summaryrefslogtreecommitdiff
path: root/src/jit/optcse.cpp
blob: 7b87748cd38bd15fff54a6e9fab389b448f15084 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.

/*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX                                                                           XX
XX                              OptCSE                                       XX
XX                                                                           XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
*/

#include "jitpch.h"
#ifdef _MSC_VER
#pragma hdrstop
#endif

/*****************************************************************************/
#if FEATURE_ANYCSE
/*****************************************************************************/

/* static */
const size_t Compiler::s_optCSEhashSize = EXPSET_SZ * 2;

/*****************************************************************************
 *
 *  We've found all the candidates, build the index for easy access.
 */

void Compiler::optCSEstop()
{
    if (optCSECandidateCount == 0)
    {
        return;
    }

    CSEdsc*  dsc;
    CSEdsc** ptr;
    unsigned cnt;

    optCSEtab = new (this, CMK_CSE) CSEdsc*[optCSECandidateCount]();

    for (cnt = s_optCSEhashSize, ptr = optCSEhash; cnt; cnt--, ptr++)
    {
        for (dsc = *ptr; dsc; dsc = dsc->csdNextInBucket)
        {
            if (dsc->csdIndex)
            {
                noway_assert((unsigned)dsc->csdIndex <= optCSECandidateCount);
                if (optCSEtab[dsc->csdIndex - 1] == nullptr)
                {
                    optCSEtab[dsc->csdIndex - 1] = dsc;
                }
            }
        }
    }

#ifdef DEBUG
    for (cnt = 0; cnt < optCSECandidateCount; cnt++)
    {
        noway_assert(optCSEtab[cnt] != nullptr);
    }
#endif
}

/*****************************************************************************
 *
 *  Return the descriptor for the CSE with the given index.
 */

inline Compiler::CSEdsc* Compiler::optCSEfindDsc(unsigned index)
{
    noway_assert(index);
    noway_assert(index <= optCSECandidateCount);
    noway_assert(optCSEtab[index - 1]);

    return optCSEtab[index - 1];
}

//------------------------------------------------------------------------
// Compiler::optUnmarkCSE
//
// Arguments:
//    tree  - A sub tree that originally was part of a CSE use
//            that we are currently in the process of removing.
//
// Return Value:
//    Returns true if we can safely remove the 'tree' node.
//    Returns false if the node is a CSE def that the caller
//    needs to extract and preserve.
//
// Notes:
//    If 'tree' is a CSE use then we perform an unmark CSE operation
//    so that the CSE used counts and weight are updated properly.
//    The only caller for this method is optUnmarkCSEs which is a
//    tree walker vistor function.  When we return false this method
//    returns WALK_SKIP_SUBTREES so that we don't visit the remaining
//    nodes of the CSE def.
//
bool Compiler::optUnmarkCSE(GenTree* tree)
{
    if (!IS_CSE_INDEX(tree->gtCSEnum))
    {
        // If this node isn't a CSE use or def we can safely remove this node.
        //
        return true;
    }

    // make sure it's been initialized
    noway_assert(optCSEweight <= BB_MAX_WEIGHT);

    // Is this a CSE use?
    if (IS_CSE_USE(tree->gtCSEnum))
    {
        unsigned CSEnum = GET_CSE_INDEX(tree->gtCSEnum);
        CSEdsc*  desc   = optCSEfindDsc(CSEnum);

#ifdef DEBUG
        if (verbose)
        {
            printf("Unmark CSE use #%02d at ", CSEnum);
            printTreeID(tree);
            printf(": %3d -> %3d\n", desc->csdUseCount, desc->csdUseCount - 1);
        }
#endif // DEBUG

        // Perform an unmark CSE operation

        // 1. Reduce the nested CSE's 'use' count

        noway_assert(desc->csdUseCount > 0);

        if (desc->csdUseCount > 0)
        {
            desc->csdUseCount -= 1;

            if (desc->csdUseWtCnt < optCSEweight)
            {
                desc->csdUseWtCnt = 0;
            }
            else
            {
                desc->csdUseWtCnt -= optCSEweight;
            }
        }

        // 2. Unmark the CSE infomation in the node

        tree->gtCSEnum = NO_CSE;
        return true;
    }
    else
    {
        // It is not safe to remove this node, so we will return false
        // and the caller must add this node to the side effect list
        //
        return false;
    }
}

Compiler::fgWalkResult Compiler::optCSE_MaskHelper(GenTree** pTree, fgWalkData* walkData)
{
    GenTree*         tree      = *pTree;
    Compiler*        comp      = walkData->compiler;
    optCSE_MaskData* pUserData = (optCSE_MaskData*)(walkData->pCallbackData);

    if (IS_CSE_INDEX(tree->gtCSEnum))
    {
        unsigned cseIndex = GET_CSE_INDEX(tree->gtCSEnum);
        unsigned cseBit   = genCSEnum2bit(cseIndex);
        if (IS_CSE_DEF(tree->gtCSEnum))
        {
            BitVecOps::AddElemD(comp->cseTraits, pUserData->CSE_defMask, cseBit);
        }
        else
        {
            BitVecOps::AddElemD(comp->cseTraits, pUserData->CSE_useMask, cseBit);
        }
    }

    return WALK_CONTINUE;
}

// This functions walks all the node for an given tree
// and return the mask of CSE defs and uses for the tree
//
void Compiler::optCSE_GetMaskData(GenTree* tree, optCSE_MaskData* pMaskData)
{
    pMaskData->CSE_defMask = BitVecOps::MakeEmpty(cseTraits);
    pMaskData->CSE_useMask = BitVecOps::MakeEmpty(cseTraits);
    fgWalkTreePre(&tree, optCSE_MaskHelper, (void*)pMaskData);
}

//------------------------------------------------------------------------
// optCSE_canSwap: Determine if the execution order of two nodes can be swapped.
//
// Arguments:
//    op1 - The first node
//    op2 - The second node
//
// Return Value:
//    Return true iff it safe to swap the execution order of 'op1' and 'op2',
//    considering only the locations of the CSE defs and uses.
//
// Assumptions:
//    'op1' currently occurse before 'op2' in the execution order.
//
bool Compiler::optCSE_canSwap(GenTree* op1, GenTree* op2)
{
    // op1 and op2 must be non-null.
    assert(op1 != nullptr);
    assert(op2 != nullptr);

    bool canSwap = true; // the default result unless proven otherwise.

    optCSE_MaskData op1MaskData;
    optCSE_MaskData op2MaskData;

    optCSE_GetMaskData(op1, &op1MaskData);
    optCSE_GetMaskData(op2, &op2MaskData);

    // We cannot swap if op1 contains a CSE def that is used by op2
    if (!BitVecOps::IsEmptyIntersection(cseTraits, op1MaskData.CSE_defMask, op2MaskData.CSE_useMask))
    {
        canSwap = false;
    }
    else
    {
        // We also cannot swap if op2 contains a CSE def that is used by op1.
        if (!BitVecOps::IsEmptyIntersection(cseTraits, op2MaskData.CSE_defMask, op1MaskData.CSE_useMask))
        {
            canSwap = false;
        }
    }

    return canSwap;
}

//------------------------------------------------------------------------
// optCSE_canSwap: Determine if the execution order of a node's operands can be swapped.
//
// Arguments:
//    tree - The node of interest
//
// Return Value:
//    Return true iff it safe to swap the execution order of the operands of 'tree',
//    considering only the locations of the CSE defs and uses.
//
bool Compiler::optCSE_canSwap(GenTree* tree)
{
    // We must have a binary treenode with non-null op1 and op2
    assert((tree->OperKind() & GTK_SMPOP) != 0);

    GenTree* op1 = tree->gtOp.gtOp1;
    GenTree* op2 = tree->gtGetOp2();

    return optCSE_canSwap(op1, op2);
}

/*****************************************************************************
 *
 *  Compare function passed to qsort() by CSE_Heuristic::SortCandidates
 *  when (CodeOptKind() != Compiler::SMALL_CODE)
 */

/* static */
int __cdecl Compiler::optCSEcostCmpEx(const void* op1, const void* op2)
{
    CSEdsc* dsc1 = *(CSEdsc**)op1;
    CSEdsc* dsc2 = *(CSEdsc**)op2;

    GenTree* exp1 = dsc1->csdTree;
    GenTree* exp2 = dsc2->csdTree;

    int diff;

    diff = (int)(exp2->gtCostEx - exp1->gtCostEx);

    if (diff != 0)
    {
        return diff;
    }

    // Sort the higher Use Counts toward the top
    diff = (int)(dsc2->csdUseWtCnt - dsc1->csdUseWtCnt);

    if (diff != 0)
    {
        return diff;
    }

    // With the same use count, Sort the lower Def Counts toward the top
    diff = (int)(dsc1->csdDefWtCnt - dsc2->csdDefWtCnt);

    if (diff != 0)
    {
        return diff;
    }

    // In order to ensure that we have a stable sort, we break ties using the csdIndex
    return (int)(dsc1->csdIndex - dsc2->csdIndex);
}

/*****************************************************************************
 *
 *  Compare function passed to qsort() by CSE_Heuristic::SortCandidates
 *  when (CodeOptKind() == Compiler::SMALL_CODE)
 */

/* static */
int __cdecl Compiler::optCSEcostCmpSz(const void* op1, const void* op2)
{
    CSEdsc* dsc1 = *(CSEdsc**)op1;
    CSEdsc* dsc2 = *(CSEdsc**)op2;

    GenTree* exp1 = dsc1->csdTree;
    GenTree* exp2 = dsc2->csdTree;

    int diff;

    diff = (int)(exp2->gtCostSz - exp1->gtCostSz);

    if (diff != 0)
    {
        return diff;
    }

    // Sort the higher Use Counts toward the top
    diff = (int)(dsc2->csdUseCount - dsc1->csdUseCount);

    if (diff != 0)
    {
        return diff;
    }

    // With the same use count, Sort the lower Def Counts toward the top
    diff = (int)(dsc1->csdDefCount - dsc2->csdDefCount);

    if (diff != 0)
    {
        return diff;
    }

    // In order to ensure that we have a stable sort, we break ties using the csdIndex
    return (int)(dsc1->csdIndex - dsc2->csdIndex);
}

/*****************************************************************************/
#if FEATURE_VALNUM_CSE
/*****************************************************************************/

/*****************************************************************************
 *
 *  Initialize the Value Number CSE tracking logic.
 */

void Compiler::optValnumCSE_Init()
{
#ifdef DEBUG
    optCSEtab = nullptr;
#endif

