summaryrefslogtreecommitdiff
path: root/src/jit/lower.cpp
blob: f45dadc929ae01acb64f6249060e4d92ba88a09b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.

/*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX                                                                           XX
XX                               Lower                                       XX
XX                                                                           XX
XX  Preconditions:                                                           XX
XX                                                                           XX
XX  Postconditions (for the nodes currently handled):                        XX
XX    - All operands requiring a register are explicit in the graph          XX
XX                                                                           XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
*/

#include "jitpch.h"
#ifdef _MSC_VER
#pragma hdrstop
#endif

#include "lower.h"

#if !defined(_TARGET_64BIT_)
#include "decomposelongs.h"
#endif // !defined(_TARGET_64BIT_)

//------------------------------------------------------------------------
// MakeSrcContained: Make "childNode" a contained node
//
// Arguments:
//    parentNode - is a non-leaf node that can contain its 'childNode'
//    childNode  - is an op that will now be contained by its parent.
//
// Notes:
//    If 'childNode' it has any existing sources, they will now be sources for the parent.
//
void Lowering::MakeSrcContained(GenTree* parentNode, GenTree* childNode)
{
    assert(!parentNode->OperIsLeaf());
    assert(childNode->canBeContained());
    childNode->SetContained();
    assert(childNode->isContained());
}

//------------------------------------------------------------------------
// CheckImmedAndMakeContained: Checks if the 'childNode' is a containable immediate
//    and, if so, makes it contained.
//
// Arguments:
//    parentNode - is any non-leaf node
//    childNode  - is an child op of 'parentNode'
//
// Return value:
//     true if we are able to make childNode a contained immediate
//
bool Lowering::CheckImmedAndMakeContained(GenTree* parentNode, GenTree* childNode)
{
    assert(!parentNode->OperIsLeaf());
    // If childNode is a containable immediate
    if (IsContainableImmed(parentNode, childNode))
    {
        // then make it contained within the parentNode
        MakeSrcContained(parentNode, childNode);
        return true;
    }
    return false;
}

//------------------------------------------------------------------------
// IsSafeToContainMem: Checks for conflicts between childNode and parentNode,
// and returns 'true' iff memory operand childNode can be contained in parentNode.
//
// Arguments:
//    parentNode - any non-leaf node
//    childNode  - some node that is an input to `parentNode`
//
// Return value:
//    true if it is safe to make childNode a contained memory operand.
//
bool Lowering::IsSafeToContainMem(GenTree* parentNode, GenTree* childNode)
{
    m_scratchSideEffects.Clear();
    m_scratchSideEffects.AddNode(comp, childNode);

    for (GenTree* node = childNode->gtNext; node != parentNode; node = node->gtNext)
    {
        if (m_scratchSideEffects.InterferesWith(comp, node, false))
        {
            return false;
        }
    }

    return true;
}

//------------------------------------------------------------------------

// This is the main entry point for Lowering.
GenTree* Lowering::LowerNode(GenTree* node)
{
    assert(node != nullptr);
    switch (node->gtOper)
    {
        case GT_IND:
            TryCreateAddrMode(LIR::Use(BlockRange(), &node->gtOp.gtOp1, node), true);
            ContainCheckIndir(node->AsIndir());
            break;

        case GT_STOREIND:
            TryCreateAddrMode(LIR::Use(BlockRange(), &node->gtOp.gtOp1, node), true);
            if (!comp->codeGen->gcInfo.gcIsWriteBarrierAsgNode(node))
            {
                LowerStoreIndir(node->AsIndir());
            }
            break;

        case GT_ADD:
        {
            GenTree* afterTransform = LowerAdd(node);
            if (afterTransform != nullptr)
            {
                return afterTransform;
            }
            __fallthrough;
        }

