1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
|
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
/*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX XX
XX Register Requirements for ARM64 XX
XX XX
XX This encapsulates all the logic for setting register requirements for XX
XX the ARM64 architecture. XX
XX XX
XX XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
*/
#include "jitpch.h"
#ifdef _MSC_VER
#pragma hdrstop
#endif
#ifdef _TARGET_ARM64_
#include "jit.h"
#include "sideeffects.h"
#include "lower.h"
//------------------------------------------------------------------------
// BuildNode: Build the RefPositions for for a node
//
// Arguments:
// treeNode - the node of interest
//
// Return Value:
// The number of sources consumed by this node.
//
// Notes:
// Preconditions:
// LSRA Has been initialized.
//
// Postconditions:
// RefPositions have been built for all the register defs and uses required
// for this node.
//
int LinearScan::BuildNode(GenTree* tree)
{
assert(!tree->isContained());
Interval* prefSrcInterval = nullptr;
int srcCount;
int dstCount = 0;
regMaskTP dstCandidates = RBM_NONE;
regMaskTP killMask = RBM_NONE;
bool isLocalDefUse = false;
// Reset the build-related members of LinearScan.
clearBuildState();
RegisterType registerType = TypeGet(tree);
// Set the default dstCount. This may be modified below.
if (tree->IsValue())
{
dstCount = 1;
if (tree->IsUnusedValue())
{
isLocalDefUse = true;
}
}
else
{
dstCount = 0;
}
switch (tree->OperGet())
{
default:
srcCount = BuildSimple(tree);
break;
case GT_LCL_VAR:
case GT_LCL_FLD:
{
// We handle tracked variables differently from non-tracked ones. If it is tracked,
// we will simply add a use of the tracked variable at its parent/consumer.
// Otherwise, for a use we need to actually add the appropriate references for loading
// or storing the variable.
//
// A tracked variable won't actually get used until the appropriate ancestor tree node
// is processed, unless this is marked "isLocalDefUse" because it is a stack-based argument
// to a call or an orphaned dead node.
//
LclVarDsc* const varDsc = &compiler->lvaTable[tree->AsLclVarCommon()->gtLclNum];
if (isCandidateVar(varDsc))
{
INDEBUG(dumpNodeInfo(tree, dstCandidates, 0, 1));
return 0;
}
srcCount = 0;
#ifdef FEATURE_SIMD
// Need an additional register to read upper 4 bytes of Vector3.
if (tree->TypeGet() == TYP_SIMD12)
{
// We need an internal register different from targetReg in which 'tree' produces its result
// because both targetReg and internal reg will be in use at the same time.
buildInternalFloatRegisterDefForNode(tree, allSIMDRegs());
setInternalRegsDelayFree = true;
buildInternalRegisterUses();
}
#endif
BuildDef(tree);
}
break;
case GT_STORE_LCL_FLD:
case GT_STORE_LCL_VAR:
srcCount = 1;
assert(dstCount == 0);
srcCount = BuildStoreLoc(tree->AsLclVarCommon());
break;
case GT_FIELD_LIST:
// These should always be contained. We don't correctly allocate or
// generate code for a non-contained GT_FIELD_LIST.
noway_assert(!"Non-contained GT_FIELD_LIST");
srcCount = 0;
break;
case GT_LIST:
case GT_ARGPLACE:
case GT_NO_OP:
case GT_START_NONGC:
case GT_PROF_HOOK:
srcCount = 0;
assert(dstCount == 0);
break;
case GT_START_PREEMPTGC:
// This kills GC refs in callee save regs
srcCount = 0;
assert(dstCount == 0);
BuildDefsWithKills(tree, 0, RBM_NONE, RBM_NONE);
break;
case GT_CNS_DBL:
{
GenTreeDblCon* dblConst = tree->AsDblCon();
double constValue = dblConst->gtDblCon.gtDconVal;
if (emitter::emitIns_valid_imm_for_fmov(constValue))
{
// Directly encode constant to instructions.