    // Init traits and full/empty bitvectors.  This will be used to track the
    // individual cse indexes.
    cseTraits = new (getAllocator()) BitVecTraits(EXPSET_SZ, this);
    cseFull   = BitVecOps::MakeFull(cseTraits);

    /* Allocate and clear the hash bucket table */

    optCSEhash = new (this, CMK_CSE) CSEdsc*[s_optCSEhashSize]();

    optCSECandidateCount = 0;
    optDoCSE             = false; // Stays false until we find duplicate CSE tree

    // optCseCheckedBoundMap is unused in most functions, allocated only when used
    optCseCheckedBoundMap = nullptr;
}

/*****************************************************************************
 *
 *  Assign an index to the given expression (adding it to the lookup table,
 *  if necessary). Returns the index or 0 if the expression can not be a CSE.
 */

unsigned Compiler::optValnumCSE_Index(GenTree* tree, GenTree* stmt)
{
    unsigned key;
    unsigned hash;
    unsigned hval;
    CSEdsc*  hashDsc;

    ValueNum vnlib = tree->GetVN(VNK_Liberal);

    /* Compute the hash value for the expression */

    key = (unsigned)vnlib;

    hash = key;
    hash *= (unsigned)(s_optCSEhashSize + 1);
    hash >>= 7;

    hval = hash % s_optCSEhashSize;

    /* Look for a matching index in the hash table */

    bool newCSE = false;

    for (hashDsc = optCSEhash[hval]; hashDsc; hashDsc = hashDsc->csdNextInBucket)
    {
        if (hashDsc->csdHashValue == key)
        {
            treeStmtLst* newElem;

            /* Have we started the list of matching nodes? */

            if (hashDsc->csdTreeList == nullptr)
            {
                // Create the new element based upon the matching hashDsc element.

                newElem = new (this, CMK_TreeStatementList) treeStmtLst;

                newElem->tslTree  = hashDsc->csdTree;
                newElem->tslStmt  = hashDsc->csdStmt;
                newElem->tslBlock = hashDsc->csdBlock;
                newElem->tslNext  = nullptr;

                /* Start the list with the first CSE candidate recorded */

                hashDsc->csdTreeList = newElem;
                hashDsc->csdTreeLast = newElem;
            }

            noway_assert(hashDsc->csdTreeList);

            /* Append this expression to the end of the list */

            newElem = new (this, CMK_TreeStatementList) treeStmtLst;

            newElem->tslTree  = tree;
            newElem->tslStmt  = stmt;
            newElem->tslBlock = compCurBB;
            newElem->tslNext  = nullptr;

            hashDsc->csdTreeLast->tslNext = newElem;
            hashDsc->csdTreeLast          = newElem;

            optDoCSE = true; // Found a duplicate CSE tree

            /* Have we assigned a CSE index? */
            if (hashDsc->csdIndex == 0)
            {
                newCSE = true;
                break;
            }
#if 0 
            // Use this to see if this Value Number base CSE is also a lexical CSE
            bool treeMatch = GenTree::Compare(hashDsc->csdTree, tree, true);
#endif

            assert(FitsIn<signed char>(hashDsc->csdIndex));
            tree->gtCSEnum = ((signed char)hashDsc->csdIndex);
            return hashDsc->csdIndex;
        }
    }

    if (!newCSE)
    {
        /* Not found, create a new entry (unless we have too many already) */

        if (optCSECandidateCount < MAX_CSE_CNT)
        {
            hashDsc = new (this, CMK_CSE) CSEdsc;

            hashDsc->csdHashValue      = key;
            hashDsc->csdIndex          = 0;
            hashDsc->csdLiveAcrossCall = 0;
            hashDsc->csdDefCount       = 0;
            hashDsc->csdUseCount       = 0;
            hashDsc->csdDefWtCnt       = 0;
            hashDsc->csdUseWtCnt       = 0;

            hashDsc->csdTree     = tree;
            hashDsc->csdStmt     = stmt;
            hashDsc->csdBlock    = compCurBB;
            hashDsc->csdTreeList = nullptr;

            /* Append the entry to the hash bucket */

            hashDsc->csdNextInBucket = optCSEhash[hval];
            optCSEhash[hval]         = hashDsc;
        }
        return 0;
    }
    else // newCSE is true
    {
        /* We get here only after finding a matching CSE */

        /* Create a new CSE (unless we have the maximum already) */

        if (optCSECandidateCount == MAX_CSE_CNT)
        {
            return 0;
        }

        C_ASSERT((signed char)MAX_CSE_CNT == MAX_CSE_CNT);

        unsigned CSEindex = ++optCSECandidateCount;
        // EXPSET_TP  CSEmask  = genCSEnum2bit(CSEindex);

        /* Record the new CSE index in the hashDsc */
        hashDsc->csdIndex = CSEindex;

        /* Update the gtCSEnum field in the original tree */
        noway_assert(hashDsc->csdTreeList->tslTree->gtCSEnum == 0);
        assert(FitsIn<signed char>(CSEindex));

        hashDsc->csdTreeList->tslTree->gtCSEnum = ((signed char)CSEindex);
        noway_assert(((unsigned)hashDsc->csdTreeList->tslTree->gtCSEnum) == CSEindex);

        tree->gtCSEnum = ((signed char)CSEindex);

#ifdef DEBUG
        if (verbose)
        {
            EXPSET_TP tempMask = BitVecOps::MakeSingleton(cseTraits, genCSEnum2bit(CSEindex));
            printf("\nCSE candidate #%02u, vn=", CSEindex);
            vnPrint(vnlib, 0);
            printf(" cseMask=%s in " FMT_BB ", [cost=%2u, size=%2u]: \n", genES2str(cseTraits, tempMask),
                   compCurBB->bbNum, tree->gtCostEx, tree->gtCostSz);
            gtDispTree(tree);
        }
#endif // DEBUG

        return CSEindex;
    }
}

/*****************************************************************************
 *
 *  Locate CSE candidates and assign indices to them
 *  return 0 if no CSE candidates were found
 *  Also initialize bbCseIn, bbCseout and bbCseGen sets for all blocks
 */

unsigned Compiler::optValnumCSE_Locate()
{
    // Locate CSE candidates and assign them indices

    for (BasicBlock* block = fgFirstBB; block; block = block->bbNext)
    {
        GenTree* stmt;
        GenTree* tree;

        /* Make the block publicly available */

        compCurBB = block;

        /* Ensure that the BBF_VISITED and BBF_MARKED flag are clear */
        /* Everyone who uses these flags are required to clear afterwards */
        noway_assert((block->bbFlags & (BBF_VISITED | BBF_MARKED)) == 0);

        /* Walk the statement trees in this basic block */
        for (stmt = block->FirstNonPhiDef(); stmt; stmt = stmt->gtNext)
        {
            noway_assert(stmt->gtOper == GT_STMT);

            /* We walk the tree in the forwards direction (bottom up) */
            bool stmtHasArrLenCandidate = false;
            for (tree = stmt->gtStmt.gtStmtList; tree; tree = tree->gtNext)
            {
                if (tree->OperIsCompare() && stmtHasArrLenCandidate)
                {
                    // Check if this compare is a function of (one of) the checked
                    // bound candidate(s); we may want to update its value number.
                    // if the array length gets CSEd
                    optCseUpdateCheckedBoundMap(tree);
                }

                if (!optIsCSEcandidate(tree))
                {
                    continue;
                }

                ValueNum vnlib = tree->GetVN(VNK_Liberal);

                if (ValueNumStore::isReservedVN(vnlib))
                {
                    continue;
                }

                // Don't CSE constant values, instead let the Value Number
                // based Assertion Prop phase handle them.  Here, unlike
                // the rest of optCSE, we use the conservative value number
                // rather than the liberal one, since the conservative one
                // is what the Value Number based Assertion Prop will use
                // and the point is to avoid optimizing cases that it will
                // handle.
                //
                if (vnStore->IsVNConstant(tree->GetVN(VNK_Conservative)))
                {
                    continue;
                }

                /* Assign an index to this expression */

                unsigned CSEindex = optValnumCSE_Index(tree, stmt);

                if (CSEindex != 0)
                {
                    noway_assert(((unsigned)tree->gtCSEnum) == CSEindex);
                }

                if (IS_CSE_INDEX(CSEindex) && (tree->OperGet() == GT_ARR_LENGTH))
                {
                    stmtHasArrLenCandidate = true;
                }
            }
        }
    }

    /* We're done if there were no interesting expressions */

    if (!optDoCSE)
    {
        return 0;
    }

    /* We're finished building the expression lookup table */

    optCSEstop();

    return 1;
}

//------------------------------------------------------------------------
// optCseUpdateCheckedBoundMap: Check if this compare is a tractable function of
//                     a checked bound that is a CSE candidate, and insert
//                     an entry in the optCseCheckedBoundMap if so.  This facilitates
//                     subsequently updating the compare's value number if
//                     the bound gets CSEd.
//
// Arguments:
//    compare - The compare node to check

void Compiler::optCseUpdateCheckedBoundMap(GenTree* compare)
{
    assert(compare->OperIsCompare());

    ValueNum  compareVN = compare->gtVNPair.GetConservative();
    VNFuncApp cmpVNFuncApp;

    if (!vnStore->GetVNFunc(compareVN, &cmpVNFuncApp) || (cmpVNFuncApp.m_func != GetVNFuncForNode(compare)))
    {
        // Value numbering inferred this compare as something other
        // than its own operator; leave its value number alone.
        return;
    }

    // Now look for a checked bound feeding the compare
    ValueNumStore::CompareCheckedBoundArithInfo info;

    GenTree* boundParent = nullptr;

    if (vnStore->IsVNCompareCheckedBound(compareVN))
    {
        // Simple compare of an bound against something else.

        vnStore->GetCompareCheckedBound(compareVN, &info);
        boundParent = compare;
    }
    else if (vnStore->IsVNCompareCheckedBoundArith(compareVN))
    {
        // Compare of a bound +/- some offset to something else.