#if !defined(_TARGET_64BIT_)
        case GT_ADD_LO:
        case GT_ADD_HI:
        case GT_SUB_LO:
        case GT_SUB_HI:
#endif
        case GT_SUB:
        case GT_AND:
        case GT_OR:
        case GT_XOR:
            ContainCheckBinary(node->AsOp());
            break;

        case GT_MUL:
        case GT_MULHI:
#if defined(_TARGET_X86_)
        case GT_MUL_LONG:
#endif
            ContainCheckMul(node->AsOp());
            break;

        case GT_UDIV:
        case GT_UMOD:
            if (!LowerUnsignedDivOrMod(node->AsOp()))
            {
                ContainCheckDivOrMod(node->AsOp());
            }
            break;

        case GT_DIV:
        case GT_MOD:
            return LowerSignedDivOrMod(node);

        case GT_SWITCH:
            return LowerSwitch(node);

        case GT_CALL:
            LowerCall(node);
            break;

        case GT_LT:
        case GT_LE:
        case GT_GT:
        case GT_GE:
        case GT_EQ:
        case GT_NE:
        case GT_TEST_EQ:
        case GT_TEST_NE:
        case GT_CMP:
            return LowerCompare(node);

        case GT_JTRUE:
            return LowerJTrue(node->AsOp());

        case GT_JMP:
            LowerJmpMethod(node);
            break;

        case GT_RETURN:
            LowerRet(node);
            break;

        case GT_RETURNTRAP:
            ContainCheckReturnTrap(node->AsOp());
            break;

        case GT_CAST:
            LowerCast(node);
            break;

#if defined(_TARGET_XARCH_) || defined(_TARGET_ARM64_)
        case GT_ARR_BOUNDS_CHECK:
#ifdef FEATURE_SIMD
        case GT_SIMD_CHK:
#endif // FEATURE_SIMD
#ifdef FEATURE_HW_INTRINSICS
        case GT_HW_INTRINSIC_CHK:
#endif // FEATURE_HW_INTRINSICS
            ContainCheckBoundsChk(node->AsBoundsChk());
            break;
#endif // _TARGET_XARCH_
        case GT_ARR_ELEM:
            return LowerArrElem(node);

        case GT_ARR_OFFSET:
            ContainCheckArrOffset(node->AsArrOffs());
            break;

        case GT_ROL:
        case GT_ROR:
            LowerRotate(node);
            break;

#ifndef _TARGET_64BIT_
        case GT_LSH_HI:
        case GT_RSH_LO:
            ContainCheckShiftRotate(node->AsOp());
            break;
#endif // !_TARGET_64BIT_

        case GT_LSH:
        case GT_RSH:
        case GT_RSZ:
#if defined(_TARGET_XARCH_) || defined(_TARGET_ARM64_)
            LowerShift(node->AsOp());
#else
            ContainCheckShiftRotate(node->AsOp());
#endif
            break;

        case GT_STORE_BLK:
        case GT_STORE_OBJ:
        case GT_STORE_DYN_BLK:
        {
            GenTreeBlk* blkNode = node->AsBlk();
            TryCreateAddrMode(LIR::Use(BlockRange(), &blkNode->Addr(), blkNode), false);
            LowerBlockStore(blkNode);
        }
        break;

        case GT_LCLHEAP:
            ContainCheckLclHeap(node->AsOp());
            break;

#ifdef _TARGET_XARCH_
        case GT_INTRINSIC:
            ContainCheckIntrinsic(node->AsOp());
            break;
#endif // _TARGET_XARCH_

#ifdef FEATURE_SIMD
        case GT_SIMD:
            LowerSIMD(node->AsSIMD());
            break;
#endif // FEATURE_SIMD

#ifdef FEATURE_HW_INTRINSICS
        case GT_HWIntrinsic:
            LowerHWIntrinsic(node->AsHWIntrinsic());
            break;
#endif // FEATURE_HW_INTRINSICS

        case GT_LCL_VAR:
            WidenSIMD12IfNecessary(node->AsLclVarCommon());
            break;

        case GT_STORE_LCL_VAR:
            WidenSIMD12IfNecessary(node->AsLclVarCommon());
            __fallthrough;

