-out parameter; first operand
//    op2      -  in-out parameter; second operand
//
// Return Value:
//    Modifies in-out params op1, op2 and returns intrinsic ID to be applied to modified operands
//
SIMDIntrinsicID Compiler::impSIMDLongRelOpEqual(CORINFO_CLASS_HANDLE typeHnd,
                                                unsigned             size,
                                                GenTree**            pOp1,
                                                GenTree**            pOp2)
{
    var_types simdType = (*pOp1)->TypeGet();
    assert(varTypeIsSIMD(simdType) && ((*pOp2)->TypeGet() == simdType));

    // There is no direct SSE2 support for comparing TYP_LONG vectors.
    // These have to be implemented in terms of TYP_INT vector comparison operations.
    //
    // Equality(v1, v2):
    // tmp = (v1 == v2) i.e. compare for equality as if v1 and v2 are vector<int>
    // result = BitwiseAnd(t, shuffle(t, (2, 3, 0, 1)))
    // Shuffle is meant to swap the comparison results of low-32-bits and high 32-bits of respective long elements.

    // Compare vector<long> as if they were vector<int> and assign the result to a temp
    GenTree* compResult = gtNewSIMDNode(simdType, *pOp1, *pOp2, SIMDIntrinsicEqual, TYP_INT, size);
    unsigned lclNum     = lvaGrabTemp(true DEBUGARG("SIMD Long =="));
    lvaSetStruct(lclNum, typeHnd, false);
    GenTree* tmp = gtNewLclvNode(lclNum, simdType);
    GenTree* asg = gtNewTempAssign(lclNum, compResult);

    // op1 = GT_COMMA(tmp=compResult, tmp)
    // op2 = Shuffle(tmp, 0xB1)
    // IntrinsicId = BitwiseAnd
    *pOp1 = gtNewOperNode(GT_COMMA, simdType, asg, tmp);
    *pOp2 = gtNewSIMDNode(simdType, gtNewLclvNode(lclNum, simdType), gtNewIconNode(SHUFFLE_ZWXY, TYP_INT),
                          SIMDIntrinsicShuffleSSE2, TYP_INT, size);
    return SIMDIntrinsicBitwiseAnd;
}

// impSIMDLongRelOpGreaterThan: transforms operands and returns the SIMD intrinsic to be applied on
// transformed operands to obtain > comparison result.
//
// Arguments:
//    typeHnd  -  type handle of SIMD vector
//    size     -  SIMD vector size
//    pOp1     -  in-out parameter; first operand
//    pOp2     -  in-out parameter; second operand
//
// Return Value:
//    Modifies in-out params pOp1, pOp2 and returns intrinsic ID to be applied to modified operands
//
SIMDIntrinsicID Compiler::impSIMDLongRelOpGreaterThan(CORINFO_CLASS_HANDLE typeHnd,
                                                      unsigned             size,
                                                      GenTree**            pOp1,
                                                      GenTree**            pOp2)
{
    var_types simdType = (*pOp1)->TypeGet();
    assert(varTypeIsSIMD(simdType) && ((*pOp2)->TypeGet() == simdType));

    // GreaterThan(v1, v2) where v1 and v2 are vector long.
    // Let us consider the case of single long element comparison.
    // say L1 = (x1, y1) and L2 = (x2, y2) where x1, y1, x2, and y2 are 32-bit integers that comprise the longs L1 and
    // L2.
    //
    // GreaterThan(L1, L2) can be expressed in terms of > relationship between 32-bit integers that comprise L1 and L2
    // as
    //                    =  (x1, y1) > (x2, y2)
    //                    =  (x1 > x2) || [(x1 == x2) && (y1 > y2)]   - eq (1)
    //
    // t = (v1 > v2)  32-bit signed comparison
    // u = (v1 == v2) 32-bit sized element equality
    // v = (v1 > v2)  32-bit unsigned comparison
    //
    // z = shuffle(t, (3, 3, 1, 1))  - This corresponds to (x1 > x2) in eq(1) above
    // t1 = Shuffle(v, (2, 2, 0, 0)) - This corresponds to (y1 > y2) in eq(1) above
    // u1 = Shuffle(u, (3, 3, 1, 1)) - This corresponds to (x1 == x2) in eq(1) above
    // w = And(t1, u1)               - This corresponds to [(x1 == x2) && (y1 > y2)] in eq(1) above
    // Result = BitwiseOr(z, w)

    // Since op1 and op2 gets used multiple times, make sure side effects are computed.
    GenTree* dupOp1    = nullptr;
    GenTree* dupOp2    = nullptr;
    GenTree* dupDupOp1 = nullptr;
    GenTree* dupDupOp2 = nullptr;

    if (((*pOp1)->gtFlags & GTF_SIDE_EFFECT) != 0)
    {
        dupOp1    = fgInsertCommaFormTemp(pOp1, typeHnd);
        dupDupOp1 = gtNewLclvNode(dupOp1->AsLclVarCommon()->GetLclNum(), simdType);
    }
    else
    {
        dupOp1    = gtCloneExpr(*pOp1);
        dupDupOp1 = gtCloneExpr(*pOp1);
    }

    if (((*pOp2)->gtFlags & GTF_SIDE_EFFECT) != 0)
    {
        dupOp2    = fgInsertCommaFormTemp(pOp2, typeHnd);
        dupDupOp2 = gtNewLclvNode(dupOp2->AsLclVarCommon()->GetLclNum(), simdType);
    }
    else
    {
        dupOp2    = gtCloneExpr(*pOp2);
        dupDupOp2 = gtCloneExpr(*pOp2);
    }

    assert(dupDupOp1 != nullptr && dupDupOp2 != nullptr);
    assert(dupOp1 != nullptr && dupOp2 != nullptr);
    assert(*pOp1 != nullptr && *pOp2 != nullptr);

    // v1GreaterThanv2Signed - signed 32-bit comparison
    GenTree* v1GreaterThanv2Signed = gtNewSIMDNode(simdType, *pOp1, *pOp2, SIMDIntrinsicGreaterThan, TYP_INT, size);

    // v1Equalsv2 - 32-bit equality
    GenTree* v1Equalsv2 = gtNewSIMDNode(simdType, dupOp1, dupOp2, SIMDIntrinsicEqual, TYP_INT, size);

    // v1GreaterThanv2Unsigned - unsigned 32-bit comparison
    var_types       tempBaseType = TYP_UINT;
    SIMDIntrinsicID sid = impSIMDRelOp(SIMDIntrinsicGreaterThan, typeHnd, size, &tempBaseType, &dupDupOp1, &dupDupOp2);
    GenTree*        v1GreaterThanv2Unsigned = gtNewSIMDNode(simdType, dupDupOp1, dupDupOp2, sid, tempBaseType, size);

    GenTree* z = gtNewSIMDNode(simdType, v1GreaterThanv2Signed, gtNewIconNode(SHUFFLE_WWYY, TYP_INT),
                               SIMDIntrinsicShuffleSSE2, TYP_FLOAT, size);
    GenTree* t1 = gtNewSIMDNode(simdType, v1GreaterThanv2Unsigned, gtNewIconNode(SHUFFLE_ZZXX, TYP_INT),
                                SIMDIntrinsicShuffleSSE2, TYP_FLOAT, size);
    GenTree* u1 = gtNewSIMDNode(simdType, v1Equalsv2, gtNewIconNode(SHUFFLE_WWYY, TYP_INT), SIMDIntrinsicShuffleSSE2,
                                TYP_FLOAT, size);
    GenTree* w = gtNewSIMDNode(simdType, u1, t1, SIMDIntrinsicBitwiseAnd, TYP_INT, size);

    *pOp1 = z;
    *pOp2 = w;
    return SIMDIntrinsicBitwiseOr;
}

// impSIMDLongRelOpGreaterThanOrEqual: transforms operands and returns the SIMD intrinsic to be applied on
// transformed operands to obtain >= comparison result.
//
// Arguments:
//    typeHnd  -  type handle of SIMD vector
//    size     -  SIMD vector size
//    pOp1      -  in-out parameter; first operand
//    pOp2      -  in-out parameter; second operand
//
// Return Value:
//    Modifies in-out params pOp1, pOp2 and returns intrinsic ID to be applied to modified operands
//
SIMDIntrinsicID Compiler::impSIMDLongRelOpGreaterThanOrEqual(CORINFO_CLASS_HANDLE typeHnd,
                                                             unsigned             size,
                                                             GenTree**            pOp1,
                                                             GenTree**            pOp2)
{
    var_types simdType = (*pOp1)->TypeGet();
    assert(varTypeIsSIMD(simdType) && ((*pOp2)->TypeGet() == simdType));

    // expand this to (a == b) | (a > b)
    GenTree* dupOp1 = nullptr;
    GenTree* dupOp2 = nullptr;

    if (((*pOp1)->gtFlags & GTF_SIDE_EFFECT) != 0)
    {
        dupOp1 = fgInsertCommaFormTemp(pOp1, typeHnd);
    }
    else
    {
        dupOp1 = gtCloneExpr(*pOp1);
    }

    if (((*pOp2)->gtFlags & GTF_SIDE_EFFECT) != 0)
    {
        dupOp2 = fgInsertCommaFormTemp(pOp2, typeHnd);
    }
    else
    {
        dupOp2 = gtCloneExpr(*pOp2);
    }

    assert(dupOp1 != nullptr && dupOp2 != nullptr);
    assert(*pOp1 != nullptr && *pOp2 != nullptr);

    // (a==b)
    SIMDIntrinsicID id = impSIMDLongRelOpEqual(typeHnd, size, pOp1, pOp2);
    *pOp1              = gtNewSIMDNode(simdType, *pOp1, *pOp2, id, TYP_LONG, size);

    // (a > b)
    id    = impSIMDLongRelOpGreaterThan(typeHnd, size, &dupOp1, &dupOp2);
    *pOp2 = gtNewSIMDNode(simdType, dupOp1, dupOp2, id, TYP_LONG, size);

    return SIMDIntrinsicBitwiseOr;
}

// impSIMDInt32OrSmallIntRelOpGreaterThanOrEqual: transforms operands and returns the SIMD intrinsic to be applied on
// transformed operands to obtain >= comparison result in case of integer base type vectors
//
// Arguments:
//    typeHnd  -  type handle of SIMD vector
//    size     -  SIMD vector size
//    baseType -  base type of SIMD vector
//    pOp1      -  in-out parameter; first operand
//    pOp2      -  in-out parameter; second operand
//
// Return Value:
//    Modifies in-out params pOp1, pOp2 and returns intrinsic ID to be applied to modified operands
//
SIMDIntrinsicID Compiler::impSIMDIntegralRelOpGreaterThanOrEqual(
    CORINFO_CLASS_HANDLE typeHnd, unsigned size, var_types baseType, GenTree** pOp1, GenTree** pOp2)
{
    var_types simdType = (*pOp1)->TypeGet();
    assert(varTypeIsSIMD(simdType) && ((*pOp2)->TypeGet() == simdType));