        GenTree* op1 = compare->gtGetOp1();
        GenTree* op2 = compare->gtGetOp2();

        vnStore->GetCompareCheckedBoundArithInfo(compareVN, &info);
        if (GetVNFuncForNode(op1) == (VNFunc)info.arrOper)
        {
            // The arithmetic node is the bound's parent.
            boundParent = op1;
        }
        else if (GetVNFuncForNode(op2) == (VNFunc)info.arrOper)
        {
            // The arithmetic node is the bound's parent.
            boundParent = op2;
        }
    }

    if (boundParent != nullptr)
    {
        GenTree* bound = nullptr;

        // Find which child of boundParent is the bound.  Abort if neither
        // conservative value number matches the one from the compare VN.

        GenTree* child1 = boundParent->gtGetOp1();
        if ((info.vnBound == child1->gtVNPair.GetConservative()) && IS_CSE_INDEX(child1->gtCSEnum))
        {
            bound = child1;
        }
        else
        {
            GenTree* child2 = boundParent->gtGetOp2();
            if ((info.vnBound == child2->gtVNPair.GetConservative()) && IS_CSE_INDEX(child2->gtCSEnum))
            {
                bound = child2;
            }
        }

        if (bound != nullptr)
        {
            // Found a checked bound feeding a compare that is a tractable function of it;
            // record this in the map so we can update the compare VN if the bound
            // node gets CSEd.

            if (optCseCheckedBoundMap == nullptr)
            {
                // Allocate map on first use.
                optCseCheckedBoundMap = new (getAllocator()) NodeToNodeMap(getAllocator());
            }

            optCseCheckedBoundMap->Set(bound, compare);
        }
    }
}

/*****************************************************************************
 *
 *  Compute each blocks bbCseGen
 *  This is the bitset that represents the CSEs that are generated within the block
 */
void Compiler::optValnumCSE_InitDataFlow()
{
    for (BasicBlock* block = fgFirstBB; block; block = block->bbNext)
    {
        /* Initialize the blocks's bbCseIn set */

        bool init_to_zero = false;

        if (block == fgFirstBB)
        {
            /* Clear bbCseIn for the entry block */
            init_to_zero = true;
        }
#if !CSE_INTO_HANDLERS
        else
        {
            if (bbIsHandlerBeg(block))
            {
                /* Clear everything on entry to filters or handlers */
                init_to_zero = true;
            }
        }
#endif
        if (init_to_zero)
        {
            /* Initialize to {ZERO} prior to dataflow */
            block->bbCseIn = BitVecOps::MakeEmpty(cseTraits);
        }
        else
        {
            /* Initialize to {ALL} prior to dataflow */
            block->bbCseIn = BitVecOps::MakeCopy(cseTraits, cseFull);
        }

        block->bbCseOut = BitVecOps::MakeCopy(cseTraits, cseFull);

        /* Initialize to {ZERO} prior to locating the CSE candidates */
        block->bbCseGen = BitVecOps::MakeEmpty(cseTraits);
    }

    // We walk the set of CSE candidates and set the bit corresponsing to the CSEindex
    // in the block's bbCseGen bitset
    //
    for (unsigned cnt = 0; cnt < optCSECandidateCount; cnt++)
    {
        CSEdsc*      dsc      = optCSEtab[cnt];
        unsigned     CSEindex = dsc->csdIndex;
        treeStmtLst* lst      = dsc->csdTreeList;
        noway_assert(lst);

        while (lst != nullptr)
        {
            BasicBlock* block = lst->tslBlock;
            BitVecOps::AddElemD(cseTraits, block->bbCseGen, genCSEnum2bit(CSEindex));
            lst = lst->tslNext;
        }
    }

#ifdef DEBUG
    // Dump out the bbCseGen information that we just created
    //
    if (verbose)
    {
        bool headerPrinted = false;
        for (BasicBlock* block = fgFirstBB; block; block = block->bbNext)
        {
            if (block->bbCseGen != nullptr)
            {
                if (!headerPrinted)
                {
                    printf("\nBlocks that generate CSE def/uses\n");
                    headerPrinted = true;
                }
                printf(FMT_BB, block->bbNum);
                printf(" cseGen = %s\n", genES2str(cseTraits, block->bbCseGen));
            }
        }
    }

    fgDebugCheckLinks();

#endif // DEBUG
}

/*****************************************************************************
 *
 * CSE Dataflow, so that all helper methods for dataflow are in a single place
 *
 */
class CSE_DataFlow
{
    BitVecTraits* m_pBitVecTraits;
    EXPSET_TP     m_preMergeOut;

public:
    CSE_DataFlow(Compiler* pCompiler) : m_pBitVecTraits(pCompiler->cseTraits), m_preMergeOut(BitVecOps::UninitVal())
    {
    }

    // At the start of the merge function of the dataflow equations, initialize premerge state (to detect changes.)
    void StartMerge(BasicBlock* block)
    {
        BitVecOps::Assign(m_pBitVecTraits, m_preMergeOut, block->bbCseOut);
    }

    // During merge, perform the actual merging of the predecessor's (since this is a forward analysis) dataflow flags.
    void Merge(BasicBlock* block, BasicBlock* predBlock, flowList* preds)
    {
        BitVecOps::IntersectionD(m_pBitVecTraits, block->bbCseIn, predBlock->bbCseOut);
    }

    // At the end of the merge store results of the dataflow equations, in a postmerge state.
    bool EndMerge(BasicBlock* block)
    {
        BitVecOps::DataFlowD(m_pBitVecTraits, block->bbCseOut, block->bbCseGen, block->bbCseIn);
        return !BitVecOps::Equal(m_pBitVecTraits, block->bbCseOut, m_preMergeOut);
    }
};

/*****************************************************************************
 *
 *  Perform a DataFlow forward analysis using the block CSE bitsets:
 *    Inputs:
 *      bbCseGen  - Exact CSEs that are become available within the block
 *      bbCseIn   - Maximal estimate of CSEs that are/could be available at input to the block
 *      bbCseOut  - Maximal estimate of CSEs that are/could be available at exit to the block
 *
 *    Outputs:
 *      bbCseIn   - Computed CSEs that are available at input to the block
 *      bbCseOut  - Computed CSEs that are available at exit to the block
 */

void Compiler::optValnumCSE_DataFlow()
{
    CSE_DataFlow cse(this);

    // Modified dataflow algorithm for available expressions.
    DataFlow cse_flow(this);

    cse_flow.ForwardAnalysis(cse);

#ifdef DEBUG
    if (verbose)
    {
        printf("\nAfter performing DataFlow for ValnumCSE's\n");

        for (BasicBlock* block = fgFirstBB; block; block = block->bbNext)
        {
            printf(FMT_BB, block->bbNum);
            printf(" cseIn  = %s", genES2str(cseTraits, block->bbCseIn));
            printf(" cseOut = %s", genES2str(cseTraits, block->bbCseOut));
            printf("\n");
        }

        printf("\n");
    }
#endif // DEBUG
}

/*****************************************************************************
 *
 *   Using the information computed by CSE_DataFlow determine for each
 *   CSE whether the CSE is a definition (if the CSE was not available)
 *   or if the CSE is a use (if the CSE was previously made available)
 *   The implementation iterates of all blocks setting 'available_cses'
 *   to the CSEs that are available at input to the block.
 *   When a CSE expression is encountered it is classified as either
 *   as a definition (if the CSE is not in the 'available_cses' set) or
 *   as a use (if the CSE is  in the 'available_cses' set).  If the CSE
 *   is a definition then it is added to the 'available_cses' set.
 *   In the Value Number based CSEs we do not need to have kill sets
 */

void Compiler::optValnumCSE_Availablity()
{
#ifdef DEBUG
    if (verbose)
    {
        printf("Labeling the CSEs with Use/Def information\n");
    }
#endif
    EXPSET_TP available_cses = BitVecOps::MakeEmpty(cseTraits);

    for (BasicBlock* block = fgFirstBB; block; block = block->bbNext)
    {
        GenTree* stmt;
        GenTree* tree;

        /* Make the block publicly available */

        compCurBB = block;

        BitVecOps::Assign(cseTraits, available_cses, block->bbCseIn);

        optCSEweight = block->getBBWeight(this);

        /* Walk the statement trees in this basic block */

        for (stmt = block->FirstNonPhiDef(); stmt; stmt = stmt->gtNext)
        {
            noway_assert(stmt->gtOper == GT_STMT);

            /* We walk the tree in the forwards direction (bottom up) */
            for (tree = stmt->gtStmt.gtStmtList; tree; tree = tree->gtNext)
            {
                if (IS_CSE_INDEX(tree->gtCSEnum))
                {
                    unsigned int cseBit = genCSEnum2bit(tree->gtCSEnum);
                    CSEdsc*      desc   = optCSEfindDsc(tree->gtCSEnum);
                    unsigned     stmw   = block->getBBWeight(this);

                    /* Is this expression available here? */

                    if (BitVecOps::IsMember(cseTraits, available_cses, cseBit))
                    {
                        /* This is a CSE use */

                        desc->csdUseCount += 1;
                        desc->csdUseWtCnt += stmw;
                    }
                    else
                    {
                        if (tree->gtFlags & GTF_COLON_COND)
                        {
                            // We can't create CSE definitions inside QMARK-COLON trees
                            tree->gtCSEnum = NO_CSE;
                            continue;
                        }

                        /* This is a CSE def */

                        if (desc->csdDefCount == 0)
                        {
                            // This is the first def visited, so copy its conservative VN
                            desc->defConservativeVN = tree->gtVNPair.GetConservative();
                        }
                        else if (tree->gtVNPair.GetConservative() != desc->defConservativeVN)
                        {
                            // This candidate has defs with differing conservative VNs
                            desc->defConservativeVN = ValueNumStore::NoVN;
                        }

                        desc->csdDefCount += 1;
                        desc->csdDefWtCnt += stmw;

                        /* Mark the node as a CSE definition */

                        tree->gtCSEnum = TO_CSE_DEF(tree->gtCSEnum);

                        /* This CSE will be available after this def */
                        BitVecOps::AddElemD(cseTraits, available_cses, cseBit);
                    }
#ifdef DEBUG
                    if (verbose && IS_CSE_INDEX(tree->gtCSEnum))
                    {
                        printf(FMT_BB " ", block->bbNum);
                        printTreeID(tree);
                        printf(" %s of CSE #%02u [weight=%s]\n", IS_CSE_USE(tree->gtCSEnum) ? "Use" : "Def",
                               GET_CSE_INDEX(tree->gtCSEnum), refCntWtd2str(stmw));
                    }
#endif
                }
            }
        }
    }
}