        case GT_STORE_LCL_FLD:
        {
#if defined(_TARGET_AMD64_) && defined(FEATURE_SIMD)
            GenTreeLclVarCommon* const store = node->AsLclVarCommon();
            if ((store->TypeGet() == TYP_SIMD8) != (store->gtOp1->TypeGet() == TYP_SIMD8))
            {
                GenTreeUnOp* bitcast =
                    new (comp, GT_BITCAST) GenTreeOp(GT_BITCAST, store->TypeGet(), store->gtOp1, nullptr);
                store->gtOp1 = bitcast;
                BlockRange().InsertBefore(store, bitcast);
            }
#endif // _TARGET_AMD64_
            // TODO-1stClassStructs: Once we remove the requirement that all struct stores
            // are block stores (GT_STORE_BLK or GT_STORE_OBJ), here is where we would put the local
            // store under a block store if codegen will require it.
            if ((node->TypeGet() == TYP_STRUCT) && (node->gtGetOp1()->OperGet() != GT_PHI))
            {
#if FEATURE_MULTIREG_RET
                GenTree* src = node->gtGetOp1();
                assert((src->OperGet() == GT_CALL) && src->AsCall()->HasMultiRegRetVal());
#else  // !FEATURE_MULTIREG_RET
                assert(!"Unexpected struct local store in Lowering");
#endif // !FEATURE_MULTIREG_RET
            }
            LowerStoreLoc(node->AsLclVarCommon());
            break;
        }

#if defined(_TARGET_ARM64_)
        case GT_CMPXCHG:
            CheckImmedAndMakeContained(node, node->AsCmpXchg()->gtOpComparand);
            break;

        case GT_XADD:
            CheckImmedAndMakeContained(node, node->gtOp.gtOp2);
            break;
#elif defined(_TARGET_XARCH_)
        case GT_XADD:
            if (node->IsUnusedValue())
            {
                node->ClearUnusedValue();
                // Make sure the types are identical, since the node type is changed to VOID
                // CodeGen relies on op2's type to determine the instruction size.
                // Note that the node type cannot be a small int but the data operand can.
                assert(genActualType(node->gtGetOp2()->TypeGet()) == node->TypeGet());
                node->SetOper(GT_LOCKADD);
                node->gtType = TYP_VOID;
                CheckImmedAndMakeContained(node, node->gtGetOp2());
            }
            break;
#endif

#ifndef _TARGET_ARM_
        // TODO-ARM-CQ: We should contain this as long as the offset fits.
        case GT_OBJ:
            if (node->AsObj()->Addr()->OperIsLocalAddr())
            {
                node->AsObj()->Addr()->SetContained();
            }
            break;
#endif // !_TARGET_ARM_

        default:
            break;
    }

    return node->gtNext;
}

/**  -- Switch Lowering --
 * The main idea of switch lowering is to keep transparency of the register requirements of this node
 * downstream in LSRA.  Given that the switch instruction is inherently a control statement which in the JIT
 * is represented as a simple tree node, at the time we actually generate code for it we end up
 * generating instructions that actually modify the flow of execution that imposes complicated
 * register requirement and lifetimes.
 *
 * So, for the purpose of LSRA, we want to have a more detailed specification of what a switch node actually
 * means and more importantly, which and when do we need a register for each instruction we want to issue
 * to correctly allocate them downstream.
 *
 * For this purpose, this procedure performs switch lowering in two different ways:
 *
 * a) Represent the switch statement as a zero-index jump table construct.  This means that for every destination
 *    of the switch, we will store this destination in an array of addresses and the code generator will issue
 *    a data section where this array will live and will emit code that based on the switch index, will indirect and
 *    jump to the destination specified in the jump table.
 *
 *    For this transformation we introduce a new GT node called GT_SWITCH_TABLE that is a specialization of the switch
 *    node for jump table based switches.
 *    The overall structure of a GT_SWITCH_TABLE is:
 *
 *    GT_SWITCH_TABLE
 *           |_________ localVar   (a temporary local that holds the switch index)
 *           |_________ jumpTable  (this is a special node that holds the address of the jump table array)
 *
 *     Now, the way we morph a GT_SWITCH node into this lowered switch table node form is the following:
 *
 *    Input:     GT_SWITCH (inside a basic block whose Branch Type is BBJ_SWITCH)
 *                    |_____ expr (an arbitrarily complex GT_NODE that represents the switch index)
 *
 *    This gets transformed into the following statements inside a BBJ_COND basic block (the target would be
 *    the default case of the switch in case the conditional is evaluated to true).
 *
 *     ----- original block, transformed
 *     GT_ASG
 *        |_____ tempLocal (a new temporary local variable used to store the switch index)
 *        |_____ expr      (the index expression)
 *
 *     GT_JTRUE
 *        |_____ GT_COND
 *                 |_____ GT_GE
 *                           |___ Int_Constant  (This constant is the index of the default case
 *                                               that happens to be the highest index in the jump table).
 *                           |___ tempLocal     (The local variable were we stored the index expression).
 *
 *     ----- new basic block
 *     GT_SWITCH_TABLE
 *        |_____ tempLocal
 *        |_____ jumpTable (a new jump table node that now LSRA can allocate registers for explicitly
 *                          and LinearCodeGen will be responsible to generate downstream).
 *
 *     This way there are no implicit temporaries.
 *
 * b) For small-sized switches, we will actually morph them into a series of conditionals of the form
 *     if (case falls into the default){ goto jumpTable[size]; // last entry in the jump table is the default case }
 *     (For the default case conditional, we'll be constructing the exact same code as the jump table case one).
 *     else if (case == firstCase){ goto jumpTable[1]; }
 *     else if (case == secondCase) { goto jumptable[2]; } and so on.
 *
 *     This transformation is of course made in JIT-IR, not downstream to CodeGen level, so this way we no longer
 *     require internal temporaries to maintain the index we're evaluating plus we're using existing code from
 *     LinearCodeGen to implement this instead of implement all the control flow constructs using InstrDscs and
 *     InstrGroups downstream.
 */