    // This routine should be used only for integer base type vectors
    assert(varTypeIsIntegral(baseType));
    if ((getSIMDSupportLevel() == SIMD_SSE2_Supported) && ((baseType == TYP_LONG) || baseType == TYP_UBYTE))
    {
        return impSIMDLongRelOpGreaterThanOrEqual(typeHnd, size, pOp1, pOp2);
    }

    // expand this to (a == b) | (a > b)
    GenTree* dupOp1 = nullptr;
    GenTree* dupOp2 = nullptr;

    if (((*pOp1)->gtFlags & GTF_SIDE_EFFECT) != 0)
    {
        dupOp1 = fgInsertCommaFormTemp(pOp1, typeHnd);
    }
    else
    {
        dupOp1 = gtCloneExpr(*pOp1);
    }

    if (((*pOp2)->gtFlags & GTF_SIDE_EFFECT) != 0)
    {
        dupOp2 = fgInsertCommaFormTemp(pOp2, typeHnd);
    }
    else
    {
        dupOp2 = gtCloneExpr(*pOp2);
    }

    assert(dupOp1 != nullptr && dupOp2 != nullptr);
    assert(*pOp1 != nullptr && *pOp2 != nullptr);

    // (a==b)
    *pOp1 = gtNewSIMDNode(simdType, *pOp1, *pOp2, SIMDIntrinsicEqual, baseType, size);

    // (a > b)
    *pOp2 = gtNewSIMDNode(simdType, dupOp1, dupOp2, SIMDIntrinsicGreaterThan, baseType, size);

    return SIMDIntrinsicBitwiseOr;
}
#endif // _TARGET_XARCH_

// Transforms operands and returns the SIMD intrinsic to be applied on
// transformed operands to obtain given relop result.
//
// Arguments:
//    relOpIntrinsicId - Relational operator SIMD intrinsic
//    typeHnd          - type handle of SIMD vector
//    size             -  SIMD vector size
//    inOutBaseType    - base type of SIMD vector
//    pOp1             -  in-out parameter; first operand
//    pOp2             -  in-out parameter; second operand
//
// Return Value:
//    Modifies in-out params pOp1, pOp2, inOutBaseType and returns intrinsic ID to be applied to modified operands
//
SIMDIntrinsicID Compiler::impSIMDRelOp(SIMDIntrinsicID      relOpIntrinsicId,
                                       CORINFO_CLASS_HANDLE typeHnd,
                                       unsigned             size,
                                       var_types*           inOutBaseType,
                                       GenTree**            pOp1,
                                       GenTree**            pOp2)
{
    var_types simdType = (*pOp1)->TypeGet();
    assert(varTypeIsSIMD(simdType) && ((*pOp2)->TypeGet() == simdType));

    assert(isRelOpSIMDIntrinsic(relOpIntrinsicId));

    SIMDIntrinsicID intrinsicID = relOpIntrinsicId;
#ifdef _TARGET_XARCH_
    var_types baseType = *inOutBaseType;

    if (varTypeIsFloating(baseType))
    {
        // SSE2/AVX doesn't support > and >= on vector float/double.
        // Therefore, we need to use < and <= with swapped operands
        if (relOpIntrinsicId == SIMDIntrinsicGreaterThan || relOpIntrinsicId == SIMDIntrinsicGreaterThanOrEqual)
        {
            GenTree* tmp = *pOp1;
            *pOp1        = *pOp2;
            *pOp2        = tmp;

            intrinsicID =
                (relOpIntrinsicId == SIMDIntrinsicGreaterThan) ? SIMDIntrinsicLessThan : SIMDIntrinsicLessThanOrEqual;
        }
    }
    else if (varTypeIsIntegral(baseType))
    {
        // SSE/AVX doesn't support < and <= on integer base type vectors.
        // Therefore, we need to use > and >= with swapped operands.
        if (intrinsicID == SIMDIntrinsicLessThan || intrinsicID == SIMDIntrinsicLessThanOrEqual)
        {
            GenTree* tmp = *pOp1;
            *pOp1        = *pOp2;
            *pOp2        = tmp;

            intrinsicID = (relOpIntrinsicId == SIMDIntrinsicLessThan) ? SIMDIntrinsicGreaterThan
                                                                      : SIMDIntrinsicGreaterThanOrEqual;
        }

        if ((getSIMDSupportLevel() == SIMD_SSE2_Supported) && baseType == TYP_LONG)
        {
            // There is no direct SSE2 support for comparing TYP_LONG vectors.
            // These have to be implemented interms of TYP_INT vector comparison operations.
            if (intrinsicID == SIMDIntrinsicEqual)
            {
                intrinsicID = impSIMDLongRelOpEqual(typeHnd, size, pOp1, pOp2);
            }
            else if (intrinsicID == SIMDIntrinsicGreaterThan)
            {
                intrinsicID = impSIMDLongRelOpGreaterThan(typeHnd, size, pOp1, pOp2);
            }
            else if (intrinsicID == SIMDIntrinsicGreaterThanOrEqual)
            {
                intrinsicID = impSIMDLongRelOpGreaterThanOrEqual(typeHnd, size, pOp1, pOp2);
            }
            else
            {
                unreached();
            }
        }
        // SSE2 and AVX direct support for signed comparison of int32, int16 and int8 types
        else if (!varTypeIsUnsigned(baseType))
        {
            if (intrinsicID == SIMDIntrinsicGreaterThanOrEqual)
            {
                intrinsicID = impSIMDIntegralRelOpGreaterThanOrEqual(typeHnd, size, baseType, pOp1, pOp2);
            }
        }
        else // unsigned
        {
            // Vector<byte>, Vector<ushort>, Vector<uint> and Vector<ulong>:
            // SSE2 supports > for signed comparison. Therefore, to use it for
            // comparing unsigned numbers, we subtract a constant from both the
            // operands such that the result fits within the corresponding signed
            // type.  The resulting signed numbers are compared using SSE2 signed
            // comparison.
            //
            // Vector<byte>: constant to be subtracted is 2^7
            // Vector<ushort> constant to be subtracted is 2^15
            // Vector<uint> constant to be subtracted is 2^31
            // Vector<ulong> constant to be subtracted is 2^63
            //
            // We need to treat op1 and op2 as signed for comparison purpose after
            // the transformation.
            __int64 constVal = 0;
            switch (baseType)
            {
                case TYP_UBYTE:
                    constVal       = 0x80808080;
                    *inOutBaseType = TYP_BYTE;
                    break;
                case TYP_USHORT:
                    constVal       = 0x80008000;
                    *inOutBaseType = TYP_SHORT;
                    break;
                case TYP_UINT:
                    constVal       = 0x80000000;
                    *inOutBaseType = TYP_INT;
                    break;
                case TYP_ULONG:
                    constVal       = 0x8000000000000000LL;
                    *inOutBaseType = TYP_LONG;
                    break;
                default:
                    unreached();
                    break;
            }
            assert(constVal != 0);

            // This transformation is not required for equality.
            if (intrinsicID != SIMDIntrinsicEqual)
            {
                // For constructing const vector use either long or int base type.
                var_types tempBaseType;
                GenTree*  initVal;
                if (baseType == TYP_ULONG)
                {
                    tempBaseType = TYP_LONG;
                    initVal      = gtNewLconNode(constVal);
                }
                else
                {
                    tempBaseType = TYP_INT;
                    initVal      = gtNewIconNode((ssize_t)constVal);
                }
                initVal->gtType      = tempBaseType;
                GenTree* constVector = gtNewSIMDNode(simdType, initVal, nullptr, SIMDIntrinsicInit, tempBaseType, size);

                // Assign constVector to a temp, since we intend to use it more than once
                // TODO-CQ: We have quite a few such constant vectors constructed during
                // the importation of SIMD intrinsics.  Make sure that we have a single
                // temp per distinct constant per method.
                GenTree* tmp = fgInsertCommaFormTemp(&constVector, typeHnd);

                // op1 = op1 - constVector
                // op2 = op2 - constVector
                *pOp1 = gtNewSIMDNode(simdType, *pOp1, constVector, SIMDIntrinsicSub, baseType, size);
                *pOp2 = gtNewSIMDNode(simdType, *pOp2, tmp, SIMDIntrinsicSub, baseType, size);
            }

            return impSIMDRelOp(intrinsicID, typeHnd, size, inOutBaseType, pOp1, pOp2);
        }
    }
#elif defined(_TARGET_ARM64_)
    // TODO-ARM64-CQ handle comparisons against zero

    // _TARGET_ARM64_ doesn't support < and <= on register register comparisons
    // Therefore, we need to use > and >= with swapped operands.
    if (intrinsicID == SIMDIntrinsicLessThan || intrinsicID == SIMDIntrinsicLessThanOrEqual)
    {
        GenTree* tmp = *pOp1;
        *pOp1        = *pOp2;
        *pOp2        = tmp;

        intrinsicID =
            (intrinsicID == SIMDIntrinsicLessThan) ? SIMDIntrinsicGreaterThan : SIMDIntrinsicGreaterThanOrEqual;
    }
#else  // !_TARGET_XARCH_
    assert(!"impSIMDRelOp() unimplemented on target arch");
    unreached();
#endif // !_TARGET_XARCH_

    return intrinsicID;
}

//-------------------------------------------------------------------------
// impSIMDAbs: creates GT_SIMD node to compute Abs value of a given vector.
//
// Arguments:
//    typeHnd     -  type handle of SIMD vector
//    baseType    -  base type of vector
//    size        -  vector size in bytes
//    op1         -  operand of Abs intrinsic
//
GenTree* Compiler::impSIMDAbs(CORINFO_CLASS_HANDLE typeHnd, var_types baseType, unsigned size, GenTree* op1)
{
    assert(varTypeIsSIMD(op1));

    var_types simdType = op1->TypeGet();
    GenTree*  retVal   = nullptr;

#ifdef _TARGET_XARCH_
    // When there is no direct support, Abs(v) could be computed
    // on integer vectors as follows:
    //     BitVector = v < vector.Zero
    //     result = ConditionalSelect(BitVector, vector.Zero - v, v)

    bool useConditionalSelect = false;
    if (getSIMDSupportLevel() == SIMD_SSE2_Supported)
    {
        // SSE2 doesn't support abs on signed integer type vectors.
        if (baseType == TYP_LONG || baseType == TYP_INT || baseType == TYP_SHORT || baseType == TYP_BYTE)
        {
            useConditionalSelect = true;
        }
    }
    else
    {
        assert(getSIMDSupportLevel() >= SIMD_SSE4_Supported);
        if (baseType == TYP_LONG)
        {
            // SSE4/AVX2 don't support abs on long type vector.
            useConditionalSelect = true;
        }
    }

    if (useConditionalSelect)
    {
        // This works only on integer vectors not on float/double vectors.
        assert(varTypeIsIntegral(baseType));