//  The following class handles the CSE heuristics
//  we use a complex set of heuristic rules
//  to determine if it is likely to be profitable to perform this CSE
//
class CSE_Heuristic
{
    Compiler* m_pCompiler;
    unsigned  m_addCSEcount;

    unsigned               aggressiveRefCnt;
    unsigned               moderateRefCnt;
    unsigned               enregCount; // count of the number of enregisterable variables
    bool                   largeFrame;
    bool                   hugeFrame;
    Compiler::codeOptimize codeOptKind;
    Compiler::CSEdsc**     sortTab;
    size_t                 sortSiz;
#ifdef DEBUG
    CLRRandom m_cseRNG;
    unsigned  m_bias;
#endif

public:
    CSE_Heuristic(Compiler* pCompiler) : m_pCompiler(pCompiler)
    {
        codeOptKind = m_pCompiler->compCodeOpt();
    }

    Compiler::codeOptimize CodeOptKind()
    {
        return codeOptKind;
    }

    // Perform the Initialization step for our CSE Heuristics
    // determine the various cut off values to use for
    // the aggressive, moderate and conservative CSE promotions
    // count the number of enregisterable variables
    // determine if the method has a large or huge stack frame.
    //
    void Initialize()
    {
        m_addCSEcount = 0; /* Count of the number of LclVars for CSEs that we added */

        // Record the weighted ref count of the last "for sure" callee saved LclVar
        aggressiveRefCnt = 0;
        moderateRefCnt   = 0;
        enregCount       = 0;
        largeFrame       = false;
        hugeFrame        = false;
        sortTab          = nullptr;
        sortSiz          = 0;

#ifdef _TARGET_XARCH_
        if (m_pCompiler->compLongUsed)
        {
            enregCount++;
        }
#endif

        unsigned   frameSize        = 0;
        unsigned   regAvailEstimate = ((CNT_CALLEE_ENREG * 3) + (CNT_CALLEE_TRASH * 2) + 1);
        unsigned   lclNum;
        LclVarDsc* varDsc;

        for (lclNum = 0, varDsc = m_pCompiler->lvaTable; lclNum < m_pCompiler->lvaCount; lclNum++, varDsc++)
        {
            if (varDsc->lvRefCnt() == 0)
            {
                continue;
            }

#if FEATURE_FIXED_OUT_ARGS
            // Skip the OutgoingArgArea in computing frame size, since
            // its size is not yet known and it doesn't affect local
            // offsets from the frame pointer (though it may affect
            // them from the stack pointer).
            noway_assert(m_pCompiler->lvaOutgoingArgSpaceVar != BAD_VAR_NUM);
            if (lclNum == m_pCompiler->lvaOutgoingArgSpaceVar)
            {
                continue;
            }
#endif // FEATURE_FIXED_OUT_ARGS

            bool onStack = (regAvailEstimate == 0); // true when it is likely that this LclVar will have a stack home

            // Some LclVars always have stack homes
            if ((varDsc->lvDoNotEnregister) || (varDsc->lvType == TYP_LCLBLK))
            {
                onStack = true;
            }

#ifdef _TARGET_X86_
            // Treat floating point and 64 bit integers as always on the stack
            if (varTypeIsFloating(varDsc->TypeGet()) || varTypeIsLong(varDsc->TypeGet()))
                onStack = true;
#endif

            if (onStack)
            {
                frameSize += m_pCompiler->lvaLclSize(lclNum);
            }
            else
            {
                // For the purposes of estimating the frameSize we
                // will consider this LclVar as being enregistered.
                // Now we reduce the remaining regAvailEstimate by
                // an appropriate amount.
                if (varDsc->lvRefCnt() <= 2)
                {
                    // a single use single def LclVar only uses 1
                    regAvailEstimate -= 1;
                }
                else
                {
                    // a LclVar with multiple uses and defs uses 2
                    if (regAvailEstimate >= 2)
                    {
                        regAvailEstimate -= 2;
                    }
                    else
                    {
                        // Don't try to subtract when regAvailEstimate is 1
                        regAvailEstimate = 0;
                    }
                }
            }
#ifdef _TARGET_XARCH_
            if (frameSize > 0x080)
            {
                // We likely have a large stack frame.
                // Thus we might need to use large displacements when loading or storing
                // to CSE LclVars that are not enregistered
                largeFrame = true;
                break; // early out,  we don't need to keep increasing frameSize
            }
#else // _TARGET_ARM_
            if (frameSize > 0x0400)
            {
                largeFrame = true;
            }
            if (frameSize > 0x10000)
            {
                hugeFrame = true;
                break;
            }
#endif
        }

        unsigned sortNum = 0;
        while (sortNum < m_pCompiler->lvaTrackedCount)
        {
            LclVarDsc* varDsc = m_pCompiler->lvaRefSorted[sortNum++];
            var_types  varTyp = varDsc->TypeGet();

            if (varDsc->lvDoNotEnregister)
            {
                continue;
            }

            if (!varTypeIsFloating(varTyp))
            {
                // TODO-1stClassStructs: Remove this; it is here to duplicate previous behavior.
                // Note that this makes genTypeStSz return 1.
                if (varTypeIsStruct(varTyp))
                {
                    varTyp = TYP_STRUCT;
                }
                enregCount += genTypeStSz(varTyp);
            }

            if ((aggressiveRefCnt == 0) && (enregCount > (CNT_CALLEE_ENREG * 3 / 2)))
            {
                if (CodeOptKind() == Compiler::SMALL_CODE)
                {
                    aggressiveRefCnt = varDsc->lvRefCnt() + BB_UNITY_WEIGHT;
                }
                else
                {
                    aggressiveRefCnt = varDsc->lvRefCntWtd() + BB_UNITY_WEIGHT;
                }
            }
            if ((moderateRefCnt == 0) && (enregCount > ((CNT_CALLEE_ENREG * 3) + (CNT_CALLEE_TRASH * 2))))
            {
                if (CodeOptKind() == Compiler::SMALL_CODE)
                {
                    moderateRefCnt = varDsc->lvRefCnt();
                }
                else
                {
                    moderateRefCnt = varDsc->lvRefCntWtd();
                }
            }
        }
        unsigned mult = 3;
        // use smaller value for mult when enregCount is in [0..4]
        if (enregCount <= 4)
        {
            mult = (enregCount <= 2) ? 1 : 2;
        }

        aggressiveRefCnt = max(BB_UNITY_WEIGHT * mult, aggressiveRefCnt);
        moderateRefCnt   = max((BB_UNITY_WEIGHT * mult) / 2, moderateRefCnt);

#ifdef DEBUG
        if (m_pCompiler->verbose)
        {
            printf("\n");
            printf("Aggressive CSE Promotion cutoff is %u\n", aggressiveRefCnt);
            printf("Moderate CSE Promotion cutoff is %u\n", moderateRefCnt);
            printf("Framesize estimate is 0x%04X\n", frameSize);
            printf("We have a %s frame\n", hugeFrame ? "huge" : (largeFrame ? "large" : "small"));
        }
#endif
    }

    void SortCandidates()
    {
        /* Create an expression table sorted by decreasing cost */
        sortTab = new (m_pCompiler, CMK_CSE) Compiler::CSEdsc*[m_pCompiler->optCSECandidateCount];

        sortSiz = m_pCompiler->optCSECandidateCount * sizeof(*sortTab);
        memcpy(sortTab, m_pCompiler->optCSEtab, sortSiz);

        if (CodeOptKind() == Compiler::SMALL_CODE)
        {
            qsort(sortTab, m_pCompiler->optCSECandidateCount, sizeof(*sortTab), m_pCompiler->optCSEcostCmpSz);
        }
        else
        {
            qsort(sortTab, m_pCompiler->optCSECandidateCount, sizeof(*sortTab), m_pCompiler->optCSEcostCmpEx);
        }

#ifdef DEBUG
        if (m_pCompiler->verbose)
        {
            printf("\nSorted CSE candidates:\n");
            /* Print out the CSE candidates */
            EXPSET_TP tempMask;
            for (unsigned cnt = 0; cnt < m_pCompiler->optCSECandidateCount; cnt++)
            {
                Compiler::CSEdsc* dsc  = sortTab[cnt];
                GenTree*          expr = dsc->csdTree;

                unsigned def;
                unsigned use;

                if (CodeOptKind() == Compiler::SMALL_CODE)
                {
                    def = dsc->csdDefCount; // def count
                    use = dsc->csdUseCount; // use count (excluding the implicit uses at defs)
                }
                else
                {
                    def = dsc->csdDefWtCnt; // weighted def count
                    use = dsc->csdUseWtCnt; // weighted use count (excluding the implicit uses at defs)
                }

                tempMask = BitVecOps::MakeSingleton(m_pCompiler->cseTraits, genCSEnum2bit(dsc->csdIndex));
                printf("CSE #%02u,cseMask=%s,useCnt=%d: [def=%3u, use=%3u", dsc->csdIndex,
                       genES2str(m_pCompiler->cseTraits, tempMask), dsc->csdUseCount, def, use);
                printf("] :: ");
                m_pCompiler->gtDispTree(expr, nullptr, nullptr, true);
            }
            printf("\n");
        }
#endif // DEBUG
    }

    //  The following class nested within CSE_Heuristic encapsulates the information
    //  about the current CSE candidate that is under consideration
    //
    //  TODO-Cleanup: This is still very much based upon the old Lexical CSE implementation
    //  and needs to be reworked for the Value Number based implementation
    //
    class CSE_Candidate
    {
        CSE_Heuristic*    m_context;
        Compiler::CSEdsc* m_CseDsc;

        unsigned m_cseIndex;

        unsigned m_defCount;
        unsigned m_useCount;

        unsigned m_Cost;
        unsigned m_Size;

    public:
        CSE_Candidate(CSE_Heuristic* context, Compiler::CSEdsc* cseDsc) : m_context(context), m_CseDsc(cseDsc)
        {
            m_cseIndex = m_CseDsc->csdIndex;
        }

