summaryrefslogtreecommitdiff
path: root/src/jit/lsra.h
blob: dc6d689d2e9e8c84d4d7f094e402811b54dea771 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
/*****************************************************************************/

#ifndef _LSRA_H_
#define _LSRA_H_

#include "arraylist.h"
#include "nodeinfo.h"

// Minor and forward-reference types
class Interval;
class RefPosition;
class LinearScan;
class RegRecord;

template<class T>
class ArrayStack;

// LsraLocation tracks the linearized order of the nodes.
// Each node is assigned two LsraLocations - one for all the uses and all but the last
// def, and a second location for the last def (if any)

typedef unsigned int LsraLocation;
const unsigned int MinLocation = 0;
const unsigned int MaxLocation = UINT_MAX;
// max number of registers an operation could require internally (in addition to uses and defs)
const unsigned int MaxInternalRegisters = 8;
const unsigned int RegisterTypeCount = 2;

typedef var_types RegisterType;
#define IntRegisterType TYP_INT
#define FloatRegisterType TYP_FLOAT

inline
regMaskTP calleeSaveRegs(RegisterType rt)
{
    return varTypeIsIntegralOrI(rt) ? RBM_INT_CALLEE_SAVED : RBM_FLT_CALLEE_SAVED;
}

struct LocationInfo
{
    LsraLocation  loc;
    
    // Reg Index in case of multi-reg result producing call node.
    // Indicates the position of the register that this location refers to.
    // The max bits needed is based on max value of MAX_RET_REG_COUNT value
    // across all targets and that happens 4 on on Arm.  Hence index value
    // would be 0..MAX_RET_REG_COUNT-1. 
    unsigned      multiRegIdx : 2;

    Interval*     interval;
    GenTree*      treeNode;

    LocationInfo(LsraLocation l, Interval* i, GenTree* t, unsigned regIdx = 0)
    : loc(l), multiRegIdx(regIdx), interval(i), treeNode(t)
    {
        assert(multiRegIdx == regIdx);
    }

    // default constructor for data structures
    LocationInfo() {}
};

struct LsraBlockInfo
{
    // bbNum of the predecessor to use for the register location of live-in variables.
    // 0 for fgFirstBB.
    BasicBlock::weight_t    weight;
    unsigned int            predBBNum;
    bool                    hasCriticalInEdge;
    bool                    hasCriticalOutEdge;
};

// This is sort of a bit mask
// The low order 2 bits will be 1 for defs, and 2 for uses
enum RefType : unsigned char
{
#define DEF_REFTYPE(memberName, memberValue, shortName) memberName = memberValue,
#include "lsra_reftypes.h"
#undef DEF_REFTYPE
};

// position in a block (for resolution)
enum BlockStartOrEnd
{
    BlockPositionStart=0, BlockPositionEnd=1, PositionCount=2
};


inline bool
RefTypeIsUse(RefType refType) { return ((refType & RefTypeUse) == RefTypeUse); }

inline bool
RefTypeIsDef(RefType refType) { return ((refType & RefTypeDef) == RefTypeDef); }

typedef regNumber * VarToRegMap;

template <typename ElementType, CompMemKind MemKind>
class ListElementAllocator
{
private:
    template <typename U, CompMemKind CMK>
    friend class ListElementAllocator;

    Compiler* m_compiler;

public:
    ListElementAllocator(Compiler* compiler)
        : m_compiler(compiler)
    {
    }

    template <typename U>
    ListElementAllocator(const ListElementAllocator<U, MemKind>& other)
        : m_compiler(other.m_compiler)
    {
    }

    ElementType* allocate(size_t count)
    {
        return reinterpret_cast<ElementType*>(m_compiler->compGetMem(sizeof(ElementType) * count, MemKind));
    }

    void deallocate(ElementType* pointer, size_t count)
    {
    }

    template <typename U>
    struct rebind
    {
        typedef ListElementAllocator<U, MemKind> allocator;
    };
};

typedef ListElementAllocator<Interval, CMK_LSRA_Interval> LinearScanMemoryAllocatorInterval;
typedef ListElementAllocator<RefPosition, CMK_LSRA_RefPosition> LinearScanMemoryAllocatorRefPosition;

typedef jitstd::list<Interval, LinearScanMemoryAllocatorInterval> IntervalList;
typedef jitstd::list<RefPosition, LinearScanMemoryAllocatorRefPosition> RefPositionList;

class Referenceable
{
public:
    Referenceable()
    {
        firstRefPosition  = nullptr;
        recentRefPosition = nullptr;
        lastRefPosition   = nullptr;
        isActive          = false;
    }

    // A linked list of RefPositions.  These are only traversed in the forward
    // direction, and are not moved, so they don't need to be doubly linked
    // (see RefPosition).

    RefPosition   * firstRefPosition;
    RefPosition   * recentRefPosition;
    RefPosition   * lastRefPosition;

    bool            isActive;

    // Get the position of the next reference which is at or greater than
    // the current location (relies upon recentRefPosition being udpated
    // during traversal).
    RefPosition   * getNextRefPosition();
    LsraLocation    getNextRefLocation();

};

class RegRecord : public Referenceable
{
public:
    RegRecord()
    {
        assignedInterval = nullptr;
        previousInterval = nullptr;
        regNum = REG_NA;
        isCalleeSave = false;
        registerType = IntRegisterType;
        isBusyUntilNextKill = false;
    }

void
init(regNumber reg)
{
#ifdef _TARGET_ARM64_
    // The Zero register, or the SP
    if ((reg == REG_ZR) || (reg == REG_SP))
    {
        // IsGeneralRegister returns false for REG_ZR and REG_SP
        regNum = reg;
        registerType = IntRegisterType;
    }
    else
#endif
    if (emitter::isFloatReg(reg))
    {
        registerType = FloatRegisterType;
    }
    else
    {
        // The constructor defaults to IntRegisterType
        assert(emitter::isGeneralRegister(reg) && registerType == IntRegisterType);
    }
    regNum = reg;
    isCalleeSave = ((RBM_CALLEE_SAVED & genRegMask(reg)) != 0);
}


#ifdef DEBUG
    // print out representation
    void dump();
    // concise representation for embedding
    void tinyDump();
#endif // DEBUG

    bool isFree();

    //RefPosition   * getNextRefPosition();
    //LsraLocation    getNextRefLocation();

    // DATA

    // interval to which this register is currently allocated.
    // If the interval is inactive (isActive == false) then it is not currently live,
    // and the register call be unassigned (i.e. setting assignedInterval to nullptr)
    // without spilling the register.
    Interval*     assignedInterval;
    // Interval to which this register was previously allocated, and which was unassigned
    // because it was inactive.  This register will be reassigned to this Interval when
    // assignedInterval becomes inactive.
    Interval*     previousInterval;

    regNumber     regNum;
    bool          isCalleeSave;
    RegisterType  registerType;
    // This register must be considered busy until the next time it is explicitly killed.
    // This is used so that putarg_reg can avoid killing its lclVar source, while avoiding
    // the problem with the reg becoming free if the last-use is encountered before the call.
    bool          isBusyUntilNextKill;

    bool            conflictingFixedRegReference(RefPosition* refPosition);
};


inline bool leafInRange(GenTree *leaf, int lower, int upper)
{
    if (!leaf->IsIntCnsFitsInI32())
        return false;
    if (leaf->gtIntCon.gtIconVal < lower)
        return false;
    if (leaf->gtIntCon.gtIconVal > upper)
        return false;

    return true;
}

inline bool leafInRange(GenTree *leaf, int lower, int upper, int multiple)
{
    if (!leafInRange(leaf, lower, upper))
        return false;
    if (leaf->gtIntCon.gtIconVal % multiple)
        return false;

    return true;
}

inline bool leafAddInRange(GenTree *leaf, int lower, int upper, int multiple=1)
{
    if (leaf->OperGet() != GT_ADD)
        return false;
    return leafInRange(leaf->gtOp.gtOp2, lower, upper, multiple);
}

inline bool isCandidateVar(LclVarDsc * varDsc)
{
    return varDsc->lvLRACandidate;
}

/*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX                                                                           XX
XX                           LinearScan                                      XX
XX                                                                           XX
XX This is the container for the Linear Scan data structures and methods.    XX
XX                                                                           XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
*/
// OPTION 1: The algorithm as described in "Optimized Interval Splitting in a
// Linear Scan Register Allocator".  It is driven by iterating over the Interval 
// lists.  In this case, we need multiple IntervalLists, and Intervals will be
// moved between them so they must be easily updated.