        GenTree* op1Assign;
        unsigned op1LclNum;

        if (op1->OperGet() == GT_LCL_VAR)
        {
            op1LclNum = op1->gtLclVarCommon.gtLclNum;
            op1Assign = nullptr;
        }
        else
        {
            op1LclNum = lvaGrabTemp(true DEBUGARG("SIMD Abs op1"));
            lvaSetStruct(op1LclNum, typeHnd, false);
            op1Assign = gtNewTempAssign(op1LclNum, op1);
            op1       = gtNewLclvNode(op1LclNum, op1->TypeGet());
        }

        // Assign Vector.Zero to a temp since it is needed more than once
        GenTree* vecZero       = gtNewSIMDVectorZero(simdType, baseType, size);
        unsigned vecZeroLclNum = lvaGrabTemp(true DEBUGARG("SIMD Abs VecZero"));
        lvaSetStruct(vecZeroLclNum, typeHnd, false);
        GenTree* vecZeroAssign = gtNewTempAssign(vecZeroLclNum, vecZero);

        // Construct BitVector = v < vector.Zero
        GenTree*        bitVecOp1     = op1;
        GenTree*        bitVecOp2     = gtNewLclvNode(vecZeroLclNum, vecZero->TypeGet());
        var_types       relOpBaseType = baseType;
        SIMDIntrinsicID relOpIntrinsic =
            impSIMDRelOp(SIMDIntrinsicLessThan, typeHnd, size, &relOpBaseType, &bitVecOp1, &bitVecOp2);
        GenTree* bitVec       = gtNewSIMDNode(simdType, bitVecOp1, bitVecOp2, relOpIntrinsic, relOpBaseType, size);
        unsigned bitVecLclNum = lvaGrabTemp(true DEBUGARG("SIMD Abs bitVec"));
        lvaSetStruct(bitVecLclNum, typeHnd, false);
        GenTree* bitVecAssign = gtNewTempAssign(bitVecLclNum, bitVec);
        bitVec                = gtNewLclvNode(bitVecLclNum, bitVec->TypeGet());

        // Construct condSelectOp1 = vector.Zero - v
        GenTree* subOp1 = gtNewLclvNode(vecZeroLclNum, vecZero->TypeGet());
        GenTree* subOp2 = gtNewLclvNode(op1LclNum, op1->TypeGet());
        GenTree* negVec = gtNewSIMDNode(simdType, subOp1, subOp2, SIMDIntrinsicSub, baseType, size);

        // Construct ConditionalSelect(bitVec, vector.Zero - v, v)
        GenTree* vec = gtNewLclvNode(op1LclNum, op1->TypeGet());
        retVal       = impSIMDSelect(typeHnd, baseType, size, bitVec, negVec, vec);

        // Prepend bitVec assignment to retVal.
        // retVal = (tmp2 = v < tmp1), CondSelect(tmp2, tmp1 - v, v)
        retVal = gtNewOperNode(GT_COMMA, simdType, bitVecAssign, retVal);

        // Prepend vecZero assignment to retVal.
        // retVal =  (tmp1 = vector.Zero), (tmp2 = v < tmp1), CondSelect(tmp2, tmp1 - v, v)
        retVal = gtNewOperNode(GT_COMMA, simdType, vecZeroAssign, retVal);

        // If op1 was assigned to a temp, prepend that to retVal.
        if (op1Assign != nullptr)
        {
            // retVal = (v=op1), (tmp1 = vector.Zero), (tmp2 = v < tmp1), CondSelect(tmp2, tmp1 - v, v)
            retVal = gtNewOperNode(GT_COMMA, simdType, op1Assign, retVal);
        }
    }
    else if (varTypeIsFloating(baseType))
    {
        // Abs(vf) = vf & new SIMDVector<float>(0x7fffffff);
        // Abs(vd) = vf & new SIMDVector<double>(0x7fffffffffffffff);
        GenTree* bitMask = nullptr;
        if (baseType == TYP_FLOAT)
        {
            float f;
            static_assert_no_msg(sizeof(float) == sizeof(int));
            *((int*)&f) = 0x7fffffff;
            bitMask     = gtNewDconNode(f);
        }
        else if (baseType == TYP_DOUBLE)
        {
            double d;
            static_assert_no_msg(sizeof(double) == sizeof(__int64));
            *((__int64*)&d) = 0x7fffffffffffffffLL;
            bitMask         = gtNewDconNode(d);
        }

        assert(bitMask != nullptr);
        bitMask->gtType        = baseType;
        GenTree* bitMaskVector = gtNewSIMDNode(simdType, bitMask, SIMDIntrinsicInit, baseType, size);
        retVal                 = gtNewSIMDNode(simdType, op1, bitMaskVector, SIMDIntrinsicBitwiseAnd, baseType, size);
    }
    else if (baseType == TYP_USHORT || baseType == TYP_UBYTE || baseType == TYP_UINT || baseType == TYP_ULONG)
    {
        // Abs is a no-op on unsigned integer type vectors
        retVal = op1;
    }
    else
    {
        assert(getSIMDSupportLevel() >= SIMD_SSE4_Supported);
        assert(baseType != TYP_LONG);

        retVal = gtNewSIMDNode(simdType, op1, SIMDIntrinsicAbs, baseType, size);
    }
#elif defined(_TARGET_ARM64_)
    if (varTypeIsUnsigned(baseType))
    {
        // Abs is a no-op on unsigned integer type vectors
        retVal = op1;
    }
    else
    {
        retVal = gtNewSIMDNode(simdType, op1, SIMDIntrinsicAbs, baseType, size);
    }
#else  // !defined(_TARGET_XARCH)_ && !defined(_TARGET_ARM64_)
    assert(!"Abs intrinsic on non-xarch target not implemented");
#endif // !_TARGET_XARCH_

    return retVal;
}

// Creates a GT_SIMD tree for Select operation
//
// Arguments:
//    typeHnd          -  type handle of SIMD vector
//    baseType         -  base type of SIMD vector
//    size             -  SIMD vector size
//    op1              -  first operand = Condition vector vc
//    op2              -  second operand = va
//    op3              -  third operand = vb
//
// Return Value:
//    Returns GT_SIMD tree that computes Select(vc, va, vb)
//
GenTree* Compiler::impSIMDSelect(
    CORINFO_CLASS_HANDLE typeHnd, var_types baseType, unsigned size, GenTree* op1, GenTree* op2, GenTree* op3)
{
    assert(varTypeIsSIMD(op1));
    var_types simdType = op1->TypeGet();
    assert(op2->TypeGet() == simdType);
    assert(op3->TypeGet() == simdType);

    // TODO-ARM64-CQ Support generating select instruction for SIMD

    // Select(BitVector vc, va, vb) = (va & vc) | (vb & !vc)
    // Select(op1, op2, op3)        = (op2 & op1) | (op3 & !op1)
    //                              = SIMDIntrinsicBitwiseOr(SIMDIntrinsicBitwiseAnd(op2, op1),
    //                                                       SIMDIntrinsicBitwiseAndNot(op3, op1))
    //
    // If Op1 has side effect, create an assignment to a temp
    GenTree* tmp = op1;
    GenTree* asg = nullptr;
    if ((op1->gtFlags & GTF_SIDE_EFFECT) != 0)
    {
        unsigned lclNum = lvaGrabTemp(true DEBUGARG("SIMD Select"));
        lvaSetStruct(lclNum, typeHnd, false);
        tmp = gtNewLclvNode(lclNum, op1->TypeGet());
        asg = gtNewTempAssign(lclNum, op1);
    }

    GenTree* andExpr = gtNewSIMDNode(simdType, op2, tmp, SIMDIntrinsicBitwiseAnd, baseType, size);
    GenTree* dupOp1  = gtCloneExpr(tmp);
    assert(dupOp1 != nullptr);
#ifdef _TARGET_ARM64_
    // ARM64 implements SIMDIntrinsicBitwiseAndNot as Left & ~Right
    GenTree* andNotExpr = gtNewSIMDNode(simdType, op3, dupOp1, SIMDIntrinsicBitwiseAndNot, baseType, size);
#else
    // XARCH implements SIMDIntrinsicBitwiseAndNot as ~Left & Right
    GenTree* andNotExpr = gtNewSIMDNode(simdType, dupOp1, op3, SIMDIntrinsicBitwiseAndNot, baseType, size);
#endif
    GenTree* simdTree = gtNewSIMDNode(simdType, andExpr, andNotExpr, SIMDIntrinsicBitwiseOr, baseType, size);

    // If asg not null, create a GT_COMMA tree.
    if (asg != nullptr)
    {
        simdTree = gtNewOperNode(GT_COMMA, simdTree->TypeGet(), asg, simdTree);
    }

    return simdTree;
}

// Creates a GT_SIMD tree for Min/Max operation
//
// Arguments:
//    IntrinsicId      -  SIMD intrinsic Id, either Min or Max
//    typeHnd          -  type handle of SIMD vector
//    baseType         -  base type of SIMD vector
//    size             -  SIMD vector size
//    op1              -  first operand = va
//    op2              -  second operand = vb
//
// Return Value:
//    Returns GT_SIMD tree that computes Max(va, vb)
//
GenTree* Compiler::impSIMDMinMax(SIMDIntrinsicID      intrinsicId,
                                 CORINFO_CLASS_HANDLE typeHnd,
                                 var_types            baseType,
                                 unsigned             size,
                                 GenTree*             op1,
                                 GenTree*             op2)
{
    assert(intrinsicId == SIMDIntrinsicMin || intrinsicId == SIMDIntrinsicMax);
    assert(varTypeIsSIMD(op1));
    var_types simdType = op1->TypeGet();
    assert(op2->TypeGet() == simdType);

#if defined(_TARGET_XARCH_) || defined(_TARGET_ARM64_)
    GenTree* simdTree = nullptr;

#ifdef _TARGET_XARCH_
    // SSE2 has direct support for float/double/signed word/unsigned byte.
    // SSE4.1 has direct support for int32/uint32/signed byte/unsigned word.
    // For other integer types we compute min/max as follows
    //
    // int32/uint32 (SSE2)
    // int64/uint64 (SSE2&SSE4):
    //       compResult        = (op1 < op2) in case of Min
    //                           (op1 > op2) in case of Max
    //       Min/Max(op1, op2) = Select(compResult, op1, op2)
    //
    // unsigned word (SSE2):
    //        op1 = op1 - 2^15  ; to make it fit within a signed word
    //        op2 = op2 - 2^15  ; to make it fit within a signed word
    //        result = SSE2 signed word Min/Max(op1, op2)
    //        result = result + 2^15  ; readjust it back
    //
    // signed byte (SSE2):
    //        op1 = op1 + 2^7  ; to make it unsigned
    //        op1 = op1 + 2^7  ; to make it unsigned
    //        result = SSE2 unsigned byte Min/Max(op1, op2)
    //        result = result - 2^15 ; readjust it back

    if (varTypeIsFloating(baseType) || baseType == TYP_SHORT || baseType == TYP_UBYTE ||
        (getSIMDSupportLevel() >= SIMD_SSE4_Supported &&
         (baseType == TYP_BYTE || baseType == TYP_INT || baseType == TYP_UINT || baseType == TYP_USHORT)))
    {
        // SSE2 or SSE4.1 has direct support
        simdTree = gtNewSIMDNode(simdType, op1, op2, intrinsicId, baseType, size);
    }
    else if (baseType == TYP_USHORT || baseType == TYP_BYTE)
    {
        assert(getSIMDSupportLevel() == SIMD_SSE2_Supported);
        int             constVal;
        SIMDIntrinsicID operIntrinsic;
        SIMDIntrinsicID adjustIntrinsic;
        var_types       minMaxOperBaseType;
        if (baseType == TYP_USHORT)
        {
            constVal           = 0x80008000;
            operIntrinsic      = SIMDIntrinsicSub;
            adjustIntrinsic    = SIMDIntrinsicAdd;
            minMaxOperBaseType = TYP_SHORT;
        }
        else
        {
            assert(baseType == TYP_BYTE);
            constVal           = 0x80808080;
            operIntrinsic      = SIMDIntrinsicAdd;
            adjustIntrinsic    = SIMDIntrinsicSub;
            minMaxOperBaseType = TYP_UBYTE;
        }