        Compiler::CSEdsc* CseDsc()
        {
            return m_CseDsc;
        }
        unsigned CseIndex()
        {
            return m_cseIndex;
        }
        unsigned DefCount()
        {
            return m_defCount;
        }
        unsigned UseCount()
        {
            return m_useCount;
        }
        // TODO-CQ: With ValNum CSE's the Expr and its cost can vary.
        GenTree* Expr()
        {
            return m_CseDsc->csdTree;
        }
        unsigned Cost()
        {
            return m_Cost;
        }
        unsigned Size()
        {
            return m_Size;
        }

        bool LiveAcrossCall()
        {
            return (m_CseDsc->csdLiveAcrossCall != 0);
        }

        void InitializeCounts()
        {
            if (m_context->CodeOptKind() == Compiler::SMALL_CODE)
            {
                m_Cost     = Expr()->gtCostSz;      // the estimated code size
                m_Size     = Expr()->gtCostSz;      // always the gtCostSz
                m_defCount = m_CseDsc->csdDefCount; // def count
                m_useCount = m_CseDsc->csdUseCount; // use count (excluding the implicit uses at defs)
            }
            else
            {
                m_Cost     = Expr()->gtCostEx;      // the estimated execution cost
                m_Size     = Expr()->gtCostSz;      // always the gtCostSz
                m_defCount = m_CseDsc->csdDefWtCnt; // weighted def count
                m_useCount = m_CseDsc->csdUseWtCnt; // weighted use count (excluding the implicit uses at defs)
            }
        }
    };

#ifdef DEBUG
    //------------------------------------------------------------------------
    // optConfigBiasedCSE:
    //     Stress mode to shuffle the decision to CSE or not using environment
    //     variable COMPlus_JitStressBiasedCSE (= 0 to 100%). When the bias value
    //     is not specified but COMPlus_JitStress is ON, generate a random bias.
    //
    // Return Value:
    //      0 -- This method is indifferent about this CSE (no bias specified and no stress)
    //      1 -- This CSE must be performed to maintain specified/generated bias.
    //     -1 -- This CSE mustn't be performed to maintain specified/generated bias.
    //
    // Operation:
    //     A debug stress only method that returns "1" with probability (P)
    //     defined by:
    //
    //         P = (COMPlus_JitStressBiasedCSE / 100) (or)
    //         P = (random(100) / 100) when COMPlus_JitStress is specified and
    //                                 COMPlus_JitStressBiasedCSE is unspecified.
    //
    //     When specified, the bias is reinterpreted as a decimal number between 0
    //     to 100.
    //     When bias is not specified, a bias is randomly generated if COMPlus_JitStress
    //     is non-zero.
    //
    //     Callers are supposed to call this method for each CSE promotion decision
    //     and ignore the call if return value is 0 and honor the 1 with a CSE and
    //     -1 with a no-CSE to maintain the specified/generated bias.
    //
    int optConfigBiasedCSE()
    {
        // Seed the PRNG, if never done before.
        if (!m_cseRNG.IsInitialized())
        {
            m_cseRNG.Init(m_pCompiler->info.compMethodHash());
            m_bias = m_cseRNG.Next(100);
        }

        // Obtain the bias value and reinterpret as decimal.
        unsigned bias = ReinterpretHexAsDecimal(JitConfig.JitStressBiasedCSE());

        // Invalid value, check if JitStress is ON.
        if (bias > 100)
        {
            if (!m_pCompiler->compStressCompile(Compiler::STRESS_MAKE_CSE, MAX_STRESS_WEIGHT))
            {
                // JitStress is OFF for CSE, nothing to do.
                return 0;
            }
            bias = m_bias;
            JITDUMP("JitStressBiasedCSE is OFF, but JitStress is ON: generated bias=%d.\n", bias);
        }

        // Generate a number between (0, 99) and if the generated
        // number is smaller than bias, then perform CSE.
        unsigned gen = m_cseRNG.Next(100);
        int      ret = (gen < bias) ? 1 : -1;

        if (m_pCompiler->verbose)
        {
            if (ret < 0)
            {
                printf("No CSE because gen=%d >= bias=%d\n", gen, bias);
            }
            else
            {
                printf("Promoting CSE because gen=%d < bias=%d\n", gen, bias);
            }
        }

        // Indicate whether to perform CSE or not.
        return ret;
    }
#endif

    // Given a CSE candidate decide whether it passes or fails the profitability heuristic
    // return true if we believe that it is profitable to promote this candidate to a CSE
    //
    bool PromotionCheck(CSE_Candidate* candidate)
    {
        bool result = false;

#ifdef DEBUG
        int stressResult = optConfigBiasedCSE();
        if (stressResult != 0)
        {
            // Stress is enabled. Check whether to perform CSE or not.
            return (stressResult > 0);
        }

        if (m_pCompiler->optConfigDisableCSE2())
        {
            return false; // skip this CSE
        }
#endif

        /*
            Our calculation is based on the following cost estimate formula

            Existing costs are:

            (def + use) * cost

            If we introduce a CSE temp are each definition and
            replace the use with a CSE temp then our cost is:

            (def * (cost + cse-def-cost)) + (use * cse-use-cost)

            We must estimate the values to use for cse-def-cost and cse-use-cost

            If we are able to enregister the CSE then the cse-use-cost is one
            and cse-def-cost is either zero or one.  Zero in the case where
            we needed to evaluate the def into a register and we can use that
            register as the CSE temp as well.

            If we are unable to enregister the CSE then the cse-use-cost is IND_COST
            and the cse-def-cost is also IND_COST.

            If we want to be conservative we use IND_COST as the the value
            for both cse-def-cost and cse-use-cost and then we never introduce
            a CSE that could pessimize the execution time of the method.

            If we want to be more moderate we use (IND_COST_EX + 1) / 2 as the
            values for both cse-def-cost and cse-use-cost.

            If we want to be aggressive we use 1 as the values for both
            cse-def-cost and cse-use-cost.

            If we believe that the CSE very valuable in terms of weighted ref counts
            such that it would always be enregistered by the register allocator we choose
            the aggressive use def costs.

            If we believe that the CSE is somewhat valuable in terms of weighted ref counts
            such that it could be likely be enregistered by the register allocator we choose
            the moderate use def costs.

            otherwise we choose the conservative use def costs.

        */

        unsigned cse_def_cost;
        unsigned cse_use_cost;

        unsigned no_cse_cost    = 0;
        unsigned yes_cse_cost   = 0;
        unsigned extra_yes_cost = 0;
        unsigned extra_no_cost  = 0;

        // The 'cseRefCnt' is the RefCnt that we will have if we promote this CSE into a new LclVar
        // Each CSE Def will contain two Refs and each CSE Use will have one Ref of this new LclVar
        unsigned cseRefCnt = (candidate->DefCount() * 2) + candidate->UseCount();

        if (CodeOptKind() == Compiler::SMALL_CODE)
        {
            if (cseRefCnt >= aggressiveRefCnt)
            {
#ifdef DEBUG
                if (m_pCompiler->verbose)
                {
                    printf("Aggressive CSE Promotion (%u >= %u)\n", cseRefCnt, aggressiveRefCnt);
                }
#endif
                cse_def_cost = 1;
                cse_use_cost = 1;

                if (candidate->LiveAcrossCall() != 0)
                {
                    if (largeFrame)
                    {
                        cse_def_cost++;
                        cse_use_cost++;
                    }
                    if (hugeFrame)
                    {
                        cse_def_cost++;
                        cse_use_cost++;
                    }
                }
            }
            else if (largeFrame)
            {
#ifdef DEBUG
                if (m_pCompiler->verbose)
                {
                    printf("Codesize CSE Promotion (large frame)\n");
                }
#endif
#ifdef _TARGET_XARCH_
                /* The following formula is good choice when optimizing CSE for SMALL_CODE */
                cse_def_cost = 6; // mov [EBP-0x00001FC],reg
                cse_use_cost = 5; //     [EBP-0x00001FC]
#else                             // _TARGET_ARM_
                if (hugeFrame)
                {
                    cse_def_cost = 12; // movw/movt r10 and str reg,[sp+r10]
                    cse_use_cost = 12;
                }
                else
                {
                    cse_def_cost = 8; // movw r10 and str reg,[sp+r10]
                    cse_use_cost = 8;
                }
#endif
            }
            else // small frame
            {
#ifdef DEBUG
                if (m_pCompiler->verbose)
                {
                    printf("Codesize CSE Promotion (small frame)\n");
                }
#endif
#ifdef _TARGET_XARCH_
                /* The following formula is good choice when optimizing CSE for SMALL_CODE */
                cse_def_cost = 3; // mov [EBP-1C],reg
                cse_use_cost = 2; //     [EBP-1C]
#else                             // _TARGET_ARM_
                cse_def_cost = 2; // str reg,[sp+0x9c]
                cse_use_cost = 2; // ldr reg,[sp+0x9c]
#endif
            }
        }
        else // not SMALL_CODE ...
        {
            if (cseRefCnt >= aggressiveRefCnt)
            {
#ifdef DEBUG
                if (m_pCompiler->verbose)
                {
                    printf("Aggressive CSE Promotion (%u >= %u)\n", cseRefCnt, aggressiveRefCnt);
                }
#endif
                cse_def_cost = 1;
                cse_use_cost = 1;
            }
            else if (cseRefCnt >= moderateRefCnt)
            {

                if (candidate->LiveAcrossCall() == 0)
                {
#ifdef DEBUG
                    if (m_pCompiler->verbose)
                    {
                        printf("Moderate CSE Promotion (CSE never live at call) (%u >= %u)\n", cseRefCnt,
                               moderateRefCnt);
                    }
#endif
                    cse_def_cost = 2;
                    cse_use_cost = 1;
                }
                else // candidate is live across call
                {
#ifdef DEBUG
                    if (m_pCompiler->verbose)
                    {
                        printf("Moderate CSE Promotion (%u >= %u)\n", cseRefCnt, moderateRefCnt);
                    }
#endif
                    cse_def_cost   = 2;
                    cse_use_cost   = 2;
                    extra_yes_cost = BB_UNITY_WEIGHT * 2; // Extra cost in case we have to spill/restore a caller
                                                          // saved register
                }
            }
            else // Conservative CSE promotion
            {
                if (candidate->LiveAcrossCall() == 0)
                {
#ifdef DEBUG
                    if (m_pCompiler->verbose)
                    {
                        printf("Conservative CSE Promotion (CSE never live at call) (%u < %u)\n", cseRefCnt,
                               moderateRefCnt);
                    }
#endif
                    cse_def_cost = 2;
                    cse_use_cost = 2;
                }
                else // candidate is live across call
                {
#ifdef DEBUG
                    if (m_pCompiler->verbose)
                    {
                        printf("Conservative CSE Promotion (%u < %u)\n", cseRefCnt, moderateRefCnt);
                    }
#endif
                    cse_def_cost   = 3;
                    cse_use_cost   = 3;
                    extra_yes_cost = BB_UNITY_WEIGHT * 4; // Extra cost in case we have to spill/restore a caller
                                                          // saved register
                }