}
else
{
// Reserve int to load constant from memory (IF_LARGELDC)
buildInternalIntRegisterDefForNode(tree);
buildInternalRegisterUses();
}
}
__fallthrough;
case GT_CNS_INT:
{
srcCount = 0;
assert(dstCount == 1);
RefPosition* def = BuildDef(tree);
def->getInterval()->isConstant = true;
}
break;
case GT_BOX:
case GT_COMMA:
case GT_QMARK:
case GT_COLON:
srcCount = 0;
assert(dstCount == 0);
unreached();
break;
case GT_RETURN:
srcCount = BuildReturn(tree);
break;
case GT_RETFILT:
assert(dstCount == 0);
if (tree->TypeGet() == TYP_VOID)
{
srcCount = 0;
}
else
{
assert(tree->TypeGet() == TYP_INT);
srcCount = 1;
BuildUse(tree->gtGetOp1(), RBM_INTRET);
}
break;
case GT_NOP:
// A GT_NOP is either a passthrough (if it is void, or if it has
// a child), but must be considered to produce a dummy value if it
// has a type but no child.
srcCount = 0;
if (tree->TypeGet() != TYP_VOID && tree->gtGetOp1() == nullptr)
{
assert(dstCount == 1);
BuildDef(tree);
}
else
{
assert(dstCount == 0);
}
break;
case GT_JTRUE:
srcCount = 0;
assert(dstCount == 0);
break;
case GT_JMP:
srcCount = 0;
assert(dstCount == 0);
break;
case GT_SWITCH:
// This should never occur since switch nodes must not be visible at this
// point in the JIT.
srcCount = 0;
noway_assert(!"Switch must be lowered at this point");
break;
case GT_JMPTABLE:
srcCount = 0;
assert(dstCount == 1);
BuildDef(tree);
break;
case GT_SWITCH_TABLE:
buildInternalIntRegisterDefForNode(tree);
srcCount = BuildBinaryUses(tree->AsOp());
assert(dstCount == 0);
break;
case GT_ASG:
noway_assert(!"We should never hit any assignment operator in lowering");
srcCount = 0;
break;
case GT_ADD:
case GT_SUB:
if (varTypeIsFloating(tree->TypeGet()))
{
// overflow operations aren't supported on float/double types.
assert(!tree->gtOverflow());
// No implicit conversions at this stage as the expectation is that
// everything is made explicit by adding casts.
assert(tree->gtGetOp1()->TypeGet() == tree->gtGetOp2()->TypeGet());
}
__fallthrough;
case GT_AND:
case GT_OR:
case GT_XOR:
case GT_LSH:
case GT_RSH:
case GT_RSZ:
case GT_ROR:
srcCount = BuildBinaryUses(tree->AsOp());
assert(dstCount == 1);
BuildDef(tree);
break;
case GT_RETURNTRAP:
// this just turns into a compare of its child with an int
// + a conditional call
BuildUse(tree->gtGetOp1());
srcCount = 1;
assert(dstCount == 0);
killMask = compiler->compHelperCallKillSet(CORINFO_HELP_STOP_FOR_GC);
BuildDefsWithKills(tree, 0, RBM_NONE, killMask);
break;
case GT_MOD:
case GT_UMOD:
NYI_IF(varTypeIsFloating(tree->TypeGet()), "FP Remainder in ARM64");
assert(!"Shouldn't see an integer typed GT_MOD node in ARM64");
srcCount = 0;
break;
case GT_MUL:
if (tree->gtOverflow())
{
// Need a register different from target reg to check for overflow.
buildInternalIntRegisterDefForNode(tree);
setInternalRegsDelayFree = true;
}
__fallthrough;
case GT_DIV:
case GT_MULHI:
case GT_UDIV:
{
srcCount = BuildBinaryUses(tree->AsOp());
buildInternalRegisterUses();
assert(dstCount == 1);
BuildDef(tree);
}
break;
case GT_INTRINSIC:
{
noway_assert((tree->gtIntrinsic.gtIntrinsicId == CORINFO_INTRINSIC_Abs) ||
(tree->gtIntrinsic.gtIntrinsicId == CORINFO_INTRINSIC_Ceiling) ||
(tree->gtIntrinsic.gtIntrinsicId == CORINFO_INTRINSIC_Floor) ||
(tree->gtIntrinsic.gtIntrinsicId == CORINFO_INTRINSIC_Round) ||
(tree->gtIntrinsic.gtIntrinsicId == CORINFO_INTRINSIC_Sqrt));
// Both operand and its result must be of the same floating point type.