// OPTION 2: The algorithm is driven by iterating over the RefPositions.  In this
// case, we only need a single IntervalList, and it won't be updated.
// The RefPosition must refer to its Interval, and we need to be able to traverse
// to the next RefPosition in code order
// THIS IS THE OPTION CURRENTLY BEING PURSUED

class LinearScan : public LinearScanInterface
{
    friend class RefPosition;
    friend class Interval;
    friend class Lowering;

public:

    // This could use further abstraction.  From Compiler we need the tree,
    // the flowgraph and the allocator.
    LinearScan(Compiler * theCompiler);

    // This is the main driver
    virtual
    void            doLinearScan();

    // TreeNodeInfo contains three register masks: src candidates, dst candidates, and internal condidates.
    // Instead of storing actual register masks, however, which are large, we store a small index into a table
    // of register masks, stored in this class. We create only as many distinct register masks as are needed.
    // All identical register masks get the same index. The register mask table contains:
    // 1. A mask containing all eligible integer registers.
    // 2. A mask containing all elibible floating-point registers.
    // 3. A mask for each of single register.
    // 4. A mask for each combination of registers, created dynamically as required.
    //
    // Currently, the maximum number of masks allowed is a constant defined by 'numMasks'. The register mask
    // table is never resized. It is also limited by the size of the index, currently an unsigned char.

#if defined(_TARGET_ARM64_)
    static const int numMasks = 128;
#else
    static const int numMasks = 64;
#endif

    regMaskTP* regMaskTable;
    int nextFreeMask;

    typedef int RegMaskIndex;

    // allint is 0, allfloat is 1, all the single-bit masks start at 2
    enum KnownRegIndex { ALLINT_IDX = 0, ALLFLOAT_IDX = 1, FIRST_SINGLE_REG_IDX = 2 };

    RegMaskIndex GetIndexForRegMask(regMaskTP mask);
    regMaskTP GetRegMaskForIndex(RegMaskIndex index);
    void RemoveRegisterFromMasks(regNumber reg);

#ifdef DEBUG
    void dspRegisterMaskTable();
#endif // DEBUG

    // Initialize the block traversal for LSRA.
    // This resets the bbVisitedSet, and on the first invocation sets the blockSequence array,
    // which determines the order in which blocks will be allocated (currently called during Lowering).
    BasicBlock*     startBlockSequence();
    // Move to the next block in sequence, updating the current block information.
    BasicBlock*     moveToNextBlock();
    // Get the next block to be scheduled without changing the current block,
    // but updating the blockSequence during the first iteration if it is not fully computed.
    BasicBlock*     getNextBlock();

    // This is called during code generation to update the location of variables
    virtual void    recordVarLocationsAtStartOfBB(BasicBlock *bb);

    // This does the dataflow analysis and builds the intervals
    void            buildIntervals();

    // This is where the actual assignment is done
    void            allocateRegisters();

    // This is the resolution phase, where cross-block mismatches are fixed up
    void            resolveRegisters();

    void            writeRegisters(RefPosition *currentRefPosition, GenTree *tree);

    // Insert a copy in the case where a tree node value must be moved to a different
    // register at the point of use, or it is reloaded to a different register
    // than the one it was spilled from
    void            insertCopyOrReload(GenTreePtr tree, unsigned multiRegIdx, RefPosition* refPosition);

#if FEATURE_PARTIAL_SIMD_CALLEE_SAVE
    // Insert code to save and restore the upper half of a vector that lives
    // in a callee-save register at the point of a call (the upper half is
    // not preserved).
    void            insertUpperVectorSaveAndReload(GenTreePtr tree, RefPosition* refPosition, BasicBlock* block);
#endif // FEATURE_PARTIAL_SIMD_CALLEE_SAVE

    // resolve along one block-block edge
    enum ResolveType { ResolveSplit, ResolveJoin, ResolveCritical, ResolveSharedCritical, ResolveTypeCount };
#ifdef DEBUG
    static const char*  resolveTypeName[ResolveTypeCount];
#endif

    enum WhereToInsert { InsertAtTop, InsertAtBottom };

    void            addResolution(BasicBlock* block,
                                  GenTreePtr  insertionPoint,
                                  Interval*   interval,
                                  regNumber   outReg,
                                  regNumber   inReg);

    void            handleOutgoingCriticalEdges(BasicBlock*  block);

    void            resolveEdge (BasicBlock*      fromBlock,
                                 BasicBlock*      toBlock,
                                 ResolveType      resolveType,
                                 VARSET_VALARG_TP liveSet);

    void            resolveEdges();

    // Finally, the register assignments are written back to the tree nodes.
    void            recordRegisterAssignments();

    // Keep track of how many temp locations we'll need for spill
    void            initMaxSpill();
    void            updateMaxSpill(RefPosition* refPosition);
    void            recordMaxSpill();

    // max simultaneous spill locations used of every type
    unsigned int maxSpill     [TYP_COUNT];
    unsigned int currentSpill [TYP_COUNT];
    bool         needFloatTmpForFPCall;
    bool         needDoubleTmpForFPCall;

#ifdef DEBUG
private:
    //------------------------------------------------------------------------
    // Should we stress lsra?
    // This uses the same COMPLUS variable as rsStressRegs (COMPlus_JitStressRegs)
    // However, the possible values and their interpretation are entirely different.
    //
    // The mask bits are currently divided into fields in which each non-zero value
    // is a distinct stress option (e.g. 0x3 is not a combination of 0x1 and 0x2).
    // However, subject to possible constraints (to be determined), the different
    // fields can be combined (e.g. 0x7 is a combination of 0x3 and 0x4).
    // Note that the field values are declared in a public enum, but the actual bits are
    // only accessed via accessors.

    unsigned        lsraStressMask;

    // This controls the registers available for allocation
    enum LsraStressLimitRegs        { LSRA_LIMIT_NONE                   = 0,
                                      LSRA_LIMIT_CALLEE                 = 0x1,
                                      LSRA_LIMIT_CALLER                 = 0x2,
                                      LSRA_LIMIT_SMALL_SET              = 0x3,
                                      LSRA_LIMIT_MASK                   = 0x3 };
    // When LSRA_LIMIT_SMALL_SET is specified, it is desirable to select a "mixed" set of caller- and callee-save
    // registers, so as to get different coverage than limiting to callee or caller.
    // At least for x86 and AMD64, and potentially other architecture that will support SIMD,
    // we need a minimum of 5 fp regs in order to support the InitN intrinsic for Vector4.
    // Hence the "SmallFPSet" has 5 elements.