        GenTree* initVal     = gtNewIconNode(constVal);
        GenTree* constVector = gtNewSIMDNode(simdType, initVal, nullptr, SIMDIntrinsicInit, TYP_INT, size);

        // Assign constVector to a temp, since we intend to use it more than once
        // TODO-CQ: We have quite a few such constant vectors constructed during
        // the importation of SIMD intrinsics.  Make sure that we have a single
        // temp per distinct constant per method.
        GenTree* tmp = fgInsertCommaFormTemp(&constVector, typeHnd);

        // op1 = op1 - constVector
        // op2 = op2 - constVector
        op1 = gtNewSIMDNode(simdType, op1, constVector, operIntrinsic, baseType, size);
        op2 = gtNewSIMDNode(simdType, op2, tmp, operIntrinsic, baseType, size);

        // compute min/max of op1 and op2 considering them as if minMaxOperBaseType
        simdTree = gtNewSIMDNode(simdType, op1, op2, intrinsicId, minMaxOperBaseType, size);

        // re-adjust the value by adding or subtracting constVector
        tmp      = gtNewLclvNode(tmp->AsLclVarCommon()->GetLclNum(), tmp->TypeGet());
        simdTree = gtNewSIMDNode(simdType, simdTree, tmp, adjustIntrinsic, baseType, size);
    }
#elif defined(_TARGET_ARM64_)
    // Arm64 has direct support for all types except int64/uint64
    // For which we compute min/max as follows
    //
    // int64/uint64
    //       compResult        = (op1 < op2) in case of Min
    //                           (op1 > op2) in case of Max
    //       Min/Max(op1, op2) = Select(compResult, op1, op2)
    if (baseType != TYP_ULONG && baseType != TYP_LONG)
    {
        simdTree = gtNewSIMDNode(simdType, op1, op2, intrinsicId, baseType, size);
    }
#endif
    else
    {
        GenTree* dupOp1    = nullptr;
        GenTree* dupOp2    = nullptr;
        GenTree* op1Assign = nullptr;
        GenTree* op2Assign = nullptr;
        unsigned op1LclNum;
        unsigned op2LclNum;

        if ((op1->gtFlags & GTF_SIDE_EFFECT) != 0)
        {
            op1LclNum = lvaGrabTemp(true DEBUGARG("SIMD Min/Max"));
            dupOp1    = gtNewLclvNode(op1LclNum, op1->TypeGet());
            lvaSetStruct(op1LclNum, typeHnd, false);
            op1Assign = gtNewTempAssign(op1LclNum, op1);
            op1       = gtNewLclvNode(op1LclNum, op1->TypeGet());
        }
        else
        {
            dupOp1 = gtCloneExpr(op1);
        }

        if ((op2->gtFlags & GTF_SIDE_EFFECT) != 0)
        {
            op2LclNum = lvaGrabTemp(true DEBUGARG("SIMD Min/Max"));
            dupOp2    = gtNewLclvNode(op2LclNum, op2->TypeGet());
            lvaSetStruct(op2LclNum, typeHnd, false);
            op2Assign = gtNewTempAssign(op2LclNum, op2);
            op2       = gtNewLclvNode(op2LclNum, op2->TypeGet());
        }
        else
        {
            dupOp2 = gtCloneExpr(op2);
        }

        SIMDIntrinsicID relOpIntrinsic =
            (intrinsicId == SIMDIntrinsicMin) ? SIMDIntrinsicLessThan : SIMDIntrinsicGreaterThan;
        var_types relOpBaseType = baseType;

        // compResult = op1 relOp op2
        // simdTree = Select(compResult, op1, op2);
        assert(dupOp1 != nullptr);
        assert(dupOp2 != nullptr);
        relOpIntrinsic            = impSIMDRelOp(relOpIntrinsic, typeHnd, size, &relOpBaseType, &dupOp1, &dupOp2);
        GenTree* compResult       = gtNewSIMDNode(simdType, dupOp1, dupOp2, relOpIntrinsic, relOpBaseType, size);
        unsigned compResultLclNum = lvaGrabTemp(true DEBUGARG("SIMD Min/Max"));
        lvaSetStruct(compResultLclNum, typeHnd, false);
        GenTree* compResultAssign = gtNewTempAssign(compResultLclNum, compResult);
        compResult                = gtNewLclvNode(compResultLclNum, compResult->TypeGet());
        simdTree                  = impSIMDSelect(typeHnd, baseType, size, compResult, op1, op2);
        simdTree                  = gtNewOperNode(GT_COMMA, simdTree->TypeGet(), compResultAssign, simdTree);

        // Now create comma trees if we have created assignments of op1/op2 to temps
        if (op2Assign != nullptr)
        {
            simdTree = gtNewOperNode(GT_COMMA, simdTree->TypeGet(), op2Assign, simdTree);
        }

        if (op1Assign != nullptr)
        {
            simdTree = gtNewOperNode(GT_COMMA, simdTree->TypeGet(), op1Assign, simdTree);
        }
    }

    assert(simdTree != nullptr);
    return simdTree;
#else  // !(defined(_TARGET_XARCH_) || defined(_TARGET_ARM64_))
    assert(!"impSIMDMinMax() unimplemented on target arch");
    unreached();
#endif // !(defined(_TARGET_XARCH_) || defined(_TARGET_ARM64_))
}

//------------------------------------------------------------------------
// getOp1ForConstructor: Get the op1 for a constructor call.
//
// Arguments:
//    opcode     - the opcode being handled (needed to identify the CEE_NEWOBJ case)
//    newobjThis - For CEE_NEWOBJ, this is the temp grabbed for the allocated uninitalized object.
//    clsHnd    - The handle of the class of the method.
//
// Return Value:
//    The tree node representing the object to be initialized with the constructor.
//
// Notes:
//    This method handles the differences between the CEE_NEWOBJ and constructor cases.
//
GenTree* Compiler::getOp1ForConstructor(OPCODE opcode, GenTree* newobjThis, CORINFO_CLASS_HANDLE clsHnd)
{
    GenTree* op1;
    if (opcode == CEE_NEWOBJ)
    {
        op1 = newobjThis;
        assert(newobjThis->gtOper == GT_ADDR && newobjThis->gtOp.gtOp1->gtOper == GT_LCL_VAR);

        // push newobj result on type stack
        unsigned tmp = op1->gtOp.gtOp1->gtLclVarCommon.gtLclNum;
        impPushOnStack(gtNewLclvNode(tmp, lvaGetRealType(tmp)), verMakeTypeInfo(clsHnd).NormaliseForStack());
    }
    else
    {
        op1 = impSIMDPopStack(TYP_BYREF);
    }
    assert(op1->TypeGet() == TYP_BYREF);
    return op1;
}

//-------------------------------------------------------------------
// Set the flag that indicates that the lclVar referenced by this tree
// is used in a SIMD intrinsic.
// Arguments:
//      tree - GenTree*

void Compiler::setLclRelatedToSIMDIntrinsic(GenTree* tree)
{
    assert(tree->OperIsLocal());
    unsigned   lclNum                = tree->AsLclVarCommon()->GetLclNum();
    LclVarDsc* lclVarDsc             = &lvaTable[lclNum];
    lclVarDsc->lvUsedInSIMDIntrinsic = true;
}

//-------------------------------------------------------------
// Check if two field nodes reference at the same memory location.
// Notice that this check is just based on pattern matching.
// Arguments:
//      op1 - GenTree*.
//      op2 - GenTree*.
// Return Value:
//    If op1's parents node and op2's parents node are at the same location, return true. Otherwise, return false

bool areFieldsParentsLocatedSame(GenTree* op1, GenTree* op2)
{
    assert(op1->OperGet() == GT_FIELD);
    assert(op2->OperGet() == GT_FIELD);

    GenTree* op1ObjRef = op1->gtField.gtFldObj;
    GenTree* op2ObjRef = op2->gtField.gtFldObj;
    while (op1ObjRef != nullptr && op2ObjRef != nullptr)
    {

        if (op1ObjRef->OperGet() != op2ObjRef->OperGet())
        {
            break;
        }
        else if (op1ObjRef->OperGet() == GT_ADDR)
        {
            op1ObjRef = op1ObjRef->gtOp.gtOp1;
            op2ObjRef = op2ObjRef->gtOp.gtOp1;
        }

        if (op1ObjRef->OperIsLocal() && op2ObjRef->OperIsLocal() &&
            op1ObjRef->AsLclVarCommon()->GetLclNum() == op2ObjRef->AsLclVarCommon()->GetLclNum())
        {
            return true;
        }
        else if (op1ObjRef->OperGet() == GT_FIELD && op2ObjRef->OperGet() == GT_FIELD &&
                 op1ObjRef->gtField.gtFldHnd == op2ObjRef->gtField.gtFldHnd)
        {
            op1ObjRef = op1ObjRef->gtField.gtFldObj;
            op2ObjRef = op2ObjRef->gtField.gtFldObj;
            continue;
        }
        else
        {
            break;
        }
    }

    return false;
}

//----------------------------------------------------------------------
// Check whether two field are contiguous
// Arguments:
//      first - GenTree*. The Type of the node should be TYP_FLOAT
//      second - GenTree*. The Type of the node should be TYP_FLOAT
// Return Value:
//      if the first field is located before second field, and they are located contiguously,
//      then return true. Otherwise, return false.

bool Compiler::areFieldsContiguous(GenTree* first, GenTree* second)
{
    assert(first->OperGet() == GT_FIELD);
    assert(second->OperGet() == GT_FIELD);
    assert(first->gtType == TYP_FLOAT);
    assert(second->gtType == TYP_FLOAT);

    var_types firstFieldType  = first->gtType;
    var_types secondFieldType = second->gtType;

    unsigned firstFieldEndOffset = first->gtField.gtFldOffset + genTypeSize(firstFieldType);
    unsigned secondFieldOffset   = second->gtField.gtFldOffset;
    if (firstFieldEndOffset == secondFieldOffset && firstFieldType == secondFieldType &&
        areFieldsParentsLocatedSame(first, second))
    {
        return true;
    }

    return false;
}

//-------------------------------------------------------------------------------
// Check whether two array element nodes are located contiguously or not.
// Arguments:
//      op1 - GenTree*.
//      op2 - GenTree*.
// Return Value:
//      if the array element op1 is located before array element op2, and they are contiguous,
//      then return true. Otherwise, return false.
// TODO-CQ:
//      Right this can only check array element with const number as index. In future,
//      we should consider to allow this function to check the index using expression.