GenTree* op1 = tree->gtGetOp1();
assert(varTypeIsFloating(op1));
assert(op1->TypeGet() == tree->TypeGet());
BuildUse(op1);
srcCount = 1;
assert(dstCount == 1);
BuildDef(tree);
}
break;
#ifdef FEATURE_SIMD
case GT_SIMD:
srcCount = BuildSIMD(tree->AsSIMD());
break;
#endif // FEATURE_SIMD
#ifdef FEATURE_HW_INTRINSICS
case GT_HWIntrinsic:
srcCount = BuildHWIntrinsic(tree->AsHWIntrinsic());
break;
#endif // FEATURE_HW_INTRINSICS
case GT_CAST:
assert(dstCount == 1);
srcCount = BuildCast(tree->AsCast());
break;
case GT_NEG:
case GT_NOT:
BuildUse(tree->gtGetOp1());
srcCount = 1;
assert(dstCount == 1);
BuildDef(tree);
break;
case GT_EQ:
case GT_NE:
case GT_LT:
case GT_LE:
case GT_GE:
case GT_GT:
case GT_TEST_EQ:
case GT_TEST_NE:
case GT_JCMP:
srcCount = BuildCmp(tree);
break;
case GT_CKFINITE:
srcCount = 1;
assert(dstCount == 1);
buildInternalIntRegisterDefForNode(tree);
BuildUse(tree->gtGetOp1());
BuildDef(tree);
buildInternalRegisterUses();
break;
case GT_CMPXCHG:
{
GenTreeCmpXchg* cmpXchgNode = tree->AsCmpXchg();
srcCount = cmpXchgNode->gtOpComparand->isContained() ? 2 : 3;
assert(dstCount == 1);
if (!compiler->compSupports(InstructionSet_Atomics))
{
// For ARMv8 exclusives requires a single internal register
buildInternalIntRegisterDefForNode(tree);
}
// For ARMv8 exclusives the lifetime of the addr and data must be extended because
// it may be used used multiple during retries
// For ARMv8.1 atomic cas the lifetime of the addr and data must be extended to prevent
// them being reused as the target register which must be destroyed early
RefPosition* locationUse = BuildUse(tree->gtCmpXchg.gtOpLocation);
setDelayFree(locationUse);
RefPosition* valueUse = BuildUse(tree->gtCmpXchg.gtOpValue);
setDelayFree(valueUse);
if (!cmpXchgNode->gtOpComparand->isContained())
{
RefPosition* comparandUse = BuildUse(tree->gtCmpXchg.gtOpComparand);
// For ARMv8 exclusives the lifetime of the comparand must be extended because
// it may be used used multiple during retries
if (!compiler->compSupports(InstructionSet_Atomics))
{
setDelayFree(comparandUse);
}
}
// Internals may not collide with target
setInternalRegsDelayFree = true;
buildInternalRegisterUses();
BuildDef(tree);
}
break;
case GT_LOCKADD:
case GT_XADD:
case GT_XCHG:
{
assert(dstCount == (tree->TypeGet() == TYP_VOID) ? 0 : 1);
srcCount = tree->gtGetOp2()->isContained() ? 1 : 2;
if (!compiler->compSupports(InstructionSet_Atomics))
{
// GT_XCHG requires a single internal register; the others require two.