                // If we have maxed out lvaTrackedCount then this CSE may end up as an untracked variable
                if (m_pCompiler->lvaTrackedCount == lclMAX_TRACKED)
                {
                    cse_def_cost++;
                    cse_use_cost++;
                }
            }

            if (largeFrame)
            {
                cse_def_cost++;
                cse_use_cost++;
            }
            if (hugeFrame)
            {
                cse_def_cost++;
                cse_use_cost++;
            }
        }

        // estimate the cost from lost codesize reduction if we do not perform the CSE
        if (candidate->Size() > cse_use_cost)
        {
            Compiler::CSEdsc* dsc = candidate->CseDsc(); // We need to retrieve the actual use count, not the
                                                         // weighted count
            extra_no_cost = candidate->Size() - cse_use_cost;
            extra_no_cost = extra_no_cost * dsc->csdUseCount * 2;
        }

        /* no_cse_cost  is the cost estimate when we decide not to make a CSE */
        /* yes_cse_cost is the cost estimate when we decide to make a CSE     */

        no_cse_cost  = candidate->UseCount() * candidate->Cost();
        yes_cse_cost = (candidate->DefCount() * cse_def_cost) + (candidate->UseCount() * cse_use_cost);

        no_cse_cost += extra_no_cost;
        yes_cse_cost += extra_yes_cost;

#ifdef DEBUG
        if (m_pCompiler->verbose)
        {
            printf("cseRefCnt=%d, aggressiveRefCnt=%d, moderateRefCnt=%d\n", cseRefCnt, aggressiveRefCnt,
                   moderateRefCnt);
            printf("defCnt=%d, useCnt=%d, cost=%d, size=%d\n", candidate->DefCount(), candidate->UseCount(),
                   candidate->Cost(), candidate->Size());
            printf("def_cost=%d, use_cost=%d, extra_no_cost=%d, extra_yes_cost=%d\n", cse_def_cost, cse_use_cost,
                   extra_no_cost, extra_yes_cost);

            printf("CSE cost savings check (%u >= %u) %s\n", no_cse_cost, yes_cse_cost,
                   (no_cse_cost >= yes_cse_cost) ? "passes" : "fails");
        }
#endif

        // Should we make this candidate into a CSE?
        // Is the yes cost less than the no cost
        //
        if (yes_cse_cost <= no_cse_cost)
        {
            result = true; // Yes make this a CSE
        }
        else
        {
            /* In stress mode we will make some extra CSEs */
            if (no_cse_cost > 0)
            {
                int percentage = (no_cse_cost * 100) / yes_cse_cost;

                if (m_pCompiler->compStressCompile(Compiler::STRESS_MAKE_CSE, percentage))
                {
                    result = true; // Yes make this a CSE
                }
            }
        }

        return result;
    }

    // PerformCSE() takes a successful candidate and performs  the appropriate replacements:
    //
    // It will replace all of the CSE defs with assignments to a new "cse0" LclVar
    // and will replace all of the CSE uses with reads of the "cse0" LclVar
    //
    void PerformCSE(CSE_Candidate* successfulCandidate)
    {
        unsigned cseRefCnt = (successfulCandidate->DefCount() * 2) + successfulCandidate->UseCount();

        if (successfulCandidate->LiveAcrossCall() != 0)
        {
            // As we introduce new LclVars for these CSE we slightly
            // increase the cutoffs for aggressive and moderate CSE's
            //
            int incr = BB_UNITY_WEIGHT;

            if (cseRefCnt > aggressiveRefCnt)
            {
                aggressiveRefCnt += incr;
            }

            if (cseRefCnt > moderateRefCnt)
            {
                moderateRefCnt += (incr / 2);
            }
        }

        /* Introduce a new temp for the CSE */

        // we will create a  long lifetime temp for the new cse LclVar
        unsigned  cseLclVarNum = m_pCompiler->lvaGrabTemp(false DEBUGARG("ValNumCSE"));
        var_types cseLclVarTyp = genActualType(successfulCandidate->Expr()->TypeGet());
        if (varTypeIsStruct(cseLclVarTyp))
        {
            m_pCompiler->lvaSetStruct(cseLclVarNum, m_pCompiler->gtGetStructHandle(successfulCandidate->Expr()), false);
        }
        m_pCompiler->lvaTable[cseLclVarNum].lvType  = cseLclVarTyp;
        m_pCompiler->lvaTable[cseLclVarNum].lvIsCSE = true;

        m_addCSEcount++; // Record that we created a new LclVar for use as a CSE temp
        m_pCompiler->optCSEcount++;

        ValueNum defConservativeVN = successfulCandidate->CseDsc()->defConservativeVN;

        /*  Walk all references to this CSE, adding an assignment
            to the CSE temp to all defs and changing all refs to
            a simple use of the CSE temp.

            We also unmark nested CSE's for all uses.
        */

        Compiler::treeStmtLst* lst;
        lst = successfulCandidate->CseDsc()->csdTreeList;
        noway_assert(lst);

#define QQQ_CHECK_CSE_VNS 0
#if QQQ_CHECK_CSE_VNS
        assert(lst != NULL);
        ValueNum firstVN = lst->tslTree->gtVN;
        lst              = lst->tslNext;
        bool allSame     = true;
        while (lst != NULL)
        {
            if (IS_CSE_INDEX(lst->tslTree->gtCSEnum))
            {
                if (lst->tslTree->gtVN != firstVN)
                {
                    allSame = false;
                    break;
                }
            }
            lst = lst->tslNext;
        }
        if (!allSame)
        {
            lst                = dsc->csdTreeList;
            GenTree* firstTree = lst->tslTree;
            printf("In %s, CSE (oper = %s, type = %s) has differing VNs: ", info.compFullName,
                   GenTree::OpName(firstTree->OperGet()), varTypeName(firstTree->TypeGet()));
            while (lst != NULL)
            {
                if (IS_CSE_INDEX(lst->tslTree->gtCSEnum))
                {
                    printf("0x%x(%s,%d)    ", lst->tslTree, IS_CSE_USE(lst->tslTree->gtCSEnum) ? "u" : "d",
                           lst->tslTree->gtVN);
                }
                lst = lst->tslNext;
            }
            printf("\n");
        }
        lst = dsc->csdTreeList;
#endif

        do
        {
            /* Process the next node in the list */
            GenTree* exp = lst->tslTree;
            GenTree* stm = lst->tslStmt;
            noway_assert(stm->gtOper == GT_STMT);
            BasicBlock* blk = lst->tslBlock;

            /* Advance to the next node in the list */
            lst = lst->tslNext;

            // Assert if we used DEBUG_DESTROY_NODE on this CSE exp
            assert(exp->gtOper != GT_COUNT);

            /* Ignore the node if it's not been marked as a CSE */
            if (!IS_CSE_INDEX(exp->gtCSEnum))
            {
                continue;
            }

            /* Make sure we update the weighted ref count correctly */
            m_pCompiler->optCSEweight = blk->getBBWeight(m_pCompiler);

            /* Figure out the actual type of the value */
            var_types expTyp = genActualType(exp->TypeGet());
            noway_assert(expTyp == cseLclVarTyp);

            // This will contain the replacement tree for exp
            // It will either be the CSE def or CSE ref
            //
            GenTree*      cse = nullptr;
            bool          isDef;
            FieldSeqNode* fldSeq               = nullptr;
            bool          hasZeroMapAnnotation = m_pCompiler->GetZeroOffsetFieldMap()->Lookup(exp, &fldSeq);

            if (IS_CSE_USE(exp->gtCSEnum))
            {
                /* This is a use of the CSE */
                isDef = false;
#ifdef DEBUG
                if (m_pCompiler->verbose)
                {
                    printf("\nWorking on the replacement of the CSE #%02u use at ", exp->gtCSEnum);
                    Compiler::printTreeID(exp);
                    printf(" in " FMT_BB "\n", blk->bbNum);
                }
#endif // DEBUG

                // We will replace the CSE ref with a new tree
                // this is typically just a simple use of the new CSE LclVar
                //
                cse           = m_pCompiler->gtNewLclvNode(cseLclVarNum, cseLclVarTyp);
                cse->gtVNPair = exp->gtVNPair; // assign the proper Value Numbers
                if (defConservativeVN != ValueNumStore::NoVN)
                {
                    // All defs of this CSE share the same conservative VN, and we are rewriting this
                    // use to fetch the same value with no reload, so we can safely propagate that
                    // conservative VN to this use.  This can help range check elimination later on.
                    cse->gtVNPair.SetConservative(defConservativeVN);

                    // If the old VN was flagged as a checked bound, propagate that to the new VN
                    // to make sure assertion prop will pay attention to this VN.
                    ValueNumStore* vnStore = m_pCompiler->vnStore;
                    ValueNum       oldVN   = exp->gtVNPair.GetConservative();
                    if (!vnStore->IsVNConstant(defConservativeVN) && vnStore->IsVNCheckedBound(oldVN))
                    {
                        vnStore->SetVNIsCheckedBound(defConservativeVN);
                    }

                    GenTree* cmp;
                    if ((m_pCompiler->optCseCheckedBoundMap != nullptr) &&
                        (m_pCompiler->optCseCheckedBoundMap->Lookup(exp, &cmp)))
                    {
                        // Propagate the new value number to this compare node as well, since
                        // subsequent range check elimination will try to correlate it with
                        // the other appearances that are getting CSEd.

                        ValueNum oldCmpVN = cmp->gtVNPair.GetConservative();
                        ValueNum newCmpArgVN;

                        ValueNumStore::CompareCheckedBoundArithInfo info;
                        if (vnStore->IsVNCompareCheckedBound(oldCmpVN))
                        {
                            // Comparison is against the bound directly.

                            newCmpArgVN = defConservativeVN;
                            vnStore->GetCompareCheckedBound(oldCmpVN, &info);
                        }
                        else
                        {
                            // Comparison is against the bound +/- some offset.