#if defined(_TARGET_AMD64_)
#ifdef UNIX_AMD64_ABI
    // On System V the RDI and RSI are not callee saved. Use R12 ans R13 as callee saved registers.
    static const regMaskTP  LsraLimitSmallIntSet = (RBM_EAX | RBM_ECX | RBM_EBX | RBM_ETW_FRAMED_EBP | RBM_R12 | RBM_R13);
#else // !UNIX_AMD64_ABI
    // On Windows Amd64 use the RDI and RSI as callee saved registers.
    static const regMaskTP  LsraLimitSmallIntSet = (RBM_EAX | RBM_ECX | RBM_EBX | RBM_ETW_FRAMED_EBP | RBM_ESI | RBM_EDI);
#endif // !UNIX_AMD64_ABI
    static const regMaskTP  LsraLimitSmallFPSet  = (RBM_XMM0 | RBM_XMM1 | RBM_XMM2 | RBM_XMM6 | RBM_XMM7 );
#elif defined(_TARGET_ARM_)
    static const regMaskTP  LsraLimitSmallIntSet = (RBM_R0|RBM_R1|RBM_R2|RBM_R3|RBM_R4);
    static const regMaskTP  LsraLimitSmallFPSet  = (RBM_F0|RBM_F1|RBM_F2|RBM_F16|RBM_F17);
#elif defined(_TARGET_ARM64_)
    static const regMaskTP  LsraLimitSmallIntSet = (RBM_R0|RBM_R1|RBM_R2|RBM_R19|RBM_R20);
    static const regMaskTP  LsraLimitSmallFPSet  = (RBM_V0|RBM_V1|RBM_V2|RBM_V8|RBM_V9);
#elif defined(_TARGET_X86_)
    static const regMaskTP  LsraLimitSmallIntSet = (RBM_EAX | RBM_ECX | RBM_EDI);
    static const regMaskTP  LsraLimitSmallFPSet  = (RBM_XMM0 | RBM_XMM1 | RBM_XMM2 | RBM_XMM6 | RBM_XMM7 );
#else
    #error Unsupported or unset target architecture
#endif // target

    LsraStressLimitRegs         getStressLimitRegs()            { return (LsraStressLimitRegs) (lsraStressMask & LSRA_LIMIT_MASK); }
    regMaskTP                   stressLimitRegs(RefPosition* refPosition, regMaskTP mask);

    // This controls the heuristics used to select registers
    // These can be combined.
    enum LsraSelect                 { LSRA_SELECT_DEFAULT               = 0,
                                      LSRA_SELECT_REVERSE_HEURISTICS    = 0x04,
                                      LSRA_SELECT_REVERSE_CALLER_CALLEE = 0x08,
                                      LSRA_SELECT_NEAREST               = 0x10,
                                      LSRA_SELECT_MASK                  = 0x1c };
    LsraSelect                  getSelectionHeuristics()        { return (LsraSelect) (lsraStressMask & LSRA_SELECT_MASK); }
    bool                        doReverseSelect()               { return ((lsraStressMask & LSRA_SELECT_REVERSE_HEURISTICS) != 0); }
    bool                        doReverseCallerCallee()         { return ((lsraStressMask & LSRA_SELECT_REVERSE_CALLER_CALLEE) != 0); }
    bool                        doSelectNearest()               { return ((lsraStressMask & LSRA_SELECT_NEAREST) != 0); }

    // This controls the order in which basic blocks are visited during allocation
    enum LsraTraversalOrder         { LSRA_TRAVERSE_LAYOUT              = 0x20,
                                      LSRA_TRAVERSE_PRED_FIRST          = 0x40,
                                      LSRA_TRAVERSE_RANDOM              = 0x60,                     // NYI
                                      LSRA_TRAVERSE_DEFAULT             = LSRA_TRAVERSE_PRED_FIRST,
                                      LSRA_TRAVERSE_MASK                = 0x60 };
    LsraTraversalOrder          getLsraTraversalOrder()
    {
        if ((lsraStressMask & LSRA_TRAVERSE_MASK) == 0)
        {
            return LSRA_TRAVERSE_DEFAULT;
        }
        return (LsraTraversalOrder) (lsraStressMask & LSRA_TRAVERSE_MASK);
    }
    bool            isTraversalLayoutOrder ()                   { return getLsraTraversalOrder() == LSRA_TRAVERSE_LAYOUT; }
    bool            isTraversalPredFirstOrder ()                { return getLsraTraversalOrder() == LSRA_TRAVERSE_PRED_FIRST; }

    // This controls whether lifetimes should be extended to the entire method.
    // Note that this has no effect under MinOpts
    enum LsraExtendLifetimes        { LSRA_DONT_EXTEND                  = 0,
                                      LSRA_EXTEND_LIFETIMES             = 0x80,
                                      LSRA_EXTEND_LIFETIMES_MASK        = 0x80 };
    LsraExtendLifetimes         getLsraExtendLifeTimes()        { return (LsraExtendLifetimes) (lsraStressMask & LSRA_EXTEND_LIFETIMES_MASK); }
    bool                        extendLifetimes()               { return getLsraExtendLifeTimes() == LSRA_EXTEND_LIFETIMES; }

    // This controls whether variables locations should be set to the previous block in layout order (LSRA_BLOCK_BOUNDARY_LAYOUT),
    // or to that of the highest-weight predecessor (LSRA_BLOCK_BOUNDARY_PRED - the default),
    // or rotated (LSRA_BLOCK_BOUNDARY_ROTATE).
    enum LsraBlockBoundaryLocations { LSRA_BLOCK_BOUNDARY_PRED          = 0,
                                      LSRA_BLOCK_BOUNDARY_LAYOUT        = 0x100,
                                      LSRA_BLOCK_BOUNDARY_ROTATE        = 0x200,
                                      LSRA_BLOCK_BOUNDARY_MASK          = 0x300 };
    LsraBlockBoundaryLocations  getLsraBlockBoundaryLocations() { return (LsraBlockBoundaryLocations) (lsraStressMask & LSRA_BLOCK_BOUNDARY_MASK); }
    regNumber                   rotateBlockStartLocation(Interval* interval, regNumber targetReg, regMaskTP availableRegs); 

    // This controls whether we always insert a GT_RELOAD instruction after a spill
    // Note that this can be combined with LsraSpillAlways (or not)
    enum LsraReload                 { LSRA_NO_RELOAD_IF_SAME            = 0,
                                      LSRA_ALWAYS_INSERT_RELOAD         = 0x400,
                                      LSRA_RELOAD_MASK                  = 0x400 };
    LsraReload                  getLsraReload()                 { return (LsraReload) (lsraStressMask & LSRA_RELOAD_MASK); }
    bool                        alwaysInsertReload()            { return getLsraReload() == LSRA_ALWAYS_INSERT_RELOAD; }

    // This controls whether we spill everywhere
    enum LsraSpill                  { LSRA_DONT_SPILL_ALWAYS            = 0,
                                      LSRA_SPILL_ALWAYS                 = 0x800,
                                      LSRA_SPILL_MASK                   = 0x800 };
    LsraSpill                   getLsraSpill()                  { return (LsraSpill) (lsraStressMask & LSRA_SPILL_MASK); }
    bool                        spillAlways()                   { return getLsraSpill() == LSRA_SPILL_ALWAYS; }

    // This controls whether RefPositions that require a register optionally should
    // be allocated a reg at all.
    enum LsraRegOptionalControl     { LSRA_REG_OPTIONAL_DEFAULT          = 0,
                                      LSRA_REG_OPTIONAL_NO_ALLOC         = 0x1000,
                                      LSRA_REG_OPTIONAL_MASK             = 0x1000 };