buildInternalIntRegisterDefForNode(tree);
if (tree->OperGet() != GT_XCHG)
{
buildInternalIntRegisterDefForNode(tree);
}
}
assert(!tree->gtGetOp1()->isContained());
RefPosition* op1Use = BuildUse(tree->gtGetOp1());
RefPosition* op2Use = nullptr;
if (!tree->gtGetOp2()->isContained())
{
op2Use = BuildUse(tree->gtGetOp2());
}
// For ARMv8 exclusives the lifetime of the addr and data must be extended because
// it may be used used multiple during retries
if (!compiler->compSupports(InstructionSet_Atomics))
{
// Internals may not collide with target
if (dstCount == 1)
{
setDelayFree(op1Use);
if (op2Use != nullptr)
{
setDelayFree(op2Use);
}
setInternalRegsDelayFree = true;
}
buildInternalRegisterUses();
}
if (dstCount == 1)
{
BuildDef(tree);
}
}
break;
#if FEATURE_ARG_SPLIT
case GT_PUTARG_SPLIT:
srcCount = BuildPutArgSplit(tree->AsPutArgSplit());
dstCount = tree->AsPutArgSplit()->gtNumRegs;
break;
#endif // FEATURE _SPLIT_ARG
case GT_PUTARG_STK:
srcCount = BuildPutArgStk(tree->AsPutArgStk());
break;
case GT_PUTARG_REG:
srcCount = BuildPutArgReg(tree->AsUnOp());
break;
case GT_CALL:
srcCount = BuildCall(tree->AsCall());
if (tree->AsCall()->HasMultiRegRetVal())
{
dstCount = tree->AsCall()->GetReturnTypeDesc()->GetReturnRegCount();
}
break;
case GT_ADDR:
{
// For a GT_ADDR, the child node should not be evaluated into a register
GenTree* child = tree->gtGetOp1();
assert(!isCandidateLocalRef(child));
assert(child->isContained());
assert(dstCount == 1);
srcCount = 0;
BuildDef(tree);
}
break;
case GT_BLK:
case GT_DYN_BLK:
// These should all be eliminated prior to Lowering.
assert(!"Non-store block node in Lowering");
srcCount = 0;
break;
case GT_STORE_BLK:
case GT_STORE_OBJ:
case GT_STORE_DYN_BLK:
srcCount = BuildBlockStore(tree->AsBlk());
break;
case GT_INIT_VAL:
// Always a passthrough of its child's value.
assert(!"INIT_VAL should always be contained");
srcCount = 0;
break;
case GT_LCLHEAP:
{
assert(dstCount == 1);
// Need a variable number of temp regs (see genLclHeap() in codegenamd64.cpp):
// Here '-' means don't care.
//
// Size? Init Memory? # temp regs
// 0 - 0
// const and <=6 ptr words - 0
// const and <PageSize No 0
// >6 ptr words Yes 0
// Non-const Yes 0
// Non-const No 2
//
GenTree* size = tree->gtGetOp1();
if (size->IsCnsIntOrI())
{
assert(size->isContained());
srcCount = 0;
size_t sizeVal = size->gtIntCon.gtIconVal;
if (sizeVal != 0)
{
// Compute the amount of memory to properly STACK_ALIGN.
// Note: The Gentree node is not updated here as it is cheap to recompute stack aligned size.
// This should also help in debugging as we can examine the original size specified with
// localloc.
sizeVal = AlignUp(sizeVal, STACK_ALIGN);
size_t stpCount = sizeVal / (REGSIZE_BYTES * 2);
// For small allocations up to 4 'stp' instructions (i.e. 16 to 64 bytes of localloc)
//
if (stpCount <= 4)
{
// Need no internal registers
}
else if (!compiler->info.compInitMem)
{
// No need to initialize allocated stack space.