bool Compiler::areArrayElementsContiguous(GenTree* op1, GenTree* op2)
{
    noway_assert(op1->gtOper == GT_INDEX);
    noway_assert(op2->gtOper == GT_INDEX);
    GenTreeIndex* op1Index = op1->AsIndex();
    GenTreeIndex* op2Index = op2->AsIndex();

    GenTree* op1ArrayRef = op1Index->Arr();
    GenTree* op2ArrayRef = op2Index->Arr();
    assert(op1ArrayRef->TypeGet() == TYP_REF);
    assert(op2ArrayRef->TypeGet() == TYP_REF);

    GenTree* op1IndexNode = op1Index->Index();
    GenTree* op2IndexNode = op2Index->Index();
    if ((op1IndexNode->OperGet() == GT_CNS_INT && op2IndexNode->OperGet() == GT_CNS_INT) &&
        op1IndexNode->gtIntCon.gtIconVal + 1 == op2IndexNode->gtIntCon.gtIconVal)
    {
        if (op1ArrayRef->OperGet() == GT_FIELD && op2ArrayRef->OperGet() == GT_FIELD &&
            areFieldsParentsLocatedSame(op1ArrayRef, op2ArrayRef))
        {
            return true;
        }
        else if (op1ArrayRef->OperIsLocal() && op2ArrayRef->OperIsLocal() &&
                 op1ArrayRef->AsLclVarCommon()->GetLclNum() == op2ArrayRef->AsLclVarCommon()->GetLclNum())
        {
            return true;
        }
    }
    return false;
}

//-------------------------------------------------------------------------------
// Check whether two argument nodes are contiguous or not.
// Arguments:
//      op1 - GenTree*.
//      op2 - GenTree*.
// Return Value:
//      if the argument node op1 is located before argument node op2, and they are located contiguously,
//      then return true. Otherwise, return false.
// TODO-CQ:
//      Right now this can only check field and array. In future we should add more cases.
//

bool Compiler::areArgumentsContiguous(GenTree* op1, GenTree* op2)
{
    if (op1->OperGet() == GT_INDEX && op2->OperGet() == GT_INDEX)
    {
        return areArrayElementsContiguous(op1, op2);
    }
    else if (op1->OperGet() == GT_FIELD && op2->OperGet() == GT_FIELD)
    {
        return areFieldsContiguous(op1, op2);
    }
    return false;
}

//--------------------------------------------------------------------------------------------------------
// createAddressNodeForSIMDInit: Generate the address node(GT_LEA) if we want to intialize vector2, vector3 or vector4
// from first argument's address.
//
// Arguments:
//      tree - GenTree*. This the tree node which is used to get the address for indir.
//      simdsize - unsigned. This the simd vector size.
//      arrayElementsCount - unsigned. This is used for generating the boundary check for array.
//
// Return value:
//      return the address node.
//
// TODO-CQ:
//      1. Currently just support for GT_FIELD and GT_INDEX, because we can only verify the GT_INDEX node or GT_Field
//         are located contiguously or not. In future we should support more cases.
//      2. Though it happens to just work fine front-end phases are not aware of GT_LEA node.  Therefore, convert these
//         to use GT_ADDR.
GenTree* Compiler::createAddressNodeForSIMDInit(GenTree* tree, unsigned simdSize)
{
    assert(tree->OperGet() == GT_FIELD || tree->OperGet() == GT_INDEX);
    GenTree*  byrefNode  = nullptr;
    GenTree*  startIndex = nullptr;
    unsigned  offset     = 0;
    var_types baseType   = tree->gtType;

    if (tree->OperGet() == GT_FIELD)
    {
        GenTree* objRef = tree->gtField.gtFldObj;
        if (objRef != nullptr && objRef->gtOper == GT_ADDR)
        {
            GenTree* obj = objRef->gtOp.gtOp1;

            // If the field is directly from a struct, then in this case,
            // we should set this struct's lvUsedInSIMDIntrinsic as true,
            // so that this sturct won't be promoted.
            // e.g. s.x x is a field, and s is a struct, then we should set the s's lvUsedInSIMDIntrinsic as true.
            // so that s won't be promoted.
            // Notice that if we have a case like s1.s2.x. s1 s2 are struct, and x is a field, then it is possible that
            // s1 can be promoted, so that s2 can be promoted. The reason for that is if we don't allow s1 to be
            // promoted, then this will affect the other optimizations which are depend on s1's struct promotion.
            // TODO-CQ:
            //  In future, we should optimize this case so that if there is a nested field like s1.s2.x and s1.s2.x's
            //  address is used for initializing the vector, then s1 can be promoted but s2 can't.
            if (varTypeIsSIMD(obj) && obj->OperIsLocal())
            {
                setLclRelatedToSIMDIntrinsic(obj);
            }
        }

        byrefNode = gtCloneExpr(tree->gtField.gtFldObj);
        assert(byrefNode != nullptr);
        offset = tree->gtField.gtFldOffset;
    }
    else if (tree->OperGet() == GT_INDEX)
    {

        GenTree* index = tree->AsIndex()->Index();
        assert(index->OperGet() == GT_CNS_INT);

        GenTree* checkIndexExpr = nullptr;
        unsigned indexVal       = (unsigned)(index->gtIntCon.gtIconVal);
        offset                  = indexVal * genTypeSize(tree->TypeGet());
        GenTree* arrayRef       = tree->AsIndex()->Arr();

        // Generate the boundary check exception.
        // The length for boundary check should be the maximum index number which should be
        // (first argument's index number) + (how many array arguments we have) - 1
        // = indexVal + arrayElementsCount - 1
        unsigned arrayElementsCount  = simdSize / genTypeSize(baseType);
        checkIndexExpr               = new (this, GT_CNS_INT) GenTreeIntCon(TYP_INT, indexVal + arrayElementsCount - 1);
        GenTreeArrLen*    arrLen     = gtNewArrLen(TYP_INT, arrayRef, (int)OFFSETOF__CORINFO_Array__length);
        GenTreeBoundsChk* arrBndsChk = new (this, GT_ARR_BOUNDS_CHECK)
            GenTreeBoundsChk(GT_ARR_BOUNDS_CHECK, TYP_VOID, checkIndexExpr, arrLen, SCK_RNGCHK_FAIL);

        offset += OFFSETOF__CORINFO_Array__data;
        byrefNode = gtNewOperNode(GT_COMMA, arrayRef->TypeGet(), arrBndsChk, gtCloneExpr(arrayRef));
    }
    else
    {
        unreached();
    }
    GenTree* address =
        new (this, GT_LEA) GenTreeAddrMode(TYP_BYREF, byrefNode, startIndex, genTypeSize(tree->TypeGet()), offset);
    return address;
}

//-------------------------------------------------------------------------------
// impMarkContiguousSIMDFieldAssignments: Try to identify if there are contiguous
// assignments from SIMD field to memory. If there are, then mark the related
// lclvar so that it won't be promoted.
//
// Arguments:
//      stmt - GenTree*. Input statement node.

void Compiler::impMarkContiguousSIMDFieldAssignments(GenTree* stmt)
{
    if (!featureSIMD || opts.OptimizationDisabled())
    {
        return;
    }
    GenTree* expr = stmt->gtStmt.gtStmtExpr;
    if (expr->OperGet() == GT_ASG && expr->TypeGet() == TYP_FLOAT)
    {
        GenTree*  curDst            = expr->gtOp.gtOp1;
        GenTree*  curSrc            = expr->gtOp.gtOp2;
        unsigned  index             = 0;
        var_types baseType          = TYP_UNKNOWN;
        unsigned  simdSize          = 0;
        GenTree*  srcSimdStructNode = getSIMDStructFromField(curSrc, &baseType, &index, &simdSize, true);
        if (srcSimdStructNode == nullptr || baseType != TYP_FLOAT)
        {
            fgPreviousCandidateSIMDFieldAsgStmt = nullptr;
        }
        else if (index == 0 && isSIMDTypeLocal(srcSimdStructNode))
        {
            fgPreviousCandidateSIMDFieldAsgStmt = stmt;
        }
        else if (fgPreviousCandidateSIMDFieldAsgStmt != nullptr)
        {
            assert(index > 0);
            GenTree* prevAsgExpr = fgPreviousCandidateSIMDFieldAsgStmt->gtStmt.gtStmtExpr;
            GenTree* prevDst     = prevAsgExpr->gtOp.gtOp1;
            GenTree* prevSrc     = prevAsgExpr->gtOp.gtOp2;
            if (!areArgumentsContiguous(prevDst, curDst) || !areArgumentsContiguous(prevSrc, curSrc))
            {
                fgPreviousCandidateSIMDFieldAsgStmt = nullptr;
            }
            else
            {
                if (index == (simdSize / genTypeSize(baseType) - 1))
                {
                    // Successfully found the pattern, mark the lclvar as UsedInSIMDIntrinsic
                    if (srcSimdStructNode->OperIsLocal())
                    {
                        setLclRelatedToSIMDIntrinsic(srcSimdStructNode);
                    }

                    if (curDst->OperGet() == GT_FIELD)
                    {
                        GenTree* objRef = curDst->gtField.gtFldObj;
                        if (objRef != nullptr && objRef->gtOper == GT_ADDR)
                        {
                            GenTree* obj = objRef->gtOp.gtOp1;
                            if (varTypeIsStruct(obj) && obj->OperIsLocal())
                            {
                                setLclRelatedToSIMDIntrinsic(obj);
                            }
                        }
                    }
                }
                else
                {
                    fgPreviousCandidateSIMDFieldAsgStmt = stmt;
                }
            }
        }
    }
    else
    {
        fgPreviousCandidateSIMDFieldAsgStmt = nullptr;
    }
}

//------------------------------------------------------------------------
// impSIMDIntrinsic: Check method to see if it is a SIMD method
//
// Arguments:
//    opcode     - the opcode being handled (needed to identify the CEE_NEWOBJ case)
//    newobjThis - For CEE_NEWOBJ, this is the temp grabbed for the allocated uninitalized object.
//    clsHnd     - The handle of the class of the method.
//    method     - The handle of the method.
//    sig        - The call signature for the method.
//    memberRef  - The memberRef token for the method reference.
//
// Return Value:
//    If clsHnd is a known SIMD type, and 'method' is one of the methods that are
//    implemented as an intrinsic in the JIT, then return the tree that implements
//    it.
//
GenTree* Compiler::impSIMDIntrinsic(OPCODE                opcode,
                                    GenTree*              newobjThis,
                                    CORINFO_CLASS_HANDLE  clsHnd,
                                    CORINFO_METHOD_HANDLE methodHnd,
                                    CORINFO_SIG_INFO*     sig,
                                    unsigned              methodFlags,
                                    int                   memberRef)
{
    assert(featureSIMD);