    LsraRegOptionalControl      getLsraRegOptionalControl()            
    { 
        return (LsraRegOptionalControl) (lsraStressMask & LSRA_REG_OPTIONAL_MASK); 
    }

    bool                        regOptionalNoAlloc()     
    { 
        return getLsraRegOptionalControl() == LSRA_REG_OPTIONAL_NO_ALLOC;
    }

    // Dump support
    void            lsraDumpIntervals(const char* msg);
    void            dumpRefPositions(const char *msg);
    void            dumpVarRefPositions(const char *msg);
    void            verifyFinalAllocation();
    void            verifyResolutionMove(GenTreeStmt* resolutionStmt, LsraLocation currentLocation);
#else // !DEBUG
    bool            doSelectNearest()                           { return false; }
    bool            extendLifetimes()                           { return false; }
    bool            spillAlways()                               { return false; }
    // In a retail build we support only the default traversal order
    bool            isTraversalLayoutOrder ()                            { return false; }
    bool            isTraversalPredFirstOrder ()                         { return true; }
    bool            getLsraExtendLifeTimes()                    { return false; }
#endif // !DEBUG


public:
    // Used by Lowering when considering whether to split Longs, as well as by identifyCandidates().
    bool            isRegCandidate(LclVarDsc* varDsc);
private:
    // Determine which locals are candidates for allocation
    void            identifyCandidates();

    // determine which locals are used in EH constructs we don't want to deal with
    void            identifyCandidatesExceptionDataflow();

    void            buildPhysRegRecords();

    void            setLastUses(BasicBlock * block);

    void            setFrameType();

    // Update allocations at start/end of block
    void            processBlockEndAllocation(BasicBlock * current);

    // Record variable locations at start/end of block
    void            processBlockStartLocations(BasicBlock* current, bool allocationPass);
    void            processBlockEndLocations(BasicBlock* current);

    RefType         CheckBlockType(BasicBlock * block, BasicBlock * prevBlock);

    // insert refpositions representing prolog zero-inits which will be added later
    void            insertZeroInitRefPositions();

    void            AddMapping(GenTree *node, LsraLocation loc);

    // add physreg refpositions for a tree node, based on calling convention and instruction selection predictions
    void            addRefsForPhysRegMask(regMaskTP mask, LsraLocation currentLoc, RefType refType, bool isLastUse);

    void            resolveConflictingDefAndUse(Interval* interval, RefPosition* defRefPosition);

    void            buildRefPositionsForNode(GenTree *tree, BasicBlock *block,
                                             ArrayStack<LocationInfo> *stack,
                                             LsraLocation loc);

#if FEATURE_PARTIAL_SIMD_CALLEE_SAVE
    VARSET_VALRET_TP buildUpperVectorSaveRefPositions(GenTree *tree, LsraLocation currentLoc);
    void             buildUpperVectorRestoreRefPositions(GenTree *tree, LsraLocation currentLoc, VARSET_VALARG_TP liveLargeVectors);
#endif //FEATURE_PARTIAL_SIMD_CALLEE_SAVE

#if defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)
    // For AMD64 on SystemV machines. This method 
    // is called as replacement for raUpdateRegStateForArg 
    // that is used on Windows. On System V systems a struct can be passed
    // partially using registers from the 2 register files.
    void unixAmd64UpdateRegStateForArg(LclVarDsc* argDsc);
#endif // defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)

    // Update reg state for an incoming register argument
    void            updateRegStateForArg(LclVarDsc* argDsc);

    inline void     setTreeNodeInfo(GenTree *tree, TreeNodeInfo info)
    {
        tree->gtLsraInfo = info;
        tree->gtClearReg(compiler);

        DBEXEC(VERBOSE, info.dump(this));
    }

    inline void     clearDstCount(GenTree *tree)
    {
        tree->gtLsraInfo.dstCount = 0;
    }

    inline void     clearOperandCounts(GenTree *tree)
    {
        TreeNodeInfo &info = tree->gtLsraInfo;
        info.srcCount = 0;
        info.dstCount = 0;
    }

    inline bool     isLocalDefUse(GenTree *tree)
    {
        return tree->gtLsraInfo.isLocalDefUse;
    }

    inline bool     isCandidateLocalRef(GenTree *tree)
    {
        if (tree->IsLocal())
        {
            unsigned int lclNum = tree->gtLclVarCommon.gtLclNum;
            assert(lclNum < compiler->lvaCount);
            LclVarDsc * varDsc = compiler->lvaTable + tree->gtLclVarCommon.gtLclNum;

            return isCandidateVar(varDsc);
        }
        return false;
    }

    static Compiler::fgWalkResult
                    markAddrModeOperandsHelperMD(GenTreePtr tree, void *p);

    // Return the registers killed by the given tree node.
    regMaskTP       getKillSetForNode(GenTree* tree);
    // Given some tree node add refpositions for all the registers this node kills
    bool            buildKillPositionsForNode(GenTree*     tree,
                                              LsraLocation currentLoc);

    regMaskTP       allRegs(RegisterType rt);
    regMaskTP       allRegs(GenTree* tree);
    regMaskTP       allMultiRegCallNodeRegs(GenTreeCall* tree);
    regMaskTP       allSIMDRegs();
    regMaskTP       internalFloatRegCandidates();

    bool            registerIsFree(regNumber regNum, RegisterType regType);
    bool            registerIsAvailable(RegRecord *physRegRecord, LsraLocation currentLoc, LsraLocation * nextRefLocationPtr, RegisterType regType);
    void            freeRegister(RegRecord *physRegRecord);
    void            freeRegisters(regMaskTP regsToFree);

    regMaskTP       getUseCandidates(GenTree *useNode);
    regMaskTP       getDefCandidates(GenTree *tree);
    var_types       getDefType(GenTree *tree);

    RefPosition *   defineNewInternalTemp(GenTree *tree, RegisterType regType, LsraLocation currentLoc, regMaskTP regMask);

    int             buildInternalRegisterDefsForNode(GenTree *tree, LsraLocation currentLoc,
                                                     RefPosition* defs[]);

    void            buildInternalRegisterUsesForNode(GenTree *tree, LsraLocation currentLoc,
                                                     RefPosition* defs[], int total);

    void            resolveLocalRef(GenTreePtr treeNode, RefPosition * currentRefPosition);

    void            insertMove(BasicBlock * block, GenTreePtr insertionPoint, unsigned lclNum,
                               regNumber inReg, regNumber outReg);

    void            insertSwap(BasicBlock* block,
                               GenTreePtr insertionPoint,
                               unsigned lclNum1,
                               regNumber reg1,
                               unsigned lclNum2,
                               regNumber reg2);
public:

    // TODO-Cleanup: unused?
    class PhysRegIntervalIterator
    {
    public:
        PhysRegIntervalIterator(LinearScan * theLinearScan)
        {
            nextRegNumber = (regNumber) 0;
            linearScan = theLinearScan;
        }
        RegRecord * GetNext()
        {
            return &linearScan->physRegs[nextRegNumber];
        }
    private:
        // This assumes that the physical registers are contiguous, starting
        // with a register number of 0
        regNumber   nextRegNumber;
        LinearScan  * linearScan;
    };

private:
    Interval *      newInterval(RegisterType regType);

    Interval *      getIntervalForLocalVar(unsigned varNum)
    {
        return localVarIntervals[varNum];
    }
    RegRecord *     getRegisterRecord(regNumber regNum);