if (sizeVal < compiler->eeGetPageSize())
{
// Need no internal registers
}
else
{
// We need two registers: regCnt and RegTmp
buildInternalIntRegisterDefForNode(tree);
buildInternalIntRegisterDefForNode(tree);
}
}
}
}
else
{
srcCount = 1;
if (!compiler->info.compInitMem)
{
buildInternalIntRegisterDefForNode(tree);
buildInternalIntRegisterDefForNode(tree);
}
}
if (!size->isContained())
{
BuildUse(size);
}
buildInternalRegisterUses();
BuildDef(tree);
}
break;
case GT_ARR_BOUNDS_CHECK:
#ifdef FEATURE_SIMD
case GT_SIMD_CHK:
#endif // FEATURE_SIMD
{
GenTreeBoundsChk* node = tree->AsBoundsChk();
// Consumes arrLen & index - has no result
assert(dstCount == 0);
GenTree* intCns = nullptr;
GenTree* other = nullptr;
srcCount = BuildOperandUses(tree->AsBoundsChk()->gtIndex);
srcCount += BuildOperandUses(tree->AsBoundsChk()->gtArrLen);
}
break;
case GT_ARR_ELEM:
// These must have been lowered to GT_ARR_INDEX
noway_assert(!"We should never see a GT_ARR_ELEM in lowering");
srcCount = 0;
assert(dstCount == 0);
break;
case GT_ARR_INDEX:
{
srcCount = 2;
assert(dstCount == 1);
buildInternalIntRegisterDefForNode(tree);
setInternalRegsDelayFree = true;
// For GT_ARR_INDEX, the lifetime of the arrObj must be extended because it is actually used multiple
// times while the result is being computed.
RefPosition* arrObjUse = BuildUse(tree->AsArrIndex()->ArrObj());
setDelayFree(arrObjUse);
BuildUse(tree->AsArrIndex()->IndexExpr());
buildInternalRegisterUses();
BuildDef(tree);
}
break;
case GT_ARR_OFFSET:
// This consumes the offset, if any, the arrObj and the effective index,
// and produces the flattened offset for this dimension.
srcCount = 2;
if (!tree->gtArrOffs.gtOffset->isContained())
{
BuildUse(tree->AsArrOffs()->gtOffset);
srcCount++;
}
BuildUse(tree->AsArrOffs()->gtIndex);
BuildUse(tree->AsArrOffs()->gtArrObj);
assert(dstCount == 1);
buildInternalIntRegisterDefForNode(tree);
buildInternalRegisterUses();
BuildDef(tree);
break;
case GT_LEA:
{
GenTreeAddrMode* lea = tree->AsAddrMode();
GenTree* base = lea->Base();
GenTree* index = lea->Index();
int cns = lea->Offset();
// This LEA is instantiating an address, so we set up the srcCount here.
srcCount = 0;
if (base != nullptr)
{
srcCount++;
BuildUse(base);
}
if (index != nullptr)
{
srcCount++;
BuildUse(index);
}
assert(dstCount == 1);
// On ARM64 we may need a single internal register
// (when both conditions are true then we still only need a single internal register)
if ((index != nullptr) && (cns != 0))
{
// ARM64 does not support both Index and offset so we need an internal register
buildInternalIntRegisterDefForNode(tree);
}
else if (!emitter::emitIns_valid_imm_for_add(cns, EA_8BYTE))
{
// This offset can't be contained in the add instruction, so we need an internal register
buildInternalIntRegisterDefForNode(tree);
}
buildInternalRegisterUses();
BuildDef(tree);
}
break;
case GT_STOREIND:
{
assert(dstCount == 0);
if (compiler->codeGen->gcInfo.gcIsWriteBarrierStoreIndNode(tree))
{
srcCount = BuildGCWriteBarrier(tree);
break;
}
srcCount = BuildIndir(tree->AsIndir());
if (!tree->gtGetOp2()->isContained())
{
BuildUse(tree->gtGetOp2());
srcCount++;
}
}
break;
case GT_NULLCHECK:
// Unlike ARM, ARM64 implements NULLCHECK as a load to REG_ZR, so no internal register
// is required, and it is not a localDefUse.
assert(dstCount == 0);
assert(!tree->gtGetOp1()->isContained());
BuildUse(tree->gtGetOp1());
srcCount = 1;
break;
case GT_IND:
assert(dstCount == 1);
srcCount = BuildIndir(tree->AsIndir());
break;
case GT_CATCH_ARG:
srcCount = 0;
assert(dstCount == 1);
BuildDef(tree, RBM_EXCEPTION_OBJECT);
break;
case GT_CLS_VAR:
srcCount = 0;
// GT_CLS_VAR, by the time we reach the backend, must always
// be a pure use.