                            assert(vnStore->IsVNCompareCheckedBoundArith(oldCmpVN));
                            vnStore->GetCompareCheckedBoundArithInfo(oldCmpVN, &info);
                            newCmpArgVN = vnStore->VNForFunc(vnStore->TypeOfVN(info.arrOp), (VNFunc)info.arrOper,
                                                             info.arrOp, defConservativeVN);
                        }
                        ValueNum newCmpVN = vnStore->VNForFunc(vnStore->TypeOfVN(oldCmpVN), (VNFunc)info.cmpOper,
                                                               info.cmpOp, newCmpArgVN);
                        cmp->gtVNPair.SetConservative(newCmpVN);
                    }
                }
#ifdef DEBUG
                cse->gtDebugFlags |= GTF_DEBUG_VAR_CSE_REF;
#endif // DEBUG

                // Now we need to unmark any nested CSE's uses that are found in 'exp'
                // As well we extract any nested CSE defs that are found in 'exp' and
                // these are appended to the sideEffList

                // Afterwards the set of nodes in the 'sideEffectList' are preserved and
                // all other nodes are removed and have their ref counts decremented
                //
                exp->gtCSEnum = NO_CSE; // clear the gtCSEnum field

                GenTree* sideEffList = nullptr;
                m_pCompiler->gtExtractSideEffList(exp, &sideEffList, GTF_PERSISTENT_SIDE_EFFECTS | GTF_IS_IN_CSE);
                // If we have any side effects or extracted CSE defs then we need to create a GT_COMMA tree instead
                //
                if (sideEffList != nullptr)
                {
#ifdef DEBUG
                    if (m_pCompiler->verbose)
                    {
                        printf("\nThis CSE use has side effects and/or nested CSE defs. The sideEffectList:\n");
                        m_pCompiler->gtDispTree(sideEffList);
                        printf("\n");
                    }
#endif

                    GenTree*       cseVal         = cse;
                    GenTree*       curSideEff     = sideEffList;
                    ValueNumStore* vnStore        = m_pCompiler->vnStore;
                    ValueNumPair   exceptions_vnp = ValueNumStore::VNPForEmptyExcSet();

                    while ((curSideEff->OperGet() == GT_COMMA) || (curSideEff->OperGet() == GT_ASG))
                    {
                        GenTree* op1 = curSideEff->gtOp.gtOp1;
                        GenTree* op2 = curSideEff->gtOp.gtOp2;

                        ValueNumPair op1vnp;
                        ValueNumPair op1Xvnp = ValueNumStore::VNPForEmptyExcSet();
                        vnStore->VNPUnpackExc(op1->gtVNPair, &op1vnp, &op1Xvnp);

                        exceptions_vnp = vnStore->VNPExcSetUnion(exceptions_vnp, op1Xvnp);
                        curSideEff     = op2;
                    }

                    // We may have inserted a narrowing cast during a previous remorph
                    // and it will not have a value number.
                    if ((curSideEff->OperGet() == GT_CAST) && !curSideEff->gtVNPair.BothDefined())
                    {
                        // The inserted cast will have no exceptional effects
                        assert(curSideEff->gtOverflow() == false);
                        // Process the exception effects from the cast's operand.
                        curSideEff = curSideEff->gtOp.gtOp1;
                    }

                    ValueNumPair op2vnp;
                    ValueNumPair op2Xvnp = ValueNumStore::VNPForEmptyExcSet();
                    vnStore->VNPUnpackExc(curSideEff->gtVNPair, &op2vnp, &op2Xvnp);
                    exceptions_vnp = vnStore->VNPExcSetUnion(exceptions_vnp, op2Xvnp);

                    op2Xvnp = ValueNumStore::VNPForEmptyExcSet();
                    vnStore->VNPUnpackExc(cseVal->gtVNPair, &op2vnp, &op2Xvnp);
                    exceptions_vnp = vnStore->VNPExcSetUnion(exceptions_vnp, op2Xvnp);

                    // Create a comma node with the sideEffList as op1
                    cse           = m_pCompiler->gtNewOperNode(GT_COMMA, expTyp, sideEffList, cseVal);
                    cse->gtVNPair = vnStore->VNPWithExc(op2vnp, exceptions_vnp);
                }
            }
            else
            {
                /* This is a def of the CSE */
                isDef = true;
#ifdef DEBUG
                if (m_pCompiler->verbose)
                {
                    printf("\nCSE #%02u def at ", GET_CSE_INDEX(exp->gtCSEnum));
                    Compiler::printTreeID(exp);
                    printf(" replaced in " FMT_BB " with def of V%02u\n", blk->bbNum, cseLclVarNum);
                }
#endif // DEBUG

                exp->gtCSEnum = NO_CSE; // clear the gtCSEnum field

                GenTree* val = exp;

                /* Create an assignment of the value to the temp */
                GenTree* asg = m_pCompiler->gtNewTempAssign(cseLclVarNum, val);

                // assign the proper Value Numbers
                asg->gtVNPair.SetBoth(ValueNumStore::VNForVoid()); // The GT_ASG node itself is $VN.Void
                asg->gtOp.gtOp1->gtVNPair = val->gtVNPair;         // The dest op is the same as 'val'

                noway_assert(asg->gtOp.gtOp1->gtOper == GT_LCL_VAR);
                noway_assert(asg->gtOp.gtOp2 == val);

                /* Create a reference to the CSE temp */
                GenTree* ref  = m_pCompiler->gtNewLclvNode(cseLclVarNum, cseLclVarTyp);
                ref->gtVNPair = val->gtVNPair; // The new 'ref' is the same as 'val'

                // If it has a zero-offset field seq, copy annotation to the ref
                if (hasZeroMapAnnotation)
                {
                    m_pCompiler->GetZeroOffsetFieldMap()->Set(ref, fldSeq);
                }

                /* Create a comma node for the CSE assignment */
                cse           = m_pCompiler->gtNewOperNode(GT_COMMA, expTyp, asg, ref);
                cse->gtVNPair = ref->gtVNPair; // The comma's value is the same as 'val'
                                               // as the assignment to the CSE LclVar
                                               // cannot add any new exceptions
            }

            // Walk the statement 'stm' and find the pointer
            // in the tree is pointing to 'exp'
            //
            GenTree** link = m_pCompiler->gtFindLink(stm, exp);

#ifdef DEBUG
            if (link == nullptr)
            {
                printf("\ngtFindLink failed: stm=");
                Compiler::printTreeID(stm);
                printf(", exp=");
                Compiler::printTreeID(exp);
                printf("\n");
                printf("stm =");
                m_pCompiler->gtDispTree(stm);
                printf("\n");
                printf("exp =");
                m_pCompiler->gtDispTree(exp);
                printf("\n");
            }
#endif // DEBUG

            noway_assert(link);

            // Mutate this link, thus replacing the old exp with the new cse representation
            //
            *link = cse;

            // If it has a zero-offset field seq, copy annotation.
            if (hasZeroMapAnnotation)
            {
                m_pCompiler->GetZeroOffsetFieldMap()->Set(cse, fldSeq);
            }

            assert(m_pCompiler->fgRemoveRestOfBlock == false);

            /* re-morph the statement */
            m_pCompiler->fgMorphBlockStmt(blk, stm->AsStmt() DEBUGARG("optValnumCSE"));

        } while (lst != nullptr);
    }

    // Consider each of the CSE candidates and if the CSE passes
    // the PromotionCheck then transform the CSE by calling PerformCSE
    //
    void ConsiderCandidates()
    {
        /* Consider each CSE candidate, in order of decreasing cost */
        unsigned           cnt = m_pCompiler->optCSECandidateCount;
        Compiler::CSEdsc** ptr = sortTab;
        for (; (cnt > 0); cnt--, ptr++)
        {
            Compiler::CSEdsc* dsc = *ptr;
            CSE_Candidate     candidate(this, dsc);

            candidate.InitializeCounts();

            if (candidate.UseCount() == 0)
            {
#ifdef DEBUG
                if (m_pCompiler->verbose)
                {
                    printf("Skipped CSE #%02u because use count is 0\n", candidate.CseIndex());
                }
#endif
                continue;
            }

#ifdef DEBUG
            if (m_pCompiler->verbose)
            {
                printf("\nConsidering CSE #%02u [def=%2u, use=%2u, cost=%2u] CSE Expression:\n", candidate.CseIndex(),
                       candidate.DefCount(), candidate.UseCount(), candidate.Cost());
                m_pCompiler->gtDispTree(candidate.Expr());
                printf("\n");
            }
#endif

            if ((dsc->csdDefCount <= 0) || (dsc->csdUseCount == 0))
            {
                // If we reach this point, then the CSE def was incorrectly marked or the
                // block with this use is unreachable. So skip and go to the next CSE.
                // Without the "continue", we'd generate bad code in retail.
                // Commented out a noway_assert(false) here due to bug: 3290124.
                // The problem is if there is sub-graph that is not reachable from the
                // entry point, the CSE flags propagated, would be incorrect for it.
                continue;
            }

            bool doCSE = PromotionCheck(&candidate);

#ifdef DEBUG
            if (m_pCompiler->verbose)
            {
                if (doCSE)
                {
                    printf("\nPromoting CSE:\n");
                }
                else
                {
                    printf("Did Not promote this CSE\n");
                }
            }
#endif // DEBUG

            if (doCSE)
            {
                PerformCSE(&candidate);
            }
        }
    }

    // Perform the necessary cleanup after our CSE heuristics have run
    //
    void Cleanup()
    {
        // Nothing to do, currently.
    }
};

/*****************************************************************************
 *
 *  Routine for performing the Value Number based CSE using our heuristics
 */

void Compiler::optValnumCSE_Heuristic()
{
#ifdef DEBUG
    if (verbose)
    {
        printf("\n************ Trees at start of optValnumCSE_Heuristic()\n");
        fgDumpTrees(fgFirstBB, nullptr);
        printf("\n");
    }
#endif // DEBUG

    CSE_Heuristic cse_heuristic(this);

    cse_heuristic.Initialize();
    cse_heuristic.SortCandidates();
    cse_heuristic.ConsiderCandidates();
    cse_heuristic.Cleanup();
}

/*****************************************************************************
 *
 *  Perform common sub-expression elimination.
 */

void Compiler::optOptimizeValnumCSEs()
{
#ifdef DEBUG
    if (verbose)
    {
        printf("\n*************** In optOptimizeValnumCSEs()\n");
    }

    if (optConfigDisableCSE())
    {
        return; // Disabled by JitNoCSE
    }
#endif

    optValnumCSE_phase = true;

    /* Initialize the expression tracking logic */

    optValnumCSE_Init();