    RefPosition *   newRefPositionRaw(LsraLocation nodeLocation, GenTree* treeNode, RefType refType);

    RefPosition*    newRefPosition(Interval* theInterval, 
                                   LsraLocation theLocation,
                                   RefType theRefType, 
                                   GenTree* theTreeNode,
                                   regMaskTP mask,
                                   unsigned multiRegIdx = 0);

    RefPosition*    newRefPosition(regNumber reg, 
                                   LsraLocation theLocation,
                                   RefType theRefType, 
                                   GenTree* theTreeNode,
                                   regMaskTP mask);

    void applyCalleeSaveHeuristics(RefPosition* rp);

    void associateRefPosWithInterval(RefPosition *rp);

    void associateRefPosWithRegister(RefPosition *rp);

    unsigned getWeight(RefPosition* refPos);

    /*****************************************************************************
     * Register management
     ****************************************************************************/
    RegisterType getRegisterType(Interval *currentInterval, RefPosition* refPosition);
    regNumber tryAllocateFreeReg(Interval *current, RefPosition *refPosition);
    RegRecord* findBestPhysicalReg(RegisterType regType, LsraLocation endLocation,
                                  regMaskTP candidates, regMaskTP preferences);
    regNumber allocateBusyReg(Interval* current, RefPosition* refPosition, bool allocationOptional);
    regNumber assignCopyReg(RefPosition * refPosition);

    void checkAndAssignInterval(RegRecord * regRec, Interval * interval);
    void assignPhysReg(RegRecord * regRec, Interval * interval);
    void assignPhysReg( regNumber reg, Interval * interval) { assignPhysReg(getRegisterRecord(reg), interval); }

    void checkAndClearInterval(RegRecord * regRec, RefPosition* spillRefPosition);
    void unassignPhysReg(RegRecord * regRec, RefPosition* spillRefPosition);
    void unassignPhysRegNoSpill( RegRecord* reg);
    void unassignPhysReg( regNumber reg) { unassignPhysReg(getRegisterRecord(reg), nullptr); }

    void spillInterval(Interval* interval, RefPosition* fromRefPosition, RefPosition* toRefPosition);

    void spillGCRefs(RefPosition* killRefPosition);

    /*****************************************************************************
     * For Resolution phase
     ****************************************************************************/
    // TODO-Throughput: Consider refactoring this so that we keep a map from regs to vars for better scaling
    unsigned int    regMapCount;

    // When we split edges, we create new blocks, and instead of expanding the VarToRegMaps, we
    // rely on the property that the "in" map is the same as the "from" block of the edge, and the
    // "out" map is the same as the "to" block of the edge (by construction).
    // So, for any block whose bbNum is greater than bbNumMaxBeforeResolution, we use the
    // splitBBNumToTargetBBNumMap.
    // TODO-Throughput: We may want to look into the cost/benefit tradeoff of doing this vs. expanding
    // the arrays.

    unsigned                    bbNumMaxBeforeResolution;
    struct SplitEdgeInfo
    {
        unsigned                fromBBNum;
        unsigned                toBBNum;
    };
    typedef SimplerHashTable<unsigned, SmallPrimitiveKeyFuncs<unsigned>, SplitEdgeInfo, JitSimplerHashBehavior>
                                SplitBBNumToTargetBBNumMap;
    SplitBBNumToTargetBBNumMap* splitBBNumToTargetBBNumMap;
    SplitBBNumToTargetBBNumMap* getSplitBBNumToTargetBBNumMap()
    {
        if (splitBBNumToTargetBBNumMap == nullptr)
        {
            splitBBNumToTargetBBNumMap = new (getAllocator(compiler)) SplitBBNumToTargetBBNumMap(getAllocator(compiler));
        }
        return splitBBNumToTargetBBNumMap;
    }
    SplitEdgeInfo               getSplitEdgeInfo(unsigned int bbNum);

    void        initVarRegMaps();
    void        setInVarRegForBB(unsigned int bbNum, unsigned int varNum, regNumber reg);
    void        setOutVarRegForBB(unsigned int bbNum, unsigned int varNum, regNumber reg);
    VarToRegMap getInVarToRegMap(unsigned int bbNum);
    VarToRegMap getOutVarToRegMap(unsigned int bbNum);
    regNumber   getVarReg(VarToRegMap map, unsigned int varNum);
    // Initialize the incoming VarToRegMap to the given map values (generally a predecessor of
    // the block)
    VarToRegMap setInVarToRegMap(unsigned int bbNum, VarToRegMap srcVarToRegMap);

    regNumber   getTempRegForResolution(BasicBlock* fromBlock, BasicBlock* toBlock, var_types type);

#ifdef DEBUG
    void dumpVarToRegMap(VarToRegMap map);
    void dumpInVarToRegMap(BasicBlock * block);
    void dumpOutVarToRegMap(BasicBlock * block);

    // There are three points at which a tuple-style dump is produced, and each
    // differs slightly:
    //   - In LSRA_DUMP_PRE, it does a simple dump of each node, with indications of what
    //     tree nodes are consumed.
    //   - In LSRA_DUMP_REFPOS, which is after the intervals are built, but before
    //     register allocation, each node is dumped, along with all of the RefPositions,
    //     The Intervals are identifed as Lnnn for lclVar intervals, Innn for for other
    //     intervals, and Tnnn for internal temps.
    //   - In LSRA_DUMP_POST, which is after register allocation, the registers are
    //     shown.

    enum LsraTupleDumpMode { LSRA_DUMP_PRE, LSRA_DUMP_REFPOS, LSRA_DUMP_POST };
    void lsraGetOperandString(GenTreePtr tree, LsraTupleDumpMode mode, char *operandString, unsigned operandStringLength);
    void lsraDispNode(GenTreePtr tree, LsraTupleDumpMode mode, bool hasDest);
    void TupleStyleDump(LsraTupleDumpMode mode);

    bool dumpTerse;
    LsraLocation maxNodeLocation;

    // Width of various fields - used to create a streamlined dump during allocation that shows the
    // state of all the registers in columns.
    int regColumnWidth;
    int regTableIndent;

    const char* columnSeparator;
    const char* line;
    const char* leftBox;
    const char* middleBox;
    const char* rightBox;

    static const int MAX_FORMAT_CHARS = 12;
    char intervalNameFormat[MAX_FORMAT_CHARS];
    char regNameFormat[MAX_FORMAT_CHARS];
    char shortRefPositionFormat[MAX_FORMAT_CHARS];
    char emptyRefPositionFormat[MAX_FORMAT_CHARS];
    char indentFormat[MAX_FORMAT_CHARS];
    static const int MAX_LEGEND_FORMAT_CHARS = 25;
    char bbRefPosFormat[MAX_LEGEND_FORMAT_CHARS];
    char legendFormat[MAX_LEGEND_FORMAT_CHARS];

    // How many rows have we printed since last printing a "title row"?
    static const int MAX_ROWS_BETWEEN_TITLES = 50;
    int rowCountSinceLastTitle;

    void dumpRegRecordHeader();
    void dumpRegRecordTitle();
    void dumpRegRecordTitleLines();
    int  getLastUsedRegNumIndex();
    void dumpRegRecords();
    // An abbreviated RefPosition dump for printing with column-based register state
    void dumpRefPositionShort(RefPosition* refPosition, BasicBlock* currentBlock);
    // Print the number of spaces occupied by a dumpRefPositionShort()
    void dumpEmptyRefPosition();
    // A dump of Referent, in exactly regColumnWidth characters
    void dumpIntervalName(Interval* interval);