// It will produce a result of the type of the
// node, and use an internal register for the address.
assert(dstCount == 1);
assert((tree->gtFlags & (GTF_VAR_DEF | GTF_VAR_USEASG)) == 0);
buildInternalIntRegisterDefForNode(tree);
buildInternalRegisterUses();
BuildDef(tree);
break;
case GT_INDEX_ADDR:
assert(dstCount == 1);
srcCount = BuildBinaryUses(tree->AsOp());
buildInternalIntRegisterDefForNode(tree);
buildInternalRegisterUses();
BuildDef(tree);
break;
} // end switch (tree->OperGet())
if (tree->IsUnusedValue() && (dstCount != 0))
{
isLocalDefUse = true;
}
// We need to be sure that we've set srcCount and dstCount appropriately
assert((dstCount < 2) || tree->IsMultiRegCall());
assert(isLocalDefUse == (tree->IsValue() && tree->IsUnusedValue()));
assert(!tree->IsUnusedValue() || (dstCount != 0));
assert(dstCount == tree->GetRegisterDstCount());
INDEBUG(dumpNodeInfo(tree, dstCandidates, srcCount, dstCount));
return srcCount;
}
#ifdef FEATURE_SIMD
//------------------------------------------------------------------------
// BuildSIMD: Set the NodeInfo for a GT_SIMD tree.
//
// Arguments:
// tree - The GT_SIMD node of interest
//
// Return Value:
// The number of sources consumed by this node.
//
int LinearScan::BuildSIMD(GenTreeSIMD* simdTree)
{
int srcCount = 0;
// Only SIMDIntrinsicInit can be contained
if (simdTree->isContained())
{
assert(simdTree->gtSIMDIntrinsicID == SIMDIntrinsicInit);
}
int dstCount = simdTree->IsValue() ? 1 : 0;
assert(dstCount == 1);
bool buildUses = true;
GenTree* op1 = simdTree->gtGetOp1();
GenTree* op2 = simdTree->gtGetOp2();
switch (simdTree->gtSIMDIntrinsicID)
{
case SIMDIntrinsicInit:
case SIMDIntrinsicCast:
case SIMDIntrinsicSqrt:
case SIMDIntrinsicAbs:
case SIMDIntrinsicConvertToSingle:
case SIMDIntrinsicConvertToInt32:
case SIMDIntrinsicConvertToDouble:
case SIMDIntrinsicConvertToInt64:
case SIMDIntrinsicWidenLo:
case SIMDIntrinsicWidenHi:
// No special handling required.
break;
case SIMDIntrinsicGetItem:
{
op1 = simdTree->gtGetOp1();
op2 = simdTree->gtGetOp2();
// We have an object and an index, either of which may be contained.
bool setOp2DelayFree = false;
if (!op2->IsCnsIntOrI() && (!op1->isContained() || op1->OperIsLocal()))
{
// If the index is not a constant and the object is not contained or is a local
// we will need a general purpose register to calculate the address
// internal register must not clobber input index
// TODO-Cleanup: An internal register will never clobber a source; this code actually
// ensures that the index (op2) doesn't interfere with the target.
buildInternalIntRegisterDefForNode(simdTree);
setOp2DelayFree = true;
}
srcCount += BuildOperandUses(op1);
if (!op2->isContained())
{
RefPosition* op2Use = BuildUse(op2);
if (setOp2DelayFree)
{
setDelayFree(op2Use);
}
srcCount++;
}
if (!op2->IsCnsIntOrI() && (!op1->isContained()))
{
// If vector is not already in memory (contained) and the index is not a constant,
// we will use the SIMD temp location to store the vector.