GenTree* Lowering::LowerSwitch(GenTree* node)
{
    unsigned     jumpCnt;
    unsigned     targetCnt;
    BasicBlock** jumpTab;

    assert(node->gtOper == GT_SWITCH);

    // The first step is to build the default case conditional construct that is
    // shared between both kinds of expansion of the switch node.

    // To avoid confusion, we'll alias m_block to originalSwitchBB
    // that represents the node we're morphing.
    BasicBlock* originalSwitchBB = m_block;
    LIR::Range& switchBBRange    = LIR::AsRange(originalSwitchBB);

    // jumpCnt is the number of elements in the jump table array.
    // jumpTab is the actual pointer to the jump table array.
    // targetCnt is the number of unique targets in the jump table array.
    jumpCnt   = originalSwitchBB->bbJumpSwt->bbsCount;
    jumpTab   = originalSwitchBB->bbJumpSwt->bbsDstTab;
    targetCnt = originalSwitchBB->NumSucc(comp);

// GT_SWITCH must be a top-level node with no use.
#ifdef DEBUG
    {
        LIR::Use use;
        assert(!switchBBRange.TryGetUse(node, &use));
    }
#endif

    JITDUMP("Lowering switch BB%02u, %d cases\n", originalSwitchBB->bbNum, jumpCnt);

    // Handle a degenerate case: if the switch has only a default case, just convert it
    // to an unconditional branch. This should only happen in minopts or with debuggable
    // code.
    if (targetCnt == 1)
    {
        JITDUMP("Lowering switch BB%02u: single target; converting to BBJ_ALWAYS\n", originalSwitchBB->bbNum);
        noway_assert(comp->opts.MinOpts() || comp->opts.compDbgCode);
        if (originalSwitchBB->bbNext == jumpTab[0])
        {
            originalSwitchBB->bbJumpKind = BBJ_NONE;
            originalSwitchBB->bbJumpDest = nullptr;
        }
        else
        {
            originalSwitchBB->bbJumpKind = BBJ_ALWAYS;
            originalSwitchBB->bbJumpDest = jumpTab[0];
        }
        // Remove extra predecessor links if there was more than one case.
        for (unsigned i = 1; i < jumpCnt; ++i)
        {
            (void)comp->fgRemoveRefPred(jumpTab[i], originalSwitchBB);
        }

        // We have to get rid of the GT_SWITCH node but a child might have side effects so just assign
        // the result of the child subtree to a temp.
        GenTree* rhs = node->gtOp.gtOp1;

        unsigned lclNum                 = comp->lvaGrabTemp(true DEBUGARG("Lowering is creating a new local variable"));
        comp->lvaSortAgain              = true;
        comp->lvaTable[lclNum].lvType   = rhs->TypeGet();
        comp->lvaTable[lclNum].lvRefCnt = 1;