    /* Locate interesting expressions and assign indices to them */

    if (optValnumCSE_Locate() > 0)
    {
        optCSECandidateTotal += optCSECandidateCount;

        optValnumCSE_InitDataFlow();

        optValnumCSE_DataFlow();

        optValnumCSE_Availablity();

        optValnumCSE_Heuristic();
    }

    optValnumCSE_phase = false;
}

#endif // FEATURE_VALNUM_CSE

/*****************************************************************************
 *
 *  The following determines whether the given expression is a worthy CSE
 *  candidate.
 */
bool Compiler::optIsCSEcandidate(GenTree* tree)
{
    /* No good if the expression contains side effects or if it was marked as DONT CSE */

    if (tree->gtFlags & (GTF_ASG | GTF_DONT_CSE))
    {
        return false;
    }

    /* The only reason a TYP_STRUCT tree might occur is as an argument to
       GT_ADDR. It will never be actually materialized. So ignore them.
       Also TYP_VOIDs */

    var_types  type = tree->TypeGet();
    genTreeOps oper = tree->OperGet();

    // TODO-1stClassStructs: Enable CSE for struct types (depends on either transforming
    // to use regular assignments, or handling copyObj.
    if (varTypeIsStruct(type) || type == TYP_VOID)
    {
        return false;
    }

#ifdef _TARGET_X86_
    if (type == TYP_FLOAT)
    {
        // TODO-X86-CQ: Revisit this
        // Don't CSE a TYP_FLOAT on x86 as we currently can only enregister doubles
        return false;
    }
#else
    if (oper == GT_CNS_DBL)
    {
        // TODO-CQ: Revisit this
        // Don't try to CSE a GT_CNS_DBL as they can represent both float and doubles
        return false;
    }
#endif

    unsigned cost;
    if (compCodeOpt() == SMALL_CODE)
    {
        cost = tree->gtCostSz;
    }
    else
    {
        cost = tree->gtCostEx;
    }

    /* Don't bother if the potential savings are very low */
    if (cost < MIN_CSE_COST)
    {
        return false;
    }

#if !CSE_CONSTS
    /* Don't bother with constants */
    if (tree->OperKind() & GTK_CONST)
        return false;
#endif

    /* Check for some special cases */

    switch (oper)
    {
        case GT_CALL:
            // If we have a simple helper call with no other persistent side-effects
            // then we allow this tree to be a CSE candidate
            //
            if (gtTreeHasSideEffects(tree, GTF_PERSISTENT_SIDE_EFFECTS | GTF_IS_IN_CSE) == false)
            {
                return true;
            }
            else
            {
                // Calls generally cannot be CSE-ed
                return false;
            }

        case GT_IND:
            // TODO-CQ: Review this...
            /* We try to cse GT_ARR_ELEM nodes instead of GT_IND(GT_ARR_ELEM).
                Doing the first allows cse to also kick in for code like
                "GT_IND(GT_ARR_ELEM) = GT_IND(GT_ARR_ELEM) + xyz", whereas doing
                the second would not allow it */

            return (tree->gtOp.gtOp1->gtOper != GT_ARR_ELEM);

        case GT_CNS_INT:
        case GT_CNS_LNG:
        case GT_CNS_DBL:
        case GT_CNS_STR:
            return true; // We reach here only when CSE_CONSTS is enabled

        case GT_ARR_ELEM:
        case GT_ARR_LENGTH:
        case GT_CLS_VAR:
        case GT_LCL_FLD:
            return true;

        case GT_LCL_VAR:
            return false; // Can't CSE a volatile LCL_VAR

        case GT_NEG:
        case GT_NOT:
        case GT_CAST:
            return true; // CSE these Unary Operators

        case GT_SUB:
        case GT_DIV:
        case GT_MOD:
        case GT_UDIV:
        case GT_UMOD:
        case GT_OR:
        case GT_AND:
        case GT_XOR:
        case GT_RSH:
        case GT_RSZ:
        case GT_ROL:
        case GT_ROR:
            return true; // CSE these Binary Operators

        case GT_ADD: // Check for ADDRMODE flag on these Binary Operators
        case GT_MUL:
        case GT_LSH:
            if ((tree->gtFlags & GTF_ADDRMODE_NO_CSE) != 0)
            {
                return false;
            }

        case GT_EQ:
        case GT_NE:
        case GT_LT:
        case GT_LE:
        case GT_GE:
        case GT_GT:
            return true; // Also CSE these Comparison Operators

        case GT_INTRINSIC:
            return true; // Intrinsics

        case GT_COMMA:
            return true; // Allow GT_COMMA nodes to be CSE-ed.

        case GT_COLON:
        case GT_QMARK:
        case GT_NOP:
        case GT_RETURN:
            return false; // Currently the only special nodes that we hit
                          // that we know that we don't want to CSE

        default:
            break; // Any new nodes that we might add later...
    }

    return false;
}

#ifdef DEBUG
//
// A Debug only method that allows you to control whether the CSE logic is enabled for this method.
//
// If this method returns false then the CSE phase should be performed.
// If the method returns true then the CSE phase should be skipped.
//
bool Compiler::optConfigDisableCSE()
{
    // Next check if COMPlus_JitNoCSE is set and applies to this method
    //
    unsigned jitNoCSE = JitConfig.JitNoCSE();

    if (jitNoCSE > 0)
    {
        unsigned methodCount = Compiler::jitTotalMethodCompiled;
        if ((jitNoCSE & 0xF000000) == 0xF000000)
        {
            unsigned methodCountMask = methodCount & 0xFFF;
            unsigned bitsZero        = (jitNoCSE >> 12) & 0xFFF;
            unsigned bitsOne         = (jitNoCSE >> 0) & 0xFFF;

            if (((methodCountMask & bitsOne) == bitsOne) && ((~methodCountMask & bitsZero) == bitsZero))
            {
                if (verbose)
                {
                    printf(" Disabled by JitNoCSE methodCountMask\n");
                }

                return true; // The CSE phase for this method is disabled
            }
        }
        else if (jitNoCSE <= (methodCount + 1))
        {
            if (verbose)
            {
                printf(" Disabled by JitNoCSE > methodCount\n");
            }

            return true; // The CSE phase for this method is disabled
        }
    }

    return false;
}

//
// A Debug only method that allows you to control whether the CSE logic is enabled for
// a particular CSE in a method
//
// If this method returns false then the CSE should be performed.
// If the method returns true then the CSE should be skipped.
//
bool Compiler::optConfigDisableCSE2()
{
    static unsigned totalCSEcount = 0;

    unsigned jitNoCSE2 = JitConfig.JitNoCSE2();

    totalCSEcount++;

    if (jitNoCSE2 > 0)
    {
        if ((jitNoCSE2 & 0xF000000) == 0xF000000)
        {
            unsigned totalCSEMask = totalCSEcount & 0xFFF;
            unsigned bitsZero     = (jitNoCSE2 >> 12) & 0xFFF;
            unsigned bitsOne      = (jitNoCSE2 >> 0) & 0xFFF;

            if (((totalCSEMask & bitsOne) == bitsOne) && ((~totalCSEMask & bitsZero) == bitsZero))
            {
                if (verbose)
                {
                    printf(" Disabled by jitNoCSE2 Ones/Zeros mask\n");
                }
                return true;
            }
        }
        else if ((jitNoCSE2 & 0xF000000) == 0xE000000)
        {
            unsigned totalCSEMask = totalCSEcount & 0xFFF;
            unsigned disableMask  = jitNoCSE2 & 0xFFF;

            disableMask >>= (totalCSEMask % 12);

            if (disableMask & 1)
            {
                if (verbose)
                {
                    printf(" Disabled by jitNoCSE2 rotating disable mask\n");
                }
                return true;
            }
        }
        else if (jitNoCSE2 <= totalCSEcount)
        {
            if (verbose)
            {
                printf(" Disabled by jitNoCSE2 > totalCSEcount\n");
            }
            return true;
        }
    }
    return false;
}
#endif

void Compiler::optOptimizeCSEs()
{
#ifdef DEBUG
    if (verbose)
    {
        printf("\n*************** In optOptimizeCSEs()\n");
        printf("Blocks/Trees at start of optOptimizeCSE phase\n");
        fgDispBasicBlocks(true);
    }
#endif // DEBUG

    optCSECandidateCount = 0;
    optCSEstart          = lvaCount;

#if FEATURE_VALNUM_CSE
    INDEBUG(optEnsureClearCSEInfo());
    optOptimizeValnumCSEs();
    EndPhase(PHASE_OPTIMIZE_VALNUM_CSES);
#endif // FEATURE_VALNUM_CSE
}

/*****************************************************************************
 *
 *  Cleanup after CSE to allow us to run more than once.
 */

void Compiler::optCleanupCSEs()
{
    // We must clear the BBF_VISITED and BBF_MARKED flags
    //
    for (BasicBlock* block = fgFirstBB; block; block = block->bbNext)
    {
        // And clear all the "visited" bits on the block
        //
        block->bbFlags &= ~(BBF_VISITED | BBF_MARKED);

        /* Walk the statement trees in this basic block */

        GenTree* stmt;

        // Initialize 'stmt' to the first non-Phi statement
        stmt = block->FirstNonPhiDef();

        for (; stmt; stmt = stmt->gtNext)
        {
            noway_assert(stmt->gtOper == GT_STMT);

            /* We must clear the gtCSEnum field */
            for (GenTree* tree = stmt->gtStmt.gtStmtExpr; tree; tree = tree->gtPrev)
            {
                tree->gtCSEnum = NO_CSE;
            }
        }
    }
}

#ifdef DEBUG

/*****************************************************************************
 *
 *  Ensure that all the CSE information in the IR is initialized the way we expect it,
 *  before running a CSE phase. This is basically an assert that optCleanupCSEs() is not needed.
 */

void Compiler::optEnsureClearCSEInfo()
{
    for (BasicBlock* block = fgFirstBB; block; block = block->bbNext)
    {
        assert((block->bbFlags & (BBF_VISITED | BBF_MARKED)) == 0);

        /* Walk the statement trees in this basic block */

        GenTree* stmt;

        // Initialize 'stmt' to the first non-Phi statement
        stmt = block->FirstNonPhiDef();

        for (; stmt; stmt = stmt->gtNext)
        {
            assert(stmt->gtOper == GT_STMT);

            for (GenTree* tree = stmt->gtStmt.gtStmtExpr; tree; tree = tree->gtPrev)
            {
                assert(tree->gtCSEnum == NO_CSE);
            }
        }
    }
}

#endif // DEBUG

/*****************************************************************************/
#endif // FEATURE_ANYCSE
/*****************************************************************************/