compiler->getSIMDInitTempVarNum();
}
buildUses = false;
}
break;
case SIMDIntrinsicAdd:
case SIMDIntrinsicSub:
case SIMDIntrinsicMul:
case SIMDIntrinsicDiv:
case SIMDIntrinsicBitwiseAnd:
case SIMDIntrinsicBitwiseAndNot:
case SIMDIntrinsicBitwiseOr:
case SIMDIntrinsicBitwiseXor:
case SIMDIntrinsicMin:
case SIMDIntrinsicMax:
case SIMDIntrinsicEqual:
case SIMDIntrinsicLessThan:
case SIMDIntrinsicGreaterThan:
case SIMDIntrinsicLessThanOrEqual:
case SIMDIntrinsicGreaterThanOrEqual:
// No special handling required.
break;
case SIMDIntrinsicSetX:
case SIMDIntrinsicSetY:
case SIMDIntrinsicSetZ:
case SIMDIntrinsicSetW:
case SIMDIntrinsicNarrow:
{
// Op1 will write to dst before Op2 is free
BuildUse(op1);
RefPosition* op2Use = BuildUse(op2);
setDelayFree(op2Use);
srcCount = 2;
buildUses = false;
break;
}
case SIMDIntrinsicInitN:
{
var_types baseType = simdTree->gtSIMDBaseType;
srcCount = (short)(simdTree->gtSIMDSize / genTypeSize(baseType));
if (varTypeIsFloating(simdTree->gtSIMDBaseType))
{
// Need an internal register to stitch together all the values into a single vector in a SIMD reg.
buildInternalFloatRegisterDefForNode(simdTree);
}
int initCount = 0;
for (GenTree* list = op1; list != nullptr; list = list->gtGetOp2())
{
assert(list->OperGet() == GT_LIST);
GenTree* listItem = list->gtGetOp1();
assert(listItem->TypeGet() == baseType);
assert(!listItem->isContained());
BuildUse(listItem);
initCount++;
}
assert(initCount == srcCount);
buildUses = false;
break;
}
case SIMDIntrinsicInitArray:
// We have an array and an index, which may be contained.
break;
case SIMDIntrinsicOpEquality:
case SIMDIntrinsicOpInEquality:
buildInternalFloatRegisterDefForNode(simdTree);
break;
case SIMDIntrinsicDotProduct:
buildInternalFloatRegisterDefForNode(simdTree);
break;
case SIMDIntrinsicSelect:
// TODO-ARM64-CQ Allow lowering to see SIMDIntrinsicSelect so we can generate BSL VC, VA, VB
// bsl target register must be VC. Reserve a temp in case we need to shuffle things.
// This will require a different approach, as GenTreeSIMD has only two operands.
assert(!"SIMDIntrinsicSelect not yet supported");
buildInternalFloatRegisterDefForNode(simdTree);
break;
case SIMDIntrinsicInitArrayX:
case SIMDIntrinsicInitFixed:
case SIMDIntrinsicCopyToArray:
case SIMDIntrinsicCopyToArrayX:
case SIMDIntrinsicNone:
case SIMDIntrinsicGetCount:
case SIMDIntrinsicGetOne:
case SIMDIntrinsicGetZero:
case SIMDIntrinsicGetAllOnes:
case SIMDIntrinsicGetX:
case SIMDIntrinsicGetY:
case SIMDIntrinsicGetZ:
case SIMDIntrinsicGetW:
case SIMDIntrinsicInstEquals:
case SIMDIntrinsicHWAccel:
case SIMDIntrinsicWiden:
case SIMDIntrinsicInvalid:
assert(!"These intrinsics should not be seen during register allocation");
__fallthrough;
default:
noway_assert(!"Unimplemented SIMD node type.");
unreached();
}
if (buildUses)
{
assert(!op1->OperIs(GT_LIST));
assert(srcCount == 0);
srcCount = BuildOperandUses(op1);
if ((op2 != nullptr) && !op2->isContained())
{
srcCount += BuildOperandUses(op2);
}
}
assert(internalCount <= MaxInternalCount);
buildInternalRegisterUses();
if (dstCount == 1)
{
BuildDef(simdTree);
}
else
{
assert(dstCount == 0);
}
return srcCount;
}
#endif // FEATURE_SIMD
#ifdef FEATURE_HW_INTRINSICS
#include "hwintrinsic.h"
//------------------------------------------------------------------------
// BuildHWIntrinsic: Set the NodeInfo for a GT_HWIntrinsic tree.