        GenTreeLclVar* store =
            new (comp, GT_STORE_LCL_VAR) GenTreeLclVar(GT_STORE_LCL_VAR, rhs->TypeGet(), lclNum, BAD_IL_OFFSET);
        store->gtOp1   = rhs;
        store->gtFlags = (rhs->gtFlags & GTF_COMMON_MASK);
        store->gtFlags |= GTF_VAR_DEF;

        switchBBRange.InsertAfter(node, store);
        switchBBRange.Remove(node);

        return store;
    }

    noway_assert(jumpCnt >= 2);

    // Spill the argument to the switch node into a local so that it can be used later.
    unsigned blockWeight = originalSwitchBB->getBBWeight(comp);

    LIR::Use use(switchBBRange, &(node->gtOp.gtOp1), node);
    ReplaceWithLclVar(use);

    // GT_SWITCH(indexExpression) is now two statements:
    //   1. a statement containing 'asg' (for temp = indexExpression)
    //   2. and a statement with GT_SWITCH(temp)

    assert(node->gtOper == GT_SWITCH);
    GenTree* temp = node->gtOp.gtOp1;
    assert(temp->gtOper == GT_LCL_VAR);
    unsigned   tempLclNum  = temp->gtLclVarCommon.gtLclNum;
    LclVarDsc* tempVarDsc  = comp->lvaTable + tempLclNum;
    var_types  tempLclType = temp->TypeGet();

    BasicBlock* defaultBB   = jumpTab[jumpCnt - 1];
    BasicBlock* followingBB = originalSwitchBB->bbNext;

    /* Is the number of cases right for a test and jump switch? */
    const bool fFirstCaseFollows = (followingBB == jumpTab[0]);
    const bool fDefaultFollows   = (followingBB == defaultBB);

    unsigned minSwitchTabJumpCnt = 2; // table is better than just 2 cmp/jcc

    // This means really just a single cmp/jcc (aka a simple if/else)
    if (fFirstCaseFollows || fDefaultFollows)
    {
        minSwitchTabJumpCnt++;
    }

#if defined(_TARGET_ARM_)
    // On ARM for small switch tables we will
    // generate a sequence of compare and branch instructions
    // because the code to load the base of the switch
    // table is huge and hideous due to the relocation... :(
    minSwitchTabJumpCnt += 2;
#endif // _TARGET_ARM_

    // Once we have the temporary variable, we construct the conditional branch for
    // the default case.  As stated above, this conditional is being shared between
    // both GT_SWITCH lowering code paths.
    // This condition is of the form: if (temp > jumpTableLength - 2){ goto jumpTable[jumpTableLength - 1]; }
    GenTree* gtDefaultCaseCond = comp->gtNewOperNode(GT_GT, TYP_INT, comp->gtNewLclvNode(tempLclNum, tempLclType),
                                                     comp->gtNewIconNode(jumpCnt - 2, genActualType(tempLclType)));

    // Make sure we perform an unsigned comparison, just in case the switch index in 'temp'
    // is now less than zero 0 (that would also hit the default case).
    gtDefaultCaseCond->gtFlags |= GTF_UNSIGNED;

    /* Increment the lvRefCnt and lvRefCntWtd for temp */
    tempVarDsc->incRefCnts(blockWeight, comp);

    GenTree* gtDefaultCaseJump = comp->gtNewOperNode(GT_JTRUE, TYP_VOID, gtDefaultCaseCond);
    gtDefaultCaseJump->gtFlags = node->gtFlags;

    LIR::Range condRange = LIR::SeqTree(comp, gtDefaultCaseJump);
    switchBBRange.InsertAtEnd(std::move(condRange));

    BasicBlock* afterDefaultCondBlock = comp->fgSplitBlockAfterNode(originalSwitchBB, condRange.LastNode());

    // afterDefaultCondBlock is now the switch, and all the switch targets have it as a predecessor.
    // originalSwitchBB is now a BBJ_NONE, and there is a predecessor edge in afterDefaultCondBlock
    // representing the fall-through flow from originalSwitchBB.
    assert(originalSwitchBB->bbJumpKind == BBJ_NONE);
    assert(originalSwitchBB->bbNext == afterDefaultCondBlock);
    assert(afterDefaultCondBlock->bbJumpKind == BBJ_SWITCH);
    assert(afterDefaultCondBlock->bbJumpSwt->bbsHasDefault);
    assert(afterDefaultCondBlock->isEmpty()); // Nothing here yet.