    // Events during the allocation phase that cause some dump output, which differs depending
    // upon whether dumpTerse is set:
    enum LsraDumpEvent {
                         // Conflicting def/use
                         LSRA_EVENT_DEFUSE_CONFLICT,
                         LSRA_EVENT_DEFUSE_FIXED_DELAY_USE,
                         LSRA_EVENT_DEFUSE_CASE1,
                         LSRA_EVENT_DEFUSE_CASE2,
                         LSRA_EVENT_DEFUSE_CASE3,
                         LSRA_EVENT_DEFUSE_CASE4,
                         LSRA_EVENT_DEFUSE_CASE5,
                         LSRA_EVENT_DEFUSE_CASE6,

                         // Spilling
                         LSRA_EVENT_SPILL,
                         LSRA_EVENT_SPILL_EXTENDED_LIFETIME,
                         LSRA_EVENT_RESTORE_PREVIOUS_INTERVAL,
                         LSRA_EVENT_RESTORE_PREVIOUS_INTERVAL_AFTER_SPILL,
                         LSRA_EVENT_DONE_KILL_GC_REFS,

                         // Block boundaries
                         LSRA_EVENT_START_BB,
                         LSRA_EVENT_END_BB,

                         //Miscellaneous
                         LSRA_EVENT_FREE_REGS,

                         // Characteristics of the current RefPosition
                         LSRA_EVENT_INCREMENT_RANGE_END, // ???
                         LSRA_EVENT_LAST_USE,
                         LSRA_EVENT_LAST_USE_DELAYED,
                         LSRA_EVENT_NEEDS_NEW_REG,

                         // Allocation decisions
                         LSRA_EVENT_FIXED_REG,
                         LSRA_EVENT_EXP_USE,
                         LSRA_EVENT_ZERO_REF,
                         LSRA_EVENT_NO_ENTRY_REG_ALLOCATED,
                         LSRA_EVENT_KEPT_ALLOCATION,
                         LSRA_EVENT_COPY_REG,
                         LSRA_EVENT_MOVE_REG,
                         LSRA_EVENT_ALLOC_REG,
                         LSRA_EVENT_ALLOC_SPILLED_REG,
                         LSRA_EVENT_NO_REG_ALLOCATED,
                         LSRA_EVENT_RELOAD,
                         LSRA_EVENT_SPECIAL_PUTARG,
                         LSRA_EVENT_REUSE_REG,
    };
    void dumpLsraAllocationEvent(LsraDumpEvent event, Interval* interval = nullptr, regNumber reg = REG_NA, BasicBlock* currentBlock = nullptr);

    void dumpBlockHeader(BasicBlock* block);

    void validateIntervals();
#endif // DEBUG

    Compiler          * compiler;

private:

#if MEASURE_MEM_ALLOC
    IAllocator*         lsraIAllocator;
#endif

    IAllocator*         getAllocator(Compiler* comp)
    {
#if MEASURE_MEM_ALLOC
        if (lsraIAllocator == nullptr)
        {
            lsraIAllocator = new (comp, CMK_LSRA) CompAllocator(comp, CMK_LSRA);
        }
        return lsraIAllocator;
#else
        return comp->getAllocator();
#endif
    }

#ifdef DEBUG
    // This is used for dumping
    RefPosition*        activeRefPosition;
#endif // DEBUG

    IntervalList        intervals;

    RegRecord           physRegs[REG_COUNT];

    Interval **         localVarIntervals;

    // Set of blocks that have been visited.
    BlockSet            bbVisitedSet;
    void                markBlockVisited(BasicBlock* block)
    {
        BlockSetOps::AddElemD(compiler, bbVisitedSet, block->bbNum);
    }
    void                clearVisitedBlocks()
    {
        BlockSetOps::ClearD(compiler, bbVisitedSet);
    }
    bool                isBlockVisited(BasicBlock* block)
    {
        return BlockSetOps::IsMember(compiler, bbVisitedSet, block->bbNum);
    }

    // A map from bbNum to the block information used during register allocation.
    LsraBlockInfo*              blockInfo;
    BasicBlock*                 findPredBlockForLiveIn(BasicBlock* block, BasicBlock* prevBlock DEBUGARG(bool* pPredBlockIsAllocated));

    // The order in which the blocks will be allocated.
    // This is any array of BasicBlock*, in the order in which they should be traversed.
    BasicBlock**                blockSequence;
    // The verifiedAllBBs flag indicates whether we have verified that all BBs have been
    // included in the blockSeuqence above, during setBlockSequence().
    bool                        verifiedAllBBs;
    void                        setBlockSequence();
    int                         compareBlocksForSequencing(BasicBlock* block1, BasicBlock* block2, bool useBlockWeights);
    BasicBlockList*             blockSequenceWorkList;
    bool                        blockSequencingDone;
    void                        addToBlockSequenceWorkList(BlockSet sequencedBlockSet, BasicBlock* block);
    void                        removeFromBlockSequenceWorkList(BasicBlockList* listNode, BasicBlockList* prevNode);
    BasicBlock*                 getNextCandidateFromWorkList();

    // The bbNum of the block being currently allocated or resolved.
    unsigned int        curBBNum;
    // The ordinal of the block we're on (i.e. this is the curBBSeqNum-th block we've allocated).
    unsigned int        curBBSeqNum;
    // The number of blocks that we've sequenced.
    unsigned int        bbSeqCount;
    // The Location of the start of the current block.
    LsraLocation        curBBStartLocation;

    // Ordered list of RefPositions
    RefPositionList     refPositions;

    // Per-block variable location mappings: an array indexed by block number that yields a
    // pointer to an array of regNumber, one per variable.
    VarToRegMap *       inVarToRegMaps;
    VarToRegMap *       outVarToRegMaps;

    // A temporary VarToRegMap used during the resolution of critical edges.
    VarToRegMap         sharedCriticalVarToRegMap;

    PhasedVar<regMaskTP>           availableIntRegs;
    PhasedVar<regMaskTP>           availableFloatRegs;
    PhasedVar<regMaskTP>           availableDoubleRegs;

    // Current set of live tracked vars, used during building of RefPositions to determine whether
    // to preference to callee-save
    VARSET_TP           currentLiveVars;
    // Set of floating point variables to consider for callee-save registers.
    VARSET_TP           fpCalleeSaveCandidateVars;
#if FEATURE_PARTIAL_SIMD_CALLEE_SAVE
#if defined(_TARGET_AMD64_)
    static const var_types     LargeVectorType = TYP_SIMD32;
    static const var_types     LargeVectorSaveType = TYP_SIMD16;
#elif defined(_TARGET_ARM64_)
    static const var_types     LargeVectorType = TYP_SIMD16;
    static const var_types     LargeVectorSaveType = TYP_DOUBLE;
#else // !defined(_TARGET_AMD64_) && !defined(_TARGET_ARM64_)
#error("Unknown target architecture for FEATURE_SIMD")
#endif // !defined(_TARGET_AMD64_) && !defined(_TARGET_ARM64_)

    // Set of large vector (TYP_SIMD32 on AVX) variables.
    VARSET_TP           largeVectorVars;
    // Set of large vector (TYP_SIMD32 on AVX) variables to consider for callee-save registers.
    VARSET_TP           largeVectorCalleeSaveCandidateVars;
#endif // FEATURE_PARTIAL_SIMD_CALLEE_SAVE
};