    // Exit early if we are not in one of the SIMD types.
    if (!isSIMDClass(clsHnd))
    {
        return nullptr;
    }

#ifdef FEATURE_CORECLR
    // For coreclr, we also exit early if the method is not a JIT Intrinsic (which requires the [Intrinsic] attribute).
    if ((methodFlags & CORINFO_FLG_JIT_INTRINSIC) == 0)
    {
        return nullptr;
    }
#endif // FEATURE_CORECLR

    // Get base type and intrinsic Id
    var_types                baseType = TYP_UNKNOWN;
    unsigned                 size     = 0;
    unsigned                 argCount = 0;
    const SIMDIntrinsicInfo* intrinsicInfo =
        getSIMDIntrinsicInfo(&clsHnd, methodHnd, sig, (opcode == CEE_NEWOBJ), &argCount, &baseType, &size);
    if (intrinsicInfo == nullptr || intrinsicInfo->id == SIMDIntrinsicInvalid)
    {
        return nullptr;
    }

    SIMDIntrinsicID simdIntrinsicID = intrinsicInfo->id;
    var_types       simdType;
    if (baseType != TYP_UNKNOWN)
    {
        simdType = getSIMDTypeForSize(size);
    }
    else
    {
        assert(simdIntrinsicID == SIMDIntrinsicHWAccel);
        simdType = TYP_UNKNOWN;
    }
    bool      instMethod = intrinsicInfo->isInstMethod;
    var_types callType   = JITtype2varType(sig->retType);
    if (callType == TYP_STRUCT)
    {
        // Note that here we are assuming that, if the call returns a struct, that it is the same size as the
        // struct on which the method is declared. This is currently true for all methods on Vector types,
        // but if this ever changes, we will need to determine the callType from the signature.
        assert(info.compCompHnd->getClassSize(sig->retTypeClass) == genTypeSize(simdType));
        callType = simdType;
    }

    GenTree* simdTree   = nullptr;
    GenTree* op1        = nullptr;
    GenTree* op2        = nullptr;
    GenTree* op3        = nullptr;
    GenTree* retVal     = nullptr;
    GenTree* copyBlkDst = nullptr;
    bool     doCopyBlk  = false;

    switch (simdIntrinsicID)
    {
        case SIMDIntrinsicGetCount:
        {
            int            length       = getSIMDVectorLength(clsHnd);
            GenTreeIntCon* intConstTree = new (this, GT_CNS_INT) GenTreeIntCon(TYP_INT, length);
            retVal                      = intConstTree;

            intConstTree->gtFlags |= GTF_ICON_SIMD_COUNT;
        }
        break;

        case SIMDIntrinsicGetZero:
            retVal = gtNewSIMDVectorZero(simdType, baseType, size);
            break;

        case SIMDIntrinsicGetOne:
            retVal = gtNewSIMDVectorOne(simdType, baseType, size);
            break;

        case SIMDIntrinsicGetAllOnes:
        {
            // Equivalent to (Vector<T>) new Vector<int>(0xffffffff);
            GenTree* initVal = gtNewIconNode(0xffffffff, TYP_INT);
            simdTree         = gtNewSIMDNode(simdType, initVal, nullptr, SIMDIntrinsicInit, TYP_INT, size);
            if (baseType != TYP_INT)
            {
                // cast it to required baseType if different from TYP_INT
                simdTree = gtNewSIMDNode(simdType, simdTree, nullptr, SIMDIntrinsicCast, baseType, size);
            }
            retVal = simdTree;
        }
        break;

        case SIMDIntrinsicInit:
        case SIMDIntrinsicInitN:
        {
            // SIMDIntrinsicInit:
            //    op2 - the initializer value
            //    op1 - byref of vector
            //
            // SIMDIntrinsicInitN
            //    op2 - list of initializer values stitched into a list
            //    op1 - byref of vector
            bool initFromFirstArgIndir = false;
            if (simdIntrinsicID == SIMDIntrinsicInit)
            {
                op2 = impSIMDPopStack(baseType);
            }
            else
            {
                assert(simdIntrinsicID == SIMDIntrinsicInitN);
                assert(baseType == TYP_FLOAT);

                unsigned initCount    = argCount - 1;
                unsigned elementCount = getSIMDVectorLength(size, baseType);
                noway_assert(initCount == elementCount);
                GenTree* nextArg = op2;

                // Build a GT_LIST with the N values.
                // We must maintain left-to-right order of the args, but we will pop
                // them off in reverse order (the Nth arg was pushed onto the stack last).

                GenTree* list              = nullptr;
                GenTree* firstArg          = nullptr;
                GenTree* prevArg           = nullptr;
                int      offset            = 0;
                bool     areArgsContiguous = true;
                for (unsigned i = 0; i < initCount; i++)
                {
                    GenTree* nextArg = impSIMDPopStack(baseType);
                    if (areArgsContiguous)
                    {
                        GenTree* curArg = nextArg;
                        firstArg        = curArg;

                        if (prevArg != nullptr)
                        {
                            // Recall that we are popping the args off the stack in reverse order.
                            areArgsContiguous = areArgumentsContiguous(curArg, prevArg);
                        }
                        prevArg = curArg;
                    }

                    list = new (this, GT_LIST) GenTreeOp(GT_LIST, baseType, nextArg, list);
                }

                if (areArgsContiguous && baseType == TYP_FLOAT)
                {
                    // Since Vector2, Vector3 and Vector4's arguments type are only float,
                    // we intialize the vector from first argument address, only when
                    // the baseType is TYP_FLOAT and the arguments are located contiguously in memory
                    initFromFirstArgIndir = true;
                    GenTree*  op2Address  = createAddressNodeForSIMDInit(firstArg, size);
                    var_types simdType    = getSIMDTypeForSize(size);
                    op2                   = gtNewOperNode(GT_IND, simdType, op2Address);
                }
                else
                {
                    op2 = list;
                }
            }

            op1 = getOp1ForConstructor(opcode, newobjThis, clsHnd);

            assert(op1->TypeGet() == TYP_BYREF);
            assert(genActualType(op2->TypeGet()) == genActualType(baseType) || initFromFirstArgIndir);

            // For integral base types of size less than TYP_INT, expand the initializer
            // to fill size of TYP_INT bytes.
            if (varTypeIsSmallInt(baseType))
            {
                // This case should occur only for Init intrinsic.
                assert(simdIntrinsicID == SIMDIntrinsicInit);

                unsigned baseSize = genTypeSize(baseType);
                int      multiplier;
                if (baseSize == 1)
                {
                    multiplier = 0x01010101;
                }
                else
                {
                    assert(baseSize == 2);
                    multiplier = 0x00010001;
                }

                GenTree* t1 = nullptr;
                if (baseType == TYP_BYTE)
                {
                    // What we have is a signed byte initializer,
                    // which when loaded to a reg will get sign extended to TYP_INT.
                    // But what we need is the initializer without sign extended or
                    // rather zero extended to 32-bits.
                    t1 = gtNewOperNode(GT_AND, TYP_INT, op2, gtNewIconNode(0xff, TYP_INT));
                }
                else if (baseType == TYP_SHORT)
                {
                    // What we have is a signed short initializer,
                    // which when loaded to a reg will get sign extended to TYP_INT.
                    // But what we need is the initializer without sign extended or
                    // rather zero extended to 32-bits.
                    t1 = gtNewOperNode(GT_AND, TYP_INT, op2, gtNewIconNode(0xffff, TYP_INT));
                }
                else
                {
                    assert(baseType == TYP_UBYTE || baseType == TYP_USHORT);
                    t1 = gtNewCastNode(TYP_INT, op2, false, TYP_INT);
                }

                assert(t1 != nullptr);
                GenTree* t2 = gtNewIconNode(multiplier, TYP_INT);
                op2         = gtNewOperNode(GT_MUL, TYP_INT, t1, t2);

                // Construct a vector of TYP_INT with the new initializer and cast it back to vector of baseType
                simdTree = gtNewSIMDNode(simdType, op2, nullptr, simdIntrinsicID, TYP_INT, size);
                simdTree = gtNewSIMDNode(simdType, simdTree, nullptr, SIMDIntrinsicCast, baseType, size);
            }
            else
            {

                if (initFromFirstArgIndir)
                {
                    simdTree = op2;
                    if (op1->gtOp.gtOp1->OperIsLocal())
                    {
                        // label the dst struct's lclvar is used for SIMD intrinsic,
                        // so that this dst struct won't be promoted.
                        setLclRelatedToSIMDIntrinsic(op1->gtOp.gtOp1);
                    }
                }
                else
                {
                    simdTree = gtNewSIMDNode(simdType, op2, nullptr, simdIntrinsicID, baseType, size);
                }
            }

            copyBlkDst = op1;
            doCopyBlk  = true;
        }
        break;

        case SIMDIntrinsicInitArray:
        case SIMDIntrinsicInitArrayX:
        case SIMDIntrinsicCopyToArray:
        case SIMDIntrinsicCopyToArrayX:
        {
            // op3 - index into array in case of SIMDIntrinsicCopyToArrayX and SIMDIntrinsicInitArrayX
            // op2 - array itself
            // op1 - byref to vector struct

            unsigned int vectorLength = getSIMDVectorLength(size, baseType);
            // (This constructor takes only the zero-based arrays.)
            // We will add one or two bounds checks:
            // 1. If we have an index, we must do a check on that first.
            //    We can't combine it with the index + vectorLength check because
            //    a. It might be negative, and b. It may need to raise a different exception
            //    (captured as SCK_ARG_RNG_EXCPN for CopyTo and SCK_RNGCHK_FAIL for Init).
            // 2. We need to generate a check (SCK_ARG_EXCPN for CopyTo and SCK_RNGCHK_FAIL for Init)
            //    for the last array element we will access.
            //    We'll either check against (vectorLength - 1) or (index + vectorLength - 1).