    // The GT_SWITCH code is still in originalSwitchBB (it will be removed later).

    // Turn originalSwitchBB into a BBJ_COND.
    originalSwitchBB->bbJumpKind = BBJ_COND;
    originalSwitchBB->bbJumpDest = jumpTab[jumpCnt - 1];

    // Fix the pred for the default case: the default block target still has originalSwitchBB
    // as a predecessor, but the fgSplitBlockAfterStatement() moved all predecessors to point
    // to afterDefaultCondBlock.
    flowList* oldEdge = comp->fgRemoveRefPred(jumpTab[jumpCnt - 1], afterDefaultCondBlock);
    comp->fgAddRefPred(jumpTab[jumpCnt - 1], originalSwitchBB, oldEdge);

    bool useJumpSequence = jumpCnt < minSwitchTabJumpCnt;

#if defined(_TARGET_UNIX_) && defined(_TARGET_ARM_)
    // Force using an inlined jumping instead switch table generation.
    // Switch jump table is generated with incorrect values in CoreRT case,
    // so any large switch will crash after loading to PC any such value.
    // I think this is due to the fact that we use absolute addressing
    // instead of relative. But in CoreRT is used as a rule relative
    // addressing when we generate an executable.
    // See also https://github.com/dotnet/coreclr/issues/13194
    // Also https://github.com/dotnet/coreclr/pull/13197
    useJumpSequence = useJumpSequence || comp->IsTargetAbi(CORINFO_CORERT_ABI);
#endif // defined(_TARGET_UNIX_) && defined(_TARGET_ARM_)

    // If we originally had 2 unique successors, check to see whether there is a unique
    // non-default case, in which case we can eliminate the switch altogether.
    // Note that the single unique successor case is handled above.
    BasicBlock* uniqueSucc = nullptr;
    if (targetCnt == 2)
    {
        uniqueSucc = jumpTab[0];
        noway_assert(jumpCnt >= 2);
        for (unsigned i = 1; i < jumpCnt - 1; i++)
        {
            if (jumpTab[i] != uniqueSucc)
            {
                uniqueSucc = nullptr;
                break;
            }
        }
    }
    if (uniqueSucc != nullptr)
    {
        // If the unique successor immediately follows this block, we have nothing to do -
        // it will simply fall-through after we remove the switch, below.
        // Otherwise, make this a BBJ_ALWAYS.
        // Now, fixup the predecessor links to uniqueSucc.  In the original jumpTab:
        //   jumpTab[i-1] was the default target, which we handled above,
        //   jumpTab[0] is the first target, and we'll leave that predecessor link.
        // Remove any additional predecessor links to uniqueSucc.
        for (unsigned i = 1; i < jumpCnt - 1; ++i)
        {
            assert(jumpTab[i] == uniqueSucc);
            (void)comp->fgRemoveRefPred(uniqueSucc, afterDefaultCondBlock);
        }
        if (afterDefaultCondBlock->bbNext == uniqueSucc)
        {
            afterDefaultCondBlock->bbJumpKind = BBJ_NONE;
            afterDefaultCondBlock->bbJumpDest = nullptr;
        }
        else
        {
            afterDefaultCondBlock->bbJumpKind = BBJ_ALWAYS;
            afterDefaultCondBlock->bbJumpDest = uniqueSucc;
        }
    }
    // If the number of possible destinations is small enough, we proceed to expand the switch
    // into a series of conditional branches, otherwise we follow the jump table based switch
    // transformation.
    else if (useJumpSequence || comp->compStressCompile(Compiler::STRESS_SWITCH_CMP_BR_EXPANSION, 50))
    {
        // Lower the switch into a series of compare and branch IR trees.
        //
        // In this case we will morph the node in the following way:
        // 1. Generate a JTRUE statement to evaluate the default case. (This happens above.)
        // 2. Start splitting the switch basic block into subsequent basic blocks, each of which will contain
        //    a statement that is responsible for performing a comparison of the table index and conditional
        //    branch if equal.