/*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX                                                                           XX
XX                           Interval                                        XX
XX                                                                           XX
XX This is the fundamental data structure for linear scan register           XX
XX allocation.  It represents the live range(s) for a variable or temp.      XX
XX                                                                           XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
*/

class Interval : public Referenceable
{
public:
    Interval(RegisterType registerType, regMaskTP registerPreferences)
        : registerPreferences(registerPreferences)
        , relatedInterval(nullptr)
        , assignedReg(nullptr)
        , registerType(registerType)
        , isLocalVar(false)
        , isSplit(false)
        , isSpilled(false)
        , isInternal(false)
        , isStructField(false)
        , isPromotedStruct(false)
        , hasConflictingDefUse(false)
        , hasNonCommutativeRMWDef(false)
        , isSpecialPutArg(false)
        , preferCalleeSave(false)
        , isConstant(false)
        , physReg(REG_COUNT)
#ifdef DEBUG
        , intervalIndex(0)
#endif
        , varNum(0)
    {
    }

#ifdef DEBUG
    // print out representation
    void dump();
    // concise representation for embedding
    void tinyDump();
    // extremely concise representation
    void microDump();
#endif // DEBUG

    void setLocalNumber(unsigned localNum, LinearScan *l);

    // Fixed registers for which this Interval has a preference
    regMaskTP       registerPreferences;

    // The relatedInterval is:
    //  - for any other interval, it is the interval to which this interval
    //    is currently preferenced (e.g. because they are related by a copy)
    Interval      * relatedInterval;

    // The assignedReg is the RecRecord for the register to which this interval
    // has been assigned at some point - if the interval is active, this is the
    // register it currently occupies.
    RegRecord     * assignedReg;

    // DECIDE : put this in a union or do something w/ inheritance?
    // this is an interval for a physical register, not a allocatable entity

    RegisterType    registerType;
    bool            isLocalVar   : 1;
    // Indicates whether this interval has been assigned to different registers
    bool            isSplit      : 1;
    // Indicates whether this interval is ever spilled
    bool            isSpilled    : 1;
    // indicates an interval representing the internal requirements for
    // generating code for a node (temp registers internal to the node)
    // Note that this interval may live beyond a node in the GT_ARR_LENREF/GT_IND
    // case (though never lives beyond a stmt)
    bool            isInternal   : 1;
    // true if this is a LocalVar for a struct field
    bool            isStructField      : 1;
    // true iff this is a GT_LDOBJ for a fully promoted (PROMOTION_TYPE_INDEPENDENT) struct
    bool            isPromotedStruct   : 1;
    // true if this is an SDSU interval for which the def and use have conflicting register
    // requirements
    bool            hasConflictingDefUse : 1;
    // true if this interval is defined by a non-commutative 2-operand instruction
    bool            hasNonCommutativeRMWDef : 1;

    // True if this interval is defined by a putArg, whose source is a non-last-use lclVar.
    // During allocation, this flag will be cleared if the source is not already in the required register.
    // Othewise, we will leave the register allocated to the lclVar, but mark the RegRecord as
    // isBusyUntilNextKill, so that it won't be reused if the lclVar goes dead before the call.
    bool            isSpecialPutArg         : 1;

    // True if this interval interferes with a call.
    bool            preferCalleeSave        : 1;

    // True if this interval is defined by a constant node that may be reused and/or may be
    // able to reuse a constant that's already in a register.
    bool            isConstant : 1;

    // The register to which it is currently assigned.
    regNumber       physReg;

#ifdef DEBUG
    unsigned int    intervalIndex;
#endif // DEBUG

    unsigned int    varNum;  // This is the "variable number": the index into the lvaTable array

    LclVarDsc *getLocalVar(Compiler *comp)
    {
        assert(isLocalVar);
        return &(comp->lvaTable[this->varNum]);
    }

    // Get the local tracked variable "index" (lvVarIndex), used in bitmasks.
    unsigned        getVarIndex(Compiler* comp)
    {
        LclVarDsc * varDsc = getLocalVar(comp);
        assert(varDsc->lvTracked); // If this isn't true, we shouldn't be calling this function!
        return varDsc->lvVarIndex;
    }

    bool            isAssignedTo(regNumber regNum)
    {
        // This uses regMasks to handle the case where a double actually occupies two registers
        // TODO-Throughput: This could/should be done more cheaply.
        return (physReg != REG_NA && (genRegMask(physReg,registerType) & genRegMask(regNum)) != RBM_NONE);
    }

    // Assign the related interval.
    void            assignRelatedInterval(Interval* newRelatedInterval)
    {
#ifdef DEBUG
        if (VERBOSE)
        {
            printf("Assigning related ");
            newRelatedInterval->microDump();
            printf(" to ");
            this->microDump();
            printf("\n");
        }
#endif // DEBUG
        relatedInterval = newRelatedInterval;
    }

    // Assign the related interval, but only if it isn't already assigned.
    void            assignRelatedIntervalIfUnassigned(Interval* newRelatedInterval)
    {
        if (relatedInterval == nullptr)
        {
            assignRelatedInterval(newRelatedInterval);
        }
        else
        {
#ifdef DEBUG
            if (VERBOSE)
            {
                printf("Interval ");
                this->microDump();
                printf(" already has a related interval\n");
            }
#endif // DEBUG
        }
    }

    // Update the registerPreferences on the interval.
    // If there are conflicting requirements on this interval, set the preferences to
    // the union of them.  That way maybe we'll get at least one of them.
    // An exception is made in the case where one of the existing or new
    // preferences are all callee-save, in which case we "prefer" the callee-save

    void            updateRegisterPreferences(regMaskTP preferences)
    {
        // We require registerPreferences to have been initialized.
        assert(registerPreferences != RBM_NONE);
        // It is invalid to update with empty preferences
        assert (preferences != RBM_NONE);

        regMaskTP commonPreferences = (registerPreferences & preferences);
        if (commonPreferences != RBM_NONE)
        {
            registerPreferences = commonPreferences;
            return;
        }

        // There are no preferences in common.
        // Preferences need to reflect both cases where a var must occupy a specific register,
        // as well as cases where a var is live when a register is killed.
        // In the former case, we would like to record all such registers, however we don't
        // really want to use any registers that will interfere.
        // To approximate this, we never "or" together multi-reg sets, which are generally kill sets.

        if (!genMaxOneBit(preferences))
        {
            // The new preference value is a multi-reg set, so it's probably a kill.
            // Keep the new value.
            registerPreferences = preferences;
            return;
        }

        if (!genMaxOneBit(registerPreferences))
        {
            // The old preference value is a multi-reg set.
            // Keep the existing preference set, as it probably reflects one or more kills.
            // It may have been a union of multiple individual registers, but we can't
            // distinguish that case without extra cost.
            return;
        }

        // If we reach here, we have two disjoint single-reg sets.
        // Keep only the callee-save preferences, if not empty.
        // Otherwise, take the union of the preferences.

        regMaskTP  newPreferences = registerPreferences|preferences;

        if (preferCalleeSave)
        {
            regMaskTP  calleeSaveMask = (calleeSaveRegs(this->registerType) & (newPreferences));
            if (calleeSaveMask != RBM_NONE)
            {
                newPreferences = calleeSaveMask;
            }
        }
        registerPreferences = newPreferences;
    }
};

class RefPosition
{
public:
    RefPosition(unsigned int bbNum, LsraLocation nodeLocation, GenTree* treeNode, RefType refType)
        : referent(nullptr)
        , nextRefPosition(nullptr)
        , treeNode(treeNode)
        , bbNum(bbNum)
        , nodeLocation(nodeLocation)
        , registerAssignment(RBM_NONE)
        , refType(refType)
        , multiRegIdx(0)
        , lastUse(false)
        , reload(false)
        , spillAfter(false)
        , copyReg(false)
        , moveReg(false)
        , isPhysRegRef(false)
        , isFixedRegRef(false)
        , isLocalDefUse(false)
        , delayRegFree(false)
        , outOfOrder(false)
#ifdef DEBUG
        , rpNum(0)
#endif
    {
    }

    // A RefPosition refers to either an Interval or a RegRecord. 'referent' points to one
    // of these types. If it refers to a RegRecord, then 'isPhysRegRef' is true. If it
    // refers to an Interval, then 'isPhysRegRef' is false.
    //
    // Q: can 'referent' be NULL?