            GenTree* checkIndexExpr = new (this, GT_CNS_INT) GenTreeIntCon(TYP_INT, vectorLength - 1);

            // Get the index into the array.  If it has been provided, it will be on the
            // top of the stack.  Otherwise, it is null.
            if (argCount == 3)
            {
                op3 = impSIMDPopStack(TYP_INT);
                if (op3->IsIntegralConst(0))
                {
                    op3 = nullptr;
                }
            }
            else
            {
                // TODO-CQ: Here, or elsewhere, check for the pattern where op2 is a newly constructed array, and
                // change this to the InitN form.
                // op3 = new (this, GT_CNS_INT) GenTreeIntCon(TYP_INT, 0);
                op3 = nullptr;
            }

            // Clone the array for use in the bounds check.
            op2 = impSIMDPopStack(TYP_REF);
            assert(op2->TypeGet() == TYP_REF);
            GenTree* arrayRefForArgChk = op2;
            GenTree* argRngChk         = nullptr;
            GenTree* asg               = nullptr;
            if ((arrayRefForArgChk->gtFlags & GTF_SIDE_EFFECT) != 0)
            {
                op2 = fgInsertCommaFormTemp(&arrayRefForArgChk);
            }
            else
            {
                op2 = gtCloneExpr(arrayRefForArgChk);
            }
            assert(op2 != nullptr);

            if (op3 != nullptr)
            {
                SpecialCodeKind op3CheckKind;
                if (simdIntrinsicID == SIMDIntrinsicInitArrayX)
                {
                    op3CheckKind = SCK_RNGCHK_FAIL;
                }
                else
                {
                    assert(simdIntrinsicID == SIMDIntrinsicCopyToArrayX);
                    op3CheckKind = SCK_ARG_RNG_EXCPN;
                }
                // We need to use the original expression on this, which is the first check.
                GenTree* arrayRefForArgRngChk = arrayRefForArgChk;
                // Then we clone the clone we just made for the next check.
                arrayRefForArgChk = gtCloneExpr(op2);
                // We know we MUST have had a cloneable expression.
                assert(arrayRefForArgChk != nullptr);
                GenTree* index = op3;
                if ((index->gtFlags & GTF_SIDE_EFFECT) != 0)
                {
                    op3 = fgInsertCommaFormTemp(&index);
                }
                else
                {
                    op3 = gtCloneExpr(index);
                }

                GenTreeArrLen* arrLen =
                    gtNewArrLen(TYP_INT, arrayRefForArgRngChk, (int)OFFSETOF__CORINFO_Array__length);
                argRngChk = new (this, GT_ARR_BOUNDS_CHECK)
                    GenTreeBoundsChk(GT_ARR_BOUNDS_CHECK, TYP_VOID, index, arrLen, op3CheckKind);
                // Now, clone op3 to create another node for the argChk
                GenTree* index2 = gtCloneExpr(op3);
                assert(index != nullptr);
                checkIndexExpr = gtNewOperNode(GT_ADD, TYP_INT, index2, checkIndexExpr);
            }

            // Insert a bounds check for index + offset - 1.
            // This must be a "normal" array.
            SpecialCodeKind op2CheckKind;
            if (simdIntrinsicID == SIMDIntrinsicInitArray || simdIntrinsicID == SIMDIntrinsicInitArrayX)
            {
                op2CheckKind = SCK_RNGCHK_FAIL;
            }
            else
            {
                op2CheckKind = SCK_ARG_EXCPN;
            }
            GenTreeArrLen*    arrLen = gtNewArrLen(TYP_INT, arrayRefForArgChk, (int)OFFSETOF__CORINFO_Array__length);
            GenTreeBoundsChk* argChk = new (this, GT_ARR_BOUNDS_CHECK)
                GenTreeBoundsChk(GT_ARR_BOUNDS_CHECK, TYP_VOID, checkIndexExpr, arrLen, op2CheckKind);

            // Create a GT_COMMA tree for the bounds check(s).
            op2 = gtNewOperNode(GT_COMMA, op2->TypeGet(), argChk, op2);
            if (argRngChk != nullptr)
            {
                op2 = gtNewOperNode(GT_COMMA, op2->TypeGet(), argRngChk, op2);
            }

            if (simdIntrinsicID == SIMDIntrinsicInitArray || simdIntrinsicID == SIMDIntrinsicInitArrayX)
            {
                op1        = getOp1ForConstructor(opcode, newobjThis, clsHnd);
                simdTree   = gtNewSIMDNode(simdType, op2, op3, SIMDIntrinsicInitArray, baseType, size);
                copyBlkDst = op1;
                doCopyBlk  = true;
            }
            else
            {
                assert(simdIntrinsicID == SIMDIntrinsicCopyToArray || simdIntrinsicID == SIMDIntrinsicCopyToArrayX);
                op1 = impSIMDPopStack(simdType, instMethod);
                assert(op1->TypeGet() == simdType);

                // copy vector (op1) to array (op2) starting at index (op3)
                simdTree = op1;

                // TODO-Cleanup: Though it happens to just work fine front-end phases are not aware of GT_LEA node.
                // Therefore, convert these to use GT_ADDR .
                copyBlkDst = new (this, GT_LEA)
                    GenTreeAddrMode(TYP_BYREF, op2, op3, genTypeSize(baseType), OFFSETOF__CORINFO_Array__data);
                doCopyBlk = true;
            }
        }
        break;

        case SIMDIntrinsicInitFixed:
        {
            // We are initializing a fixed-length vector VLarge with a smaller fixed-length vector VSmall, plus 1 or 2
            // additional floats.
            //    op4 (optional) - float value for VLarge.W, if VLarge is Vector4, and VSmall is Vector2
            //    op3 - float value for VLarge.Z or VLarge.W
            //    op2 - VSmall
            //    op1 - byref of VLarge
            assert(baseType == TYP_FLOAT);
            unsigned elementByteCount = 4;

            GenTree* op4 = nullptr;
            if (argCount == 4)
            {
                op4 = impSIMDPopStack(TYP_FLOAT);
                assert(op4->TypeGet() == TYP_FLOAT);
            }
            op3 = impSIMDPopStack(TYP_FLOAT);
            assert(op3->TypeGet() == TYP_FLOAT);
            // The input vector will either be TYP_SIMD8 or TYP_SIMD12.
            var_types smallSIMDType = TYP_SIMD8;
            if ((op4 == nullptr) && (simdType == TYP_SIMD16))
            {
                smallSIMDType = TYP_SIMD12;
            }
            op2 = impSIMDPopStack(smallSIMDType);
            op1 = getOp1ForConstructor(opcode, newobjThis, clsHnd);

            // We are going to redefine the operands so that:
            // - op3 is the value that's going into the Z position, or null if it's a Vector4 constructor with a single
            // operand, and
            // - op4 is the W position value, or null if this is a Vector3 constructor.
            if (size == 16 && argCount == 3)
            {
                op4 = op3;
                op3 = nullptr;
            }

            simdTree = op2;
            if (op3 != nullptr)
            {
                simdTree = gtNewSIMDNode(simdType, simdTree, op3, SIMDIntrinsicSetZ, baseType, size);
            }
            if (op4 != nullptr)
            {
                simdTree = gtNewSIMDNode(simdType, simdTree, op4, SIMDIntrinsicSetW, baseType, size);
            }

            copyBlkDst = op1;
            doCopyBlk  = true;
        }
        break;

        case SIMDIntrinsicOpEquality:
        case SIMDIntrinsicInstEquals:
        {
            op2 = impSIMDPopStack(simdType);
            op1 = impSIMDPopStack(simdType, instMethod);

            assert(op1->TypeGet() == simdType);
            assert(op2->TypeGet() == simdType);

            simdTree = gtNewSIMDNode(genActualType(callType), op1, op2, SIMDIntrinsicOpEquality, baseType, size);
            if (simdType == TYP_SIMD12)
            {
                simdTree->gtFlags |= GTF_SIMD12_OP;
            }
            retVal = simdTree;
        }
        break;

        case SIMDIntrinsicOpInEquality:
        {
            // op1 is the first operand
            // op2 is the second operand
            op2      = impSIMDPopStack(simdType);
            op1      = impSIMDPopStack(simdType, instMethod);
            simdTree = gtNewSIMDNode(genActualType(callType), op1, op2, SIMDIntrinsicOpInEquality, baseType, size);
            if (simdType == TYP_SIMD12)
            {
                simdTree->gtFlags |= GTF_SIMD12_OP;
            }
            retVal = simdTree;
        }
        break;

        case SIMDIntrinsicEqual:
        case SIMDIntrinsicLessThan:
        case SIMDIntrinsicLessThanOrEqual:
        case SIMDIntrinsicGreaterThan:
        case SIMDIntrinsicGreaterThanOrEqual:
        {
            op2 = impSIMDPopStack(simdType);
            op1 = impSIMDPopStack(simdType, instMethod);

            SIMDIntrinsicID intrinsicID = impSIMDRelOp(simdIntrinsicID, clsHnd, size, &baseType, &op1, &op2);
            simdTree                    = gtNewSIMDNode(genActualType(callType), op1, op2, intrinsicID, baseType, size);
            retVal                      = simdTree;
        }
        break;

        case SIMDIntrinsicAdd:
        case SIMDIntrinsicSub:
        case SIMDIntrinsicMul:
        case SIMDIntrinsicDiv:
        case SIMDIntrinsicBitwiseAnd:
        case SIMDIntrinsicBitwiseAndNot:
        case SIMDIntrinsicBitwiseOr:
        case SIMDIntrinsicBitwiseXor:
        {
#if defined(DEBUG)
            // check for the cases where we don't support intrinsics.
            // This check should be done before we make modifications to type stack.
            // Note that this is more of a double safety check for robustness since
            // we expect getSIMDIntrinsicInfo() to have filtered out intrinsics on
            // unsupported base types. If getSIMdIntrinsicInfo() doesn't filter due
            // to some bug, assert in chk/dbg will fire.
            if (!varTypeIsFloating(baseType))
            {
                if (simdIntrinsicID == SIMDIntrinsicMul)
                {
#if defined(_TARGET_XARCH_)
                    if ((baseType != TYP_INT) && (baseType != TYP_SHORT))
                    {
                        // TODO-CQ: implement mul on these integer vectors.
                        // Note that SSE2 has no direct support for these vectors.
                        assert(!"Mul not supported on long/ulong/uint/small int vectors\n");
                        return nullptr;
                    }
#endif // _TARGET_XARCH_
#if defined(_TARGET_ARM64_)
                    if ((baseType == TYP_ULONG) && (baseType == TYP_LONG))
                    {
                        // TODO-CQ: implement mul on these integer vectors.
                        // Note that ARM64 has no direct support for these vectors.
                        assert(!"Mul not supported on long/ulong vectors\n");
                        return nullptr;
                    }
#endif // _TARGET_ARM64_
                }
#if defined(_TARGET_XARCH_) || defined(_TARGET_ARM64_)
                // common to all integer type vectors
                if (simdIntrinsicID == SIMDIntrinsicDiv)
                {
                    // SSE2 doesn't support div on non-floating point vectors.
                    assert(!"Div not supported on integer type vectors\n");
                    return nullptr;
                }
#endif // defined(_TARGET_XARCH_) || defined(_TARGET_ARM64_)
            }
#endif // DEBUG

            // op1 is the first operand; if instance method, op1 is "this" arg
            // op2 is the second operand
            op2 = impSIMDPopStack(simdType);
            op1 = impSIMDPopStack(simdType, instMethod);

#ifdef _TARGET_XARCH_
            if (simdIntrinsicID == SIMDIntrinsicBitwiseAndNot)
            {
                // XARCH implements SIMDIntrinsicBitwiseAndNot as ~op1 & op2, while the
                // software implementation does op1 & ~op2, so we need to swap the operands