//
// Arguments:
// tree - The GT_HWIntrinsic node of interest
//
// Return Value:
// The number of sources consumed by this node.
//
int LinearScan::BuildHWIntrinsic(GenTreeHWIntrinsic* intrinsicTree)
{
NamedIntrinsic intrinsicID = intrinsicTree->gtHWIntrinsicId;
int numArgs = HWIntrinsicInfo::lookupNumArgs(intrinsicTree);
GenTree* op1 = intrinsicTree->gtGetOp1();
GenTree* op2 = intrinsicTree->gtGetOp2();
GenTree* op3 = nullptr;
int srcCount = 0;
if ((op1 != nullptr) && op1->OperIsList())
{
// op2 must be null, and there must be at least two more arguments.
assert(op2 == nullptr);
noway_assert(op1->AsArgList()->Rest() != nullptr);
noway_assert(op1->AsArgList()->Rest()->Rest() != nullptr);
assert(op1->AsArgList()->Rest()->Rest()->Rest() == nullptr);
op2 = op1->AsArgList()->Rest()->Current();
op3 = op1->AsArgList()->Rest()->Rest()->Current();
op1 = op1->AsArgList()->Current();
}
int dstCount = intrinsicTree->IsValue() ? 1 : 0;
bool op2IsDelayFree = false;
bool op3IsDelayFree = false;
// Create internal temps, and handle any other special requirements.
switch (HWIntrinsicInfo::lookup(intrinsicID).form)
{
case HWIntrinsicInfo::Sha1HashOp:
assert((numArgs == 3) && (op2 != nullptr) && (op3 != nullptr));
if (!op2->isContained())
{
assert(!op3->isContained());
op2IsDelayFree = true;
op3IsDelayFree = true;
setInternalRegsDelayFree = true;
}
buildInternalFloatRegisterDefForNode(intrinsicTree);
break;
case HWIntrinsicInfo::SimdTernaryRMWOp:
assert((numArgs == 3) && (op2 != nullptr) && (op3 != nullptr));
if (!op2->isContained())
{
assert(!op3->isContained());
op2IsDelayFree = true;
op3IsDelayFree = true;
}
break;
case HWIntrinsicInfo::Sha1RotateOp:
buildInternalFloatRegisterDefForNode(intrinsicTree);
break;
case HWIntrinsicInfo::SimdExtractOp:
case HWIntrinsicInfo::SimdInsertOp:
if (!op2->isContained())
{
// We need a temp to create a switch table
buildInternalIntRegisterDefForNode(intrinsicTree);
}
break;
default:
break;
}
// Next, build uses
if (numArgs > 3)
{
srcCount = 0;
assert(!op2IsDelayFree && !op3IsDelayFree);
assert(op1->OperIs(GT_LIST));
{
for (GenTreeArgList* list = op1->AsArgList(); list != nullptr; list = list->Rest())
{
srcCount += BuildOperandUses(list->Current());
}
}
assert(srcCount == numArgs);
}
else
{
if (op1 != nullptr)
{
srcCount += BuildOperandUses(op1);
if (op2 != nullptr)
{
srcCount += (op2IsDelayFree) ? BuildDelayFreeUses(op2) : BuildOperandUses(op2);
if (op3 != nullptr)
{
srcCount += (op3IsDelayFree) ? BuildDelayFreeUses(op3) : BuildOperandUses(op3);
}
}
}
}
buildInternalRegisterUses();
// Now defs
if (intrinsicTree->IsValue())
{
BuildDef(intrinsicTree);
}
return srcCount;
}
#endif
#endif // _TARGET_ARM64_
|