    Referenceable * referent;

    Interval *getInterval() { assert (!isPhysRegRef); return (Interval *) referent; }
    void setInterval(Interval *i) { referent = i; isPhysRegRef = false; }

    RegRecord *getReg() { assert (isPhysRegRef); return (RegRecord *) referent; }
    void setReg(RegRecord *r) { referent = r; isPhysRegRef = true; registerAssignment = genRegMask(r->regNum); }

    // nextRefPosition is the next in code order.
    // Note that in either case there is no need for these to be doubly linked, as they
    // are only traversed in the forward direction, and are not moved.
    RefPosition   * nextRefPosition;

    // The remaining fields are common to both options
    GenTree*        treeNode;
    unsigned int    bbNum;

    // Prior to the allocation pass, registerAssignment captures the valid registers
    // for this RefPosition. An empty set means that any register is valid.  A non-empty
    // set means that it must be one of the given registers (may be the full set if the
    // only constraint is that it must reside in SOME register)
    // After the allocation pass, this contains the actual assignment
    LsraLocation    nodeLocation;
    regMaskTP       registerAssignment;

    regNumber       assignedReg() { 
        if (registerAssignment == RBM_NONE)
        {
            return REG_NA;
        }

        return genRegNumFromMask(registerAssignment); 
    }

    RefType         refType;

    bool            IsActualRef()
    {
        return (refType == RefTypeDef || 
                refType == RefTypeUse
#if FEATURE_PARTIAL_SIMD_CALLEE_SAVE
                || refType == RefTypeUpperVectorSaveDef 
                || refType == RefTypeUpperVectorSaveUse
#endif // FEATURE_PARTIAL_SIMD_CALLEE_SAVE
               );
    }

    // Used by RefTypeDef/Use positions of a multi-reg call node.
    // Indicates the position of the register that this ref position refers to.
    // The max bits needed is based on max value of MAX_RET_REG_COUNT value
    // across all targets and that happens 4 on on Arm.  Hence index value
    // would be 0..MAX_RET_REG_COUNT-1. 
    unsigned        multiRegIdx  : 2;

    void            setMultiRegIdx(unsigned idx)
    {
        multiRegIdx = idx;
        assert(multiRegIdx == idx);
    }

    unsigned        getMultiRegIdx() { return multiRegIdx;  }

    // Returns true if codegen has indicated that the tree node
    // referred to by RefPosition can be treated as a contained
    // memory operand if no register was allocated.
    bool           IsRegOptional()
    {
        // TODO-CQ: Right now if a ref position is marked as
        // copyreg or movereg, then it is always allocated a
        // register, though it is marked as reg optional.
        // This is an implementation limitation that needs to 
        // be addressed.
        return (refType == RefTypeUse) &&
               !copyReg &&
               !moveReg &&
               (treeNode != nullptr) &&
               treeNode->IsRegOptional();
    }  

    // Last Use - this may be true for multiple RefPositions in the same Interval
    bool            lastUse      : 1;

    // Spill and Copy info
    //   reload indicates that the value was spilled, and must be reloaded here.
    //   spillAfter indicates that the value is spilled here, so a spill must be added.
    //   copyReg indicates that the value needs to be copied to a specific register,
    //      but that it will also retain its current assigned register.
    //   moveReg indicates that the value needs to be moved to a different register,
    //      and that this will be its new assigned register.
    // A RefPosition may have any flag individually or the following combinations:
    //  - reload and spillAfter (i.e. it remains in memory), but not in combination with copyReg or moveReg
    //    (reload cannot exist with copyReg or moveReg; it should be reloaded into the appropriate reg)
    //  - spillAfter and copyReg (i.e. it must be copied to a new reg for use, but is then spilled)
    //  - spillAfter and moveReg (i.e. it most be both spilled and moved)
    //    NOTE: a moveReg involves an explicit move, and would usually not be needed for a fixed Reg if it is going
    //    to be spilled, because the code generator will do the move to the fixed register, and doesn't need to
    //    record the new register location as the new "home" location of the lclVar. However, if there is a conflicting
    //    use at the same location (e.g. lclVar V1 is in rdx and needs to be in rcx, but V2 needs to be in rdx), then
    //    we need an explicit move.
    //  - copyReg and moveReg must not exist with each other.

    bool            reload        : 1;
    bool            spillAfter    : 1;
    bool            copyReg       : 1;
    bool            moveReg       : 1;   // true if this var is moved to a new register

    bool            isPhysRegRef  : 1;   // true if 'referent' points of a RegRecord, false if it points to an Interval
    bool            isFixedRegRef : 1;
    bool            isLocalDefUse : 1;

    // delayRegFree indicates that the register should not be freed right away, but instead wait
    // until the next Location after it would normally be freed.  This is used for the case of
    // non-commutative binary operators, where op2 must not be assigned the same register as
    // the target.  We do this by not freeing it until after the target has been defined.
    // Another option would be to actually change the Location of the op2 use until the same
    // Location as the def, but then it could potentially reuse a register that has been freed
    // from the other source(s), e.g. if it's a lastUse or spilled.
    bool            delayRegFree : 1;

    // outOfOrder is marked on a (non-def) RefPosition that doesn't follow a definition of the
    // register currently assigned to the Interval.  This happens when we use the assigned
    // register from a predecessor that is not the most recently allocated BasicBlock.
    bool            outOfOrder   : 1;

    LsraLocation    getRefEndLocation()
    {
        return delayRegFree ? nodeLocation+1 : nodeLocation;
    }

#ifdef DEBUG
    unsigned        rpNum;              // The unique RefPosition number, equal to its index in the refPositions list. Only used for debugging dumps.
#endif // DEBUG

    bool            isIntervalRef() { return (!isPhysRegRef && (referent != nullptr)); }

    // isTrueDef indicates that the RefPosition is a non-update def of a non-internal
    // interval
    bool            isTrueDef()
    {
        return (refType == RefTypeDef &&
                isIntervalRef() &&
                !getInterval()->isInternal);
    }

    // isFixedRefOfRegMask indicates that the RefPosition has a fixed assignment to the register
    // specified by the given mask
    bool            isFixedRefOfRegMask(regMaskTP regMask)
    {
        assert(genMaxOneBit(regMask));
        return (registerAssignment == regMask);
    }

    // isFixedRefOfReg indicates that the RefPosition has a fixed assignment to the given register
    bool            isFixedRefOfReg(regNumber regNum)
    {
        return (isFixedRefOfRegMask(genRegMask(regNum)));
    }

#ifdef DEBUG
    // operator= copies everything except 'rpNum', which must remain unique
    RefPosition &   operator=(const RefPosition & rp)
    {
        unsigned rpNumSave = rpNum;
        memcpy(this, &rp, sizeof(rp));
        rpNum = rpNumSave;
        return *this;
    }

    void dump();
#endif // DEBUG

};

#ifdef DEBUG
void dumpRegMask(regMaskTP regs);
#endif // DEBUG

/*****************************************************************************/
#endif//_LSRA_H_
/*****************************************************************************/