                GenTree* tmp = op2;
                op2          = op1;
                op1          = tmp;
            }
#endif // _TARGET_XARCH_

            simdTree = gtNewSIMDNode(simdType, op1, op2, simdIntrinsicID, baseType, size);
            retVal   = simdTree;
        }
        break;

        case SIMDIntrinsicSelect:
        {
            // op3 is a SIMD variable that is the second source
            // op2 is a SIMD variable that is the first source
            // op1 is a SIMD variable which is the bit mask.
            op3 = impSIMDPopStack(simdType);
            op2 = impSIMDPopStack(simdType);
            op1 = impSIMDPopStack(simdType);

            retVal = impSIMDSelect(clsHnd, baseType, size, op1, op2, op3);
        }
        break;

        case SIMDIntrinsicMin:
        case SIMDIntrinsicMax:
        {
            // op1 is the first operand; if instance method, op1 is "this" arg
            // op2 is the second operand
            op2 = impSIMDPopStack(simdType);
            op1 = impSIMDPopStack(simdType, instMethod);

            retVal = impSIMDMinMax(simdIntrinsicID, clsHnd, baseType, size, op1, op2);
        }
        break;

        case SIMDIntrinsicGetItem:
        {
            // op1 is a SIMD variable that is "this" arg
            // op2 is an index of TYP_INT
            op2              = impSIMDPopStack(TYP_INT);
            op1              = impSIMDPopStack(simdType, instMethod);
            int vectorLength = getSIMDVectorLength(size, baseType);
            if (!op2->IsCnsIntOrI() || op2->AsIntCon()->gtIconVal >= vectorLength || op2->AsIntCon()->gtIconVal < 0)
            {
                // We need to bounds-check the length of the vector.
                // For that purpose, we need to clone the index expression.
                GenTree* index = op2;
                if ((index->gtFlags & GTF_SIDE_EFFECT) != 0)
                {
                    op2 = fgInsertCommaFormTemp(&index);
                }
                else
                {
                    op2 = gtCloneExpr(index);
                }

                GenTree*          lengthNode = new (this, GT_CNS_INT) GenTreeIntCon(TYP_INT, vectorLength);
                GenTreeBoundsChk* simdChk =
                    new (this, GT_SIMD_CHK) GenTreeBoundsChk(GT_SIMD_CHK, TYP_VOID, index, lengthNode, SCK_RNGCHK_FAIL);

                // Create a GT_COMMA tree for the bounds check.
                op2 = gtNewOperNode(GT_COMMA, op2->TypeGet(), simdChk, op2);
            }

            assert(op1->TypeGet() == simdType);
            assert(op2->TypeGet() == TYP_INT);

            simdTree = gtNewSIMDNode(genActualType(callType), op1, op2, simdIntrinsicID, baseType, size);
            retVal   = simdTree;
        }
        break;

        case SIMDIntrinsicDotProduct:
        {
#if defined(_TARGET_XARCH_)
            // Right now dot product is supported only for float/double vectors and
            // int vectors on SSE4/AVX.
            if (!varTypeIsFloating(baseType) && !(baseType == TYP_INT && getSIMDSupportLevel() >= SIMD_SSE4_Supported))
            {
                return nullptr;
            }
#endif // _TARGET_XARCH_

            // op1 is a SIMD variable that is the first source and also "this" arg.
            // op2 is a SIMD variable which is the second source.
            op2 = impSIMDPopStack(simdType);
            op1 = impSIMDPopStack(simdType, instMethod);

            simdTree = gtNewSIMDNode(baseType, op1, op2, simdIntrinsicID, baseType, size);
            if (simdType == TYP_SIMD12)
            {
                simdTree->gtFlags |= GTF_SIMD12_OP;
            }
            retVal = simdTree;
        }
        break;

        case SIMDIntrinsicSqrt:
        {
#if (defined(_TARGET_XARCH_) || defined(_TARGET_ARM64_)) && defined(DEBUG)
            // SSE/AVX/ARM64 doesn't support sqrt on integer type vectors and hence
            // should never be seen as an intrinsic here. See SIMDIntrinsicList.h
            // for supported base types for this intrinsic.
            if (!varTypeIsFloating(baseType))
            {
                assert(!"Sqrt not supported on integer vectors\n");
                return nullptr;
            }
#endif // (defined(_TARGET_XARCH_) || defined(_TARGET_ARM64_)) && defined(DEBUG)

            op1 = impSIMDPopStack(simdType);

            retVal = gtNewSIMDNode(genActualType(callType), op1, nullptr, simdIntrinsicID, baseType, size);
        }
        break;

        case SIMDIntrinsicAbs:
            op1    = impSIMDPopStack(simdType);
            retVal = impSIMDAbs(clsHnd, baseType, size, op1);
            break;

        case SIMDIntrinsicGetW:
            retVal = impSIMDGetFixed(simdType, baseType, size, 3);
            break;

        case SIMDIntrinsicGetZ:
            retVal = impSIMDGetFixed(simdType, baseType, size, 2);
            break;

        case SIMDIntrinsicGetY:
            retVal = impSIMDGetFixed(simdType, baseType, size, 1);
            break;

        case SIMDIntrinsicGetX:
            retVal = impSIMDGetFixed(simdType, baseType, size, 0);
            break;

        case SIMDIntrinsicSetW:
        case SIMDIntrinsicSetZ:
        case SIMDIntrinsicSetY:
        case SIMDIntrinsicSetX:
        {
            // op2 is the value to be set at indexTemp position
            // op1 is SIMD vector that is going to be modified, which is a byref

            // If op1 has a side-effect, then don't make it an intrinsic.
            // It would be in-efficient to read the entire vector into xmm reg,
            // modify it and write back entire xmm reg.
            //
            // TODO-CQ: revisit this later.
            op1 = impStackTop(1).val;
            if ((op1->gtFlags & GTF_SIDE_EFFECT) != 0)
            {
                return nullptr;
            }

            op2 = impSIMDPopStack(baseType);
            op1 = impSIMDPopStack(simdType, instMethod);

            GenTree* src = gtCloneExpr(op1);
            assert(src != nullptr);
            simdTree = gtNewSIMDNode(simdType, src, op2, simdIntrinsicID, baseType, size);

            copyBlkDst = gtNewOperNode(GT_ADDR, TYP_BYREF, op1);
            doCopyBlk  = true;
        }
        break;

        // Unary operators that take and return a Vector.
        case SIMDIntrinsicCast:
        case SIMDIntrinsicConvertToSingle:
        case SIMDIntrinsicConvertToDouble:
        case SIMDIntrinsicConvertToInt32:
        {
            op1 = impSIMDPopStack(simdType, instMethod);

            simdTree = gtNewSIMDNode(simdType, op1, nullptr, simdIntrinsicID, baseType, size);
            retVal   = simdTree;
        }
        break;

        case SIMDIntrinsicConvertToInt64:
        {
#ifdef _TARGET_64BIT_
            op1 = impSIMDPopStack(simdType, instMethod);

            simdTree = gtNewSIMDNode(simdType, op1, nullptr, simdIntrinsicID, baseType, size);
            retVal   = simdTree;
#else
            JITDUMP("SIMD Conversion to Int64 is not supported on this platform\n");
            return nullptr;
#endif
        }
        break;

        case SIMDIntrinsicNarrow:
        {
            assert(!instMethod);
            op2 = impSIMDPopStack(simdType);
            op1 = impSIMDPopStack(simdType);
            // op1 and op2 are two input Vector<T>.
            simdTree = gtNewSIMDNode(simdType, op1, op2, simdIntrinsicID, baseType, size);
            retVal   = simdTree;
        }
        break;

        case SIMDIntrinsicWiden:
        {
            GenTree* dstAddrHi = impSIMDPopStack(TYP_BYREF);
            GenTree* dstAddrLo = impSIMDPopStack(TYP_BYREF);
            op1                = impSIMDPopStack(simdType);
            GenTree* dupOp1    = fgInsertCommaFormTemp(&op1, gtGetStructHandleForSIMD(simdType, baseType));

            // Widen the lower half and assign it to dstAddrLo.
            simdTree = gtNewSIMDNode(simdType, op1, nullptr, SIMDIntrinsicWidenLo, baseType, size);
            GenTree* loDest =
                new (this, GT_BLK) GenTreeBlk(GT_BLK, simdType, dstAddrLo, getSIMDTypeSizeInBytes(clsHnd));
            GenTree* loAsg = gtNewBlkOpNode(loDest, simdTree, getSIMDTypeSizeInBytes(clsHnd),
                                            false, // not volatile
                                            true); // copyBlock
            loAsg->gtFlags |= ((simdTree->gtFlags | dstAddrLo->gtFlags) & GTF_ALL_EFFECT);

            // Widen the upper half and assign it to dstAddrHi.
            simdTree = gtNewSIMDNode(simdType, dupOp1, nullptr, SIMDIntrinsicWidenHi, baseType, size);
            GenTree* hiDest =
                new (this, GT_BLK) GenTreeBlk(GT_BLK, simdType, dstAddrHi, getSIMDTypeSizeInBytes(clsHnd));
            GenTree* hiAsg = gtNewBlkOpNode(hiDest, simdTree, getSIMDTypeSizeInBytes(clsHnd),
                                            false, // not volatile
                                            true); // copyBlock
            hiAsg->gtFlags |= ((simdTree->gtFlags | dstAddrHi->gtFlags) & GTF_ALL_EFFECT);

            retVal = gtNewOperNode(GT_COMMA, simdType, loAsg, hiAsg);
        }
        break;

        case SIMDIntrinsicHWAccel:
        {
            GenTreeIntCon* intConstTree = new (this, GT_CNS_INT) GenTreeIntCon(TYP_INT, 1);
            retVal                      = intConstTree;
        }
        break;

        default:
            assert(!"Unimplemented SIMD Intrinsic");
            return nullptr;
    }

#if defined(_TARGET_XARCH_) || defined(_TARGET_ARM64_)
    // XArch/Arm64: also indicate that we use floating point registers.
    // The need for setting this here is that a method may not have SIMD
    // type lclvars, but might be exercising SIMD intrinsics on fields of
    // SIMD type.
    //
    // e.g.  public Vector<float> ComplexVecFloat::sqabs() { return this.r * this.r + this.i * this.i; }
    compFloatingPointUsed = true;
#endif // defined(_TARGET_XARCH_) || defined(_TARGET_ARM64_)

    // At this point, we have a tree that we are going to store into a destination.
    // TODO-1stClassStructs: This should be a simple store or assignment, and should not require
    // GTF_ALL_EFFECT for the dest. This is currently emulating the previous behavior of
    // block ops.
    if (doCopyBlk)
    {
        GenTree* dest = new (this, GT_BLK) GenTreeBlk(GT_BLK, simdType, copyBlkDst, getSIMDTypeSizeInBytes(clsHnd));
        dest->gtFlags |= GTF_GLOB_REF;
        retVal = gtNewBlkOpNode(dest, simdTree, getSIMDTypeSizeInBytes(clsHnd),
                                false, // not volatile
                                true); // copyBlock
        retVal->gtFlags |= ((simdTree->gtFlags | copyBlkDst->gtFlags) & GTF_ALL_EFFECT);
    }

    return retVal;
}

#endif // FEATURE_SIMD