        JITDUMP("Lowering switch BB%02u: using compare/branch expansion\n", originalSwitchBB->bbNum);

        // We'll use 'afterDefaultCondBlock' for the first conditional. After that, we'll add new
        // blocks. If we end up not needing it at all (say, if all the non-default cases just fall through),
        // we'll delete it.
        bool        fUsedAfterDefaultCondBlock = false;
        BasicBlock* currentBlock               = afterDefaultCondBlock;
        LIR::Range* currentBBRange             = &LIR::AsRange(currentBlock);

        // Walk to entries 0 to jumpCnt - 1. If a case target follows, ignore it and let it fall through.
        // If no case target follows, the last one doesn't need to be a compare/branch: it can be an
        // unconditional branch.
        bool fAnyTargetFollows = false;
        for (unsigned i = 0; i < jumpCnt - 1; ++i)
        {
            assert(currentBlock != nullptr);

            // Remove the switch from the predecessor list of this case target's block.
            // We'll add the proper new predecessor edge later.
            flowList* oldEdge = comp->fgRemoveRefPred(jumpTab[i], afterDefaultCondBlock);

            if (jumpTab[i] == followingBB)
            {
                // This case label follows the switch; let it fall through.
                fAnyTargetFollows = true;
                continue;
            }

            // We need a block to put in the new compare and/or branch.
            // If we haven't used the afterDefaultCondBlock yet, then use that.
            if (fUsedAfterDefaultCondBlock)
            {
                BasicBlock* newBlock = comp->fgNewBBafter(BBJ_NONE, currentBlock, true);
                comp->fgAddRefPred(newBlock, currentBlock); // The fall-through predecessor.
                currentBlock   = newBlock;
                currentBBRange = &LIR::AsRange(currentBlock);
            }
            else
            {
                assert(currentBlock == afterDefaultCondBlock);
                fUsedAfterDefaultCondBlock = true;
            }

            // We're going to have a branch, either a conditional or unconditional,
            // to the target. Set the target.
            currentBlock->bbJumpDest = jumpTab[i];

            // Wire up the predecessor list for the "branch" case.
            comp->fgAddRefPred(jumpTab[i], currentBlock, oldEdge);

            if (!fAnyTargetFollows && (i == jumpCnt - 2))
            {
                // We're processing the last one, and there is no fall through from any case
                // to the following block, so we can use an unconditional branch to the final
                // case: there is no need to compare against the case index, since it's
                // guaranteed to be taken (since the default case was handled first, above).

                currentBlock->bbJumpKind = BBJ_ALWAYS;
            }
            else
            {
                // Otherwise, it's a conditional branch. Set the branch kind, then add the
                // condition statement.
                currentBlock->bbJumpKind = BBJ_COND;

                // Now, build the conditional statement for the current case that is
                // being evaluated:
                // GT_JTRUE
                //   |__ GT_COND
                //          |____GT_EQ
                //                 |____ (switchIndex) (The temp variable)
                //                 |____ (ICon)        (The actual case constant)
                GenTree* gtCaseCond = comp->gtNewOperNode(GT_EQ, TYP_INT, comp->gtNewLclvNode(tempLclNum, tempLclType),
                                                          comp->gtNewIconNode(i, tempLclType));
                /* Increment the lvRefCnt and lvRefCntWtd for temp */
                tempVarDsc->incRefCnts(blockWeight, comp);

                GenTree*   gtCaseBranch = comp->gtNewOperNode(GT_JTRUE, TYP_VOID, gtCaseCond);
                LIR::Range caseRange    = LIR::SeqTree(comp, gtCaseBranch);
                currentBBRange->InsertAtEnd(std::move(caseRange));
            }
        }

        if (fAnyTargetFollows)
        {
            // There is a fall-through to the following block. In the loop
            // above, we deleted all the predecessor edges from the switch.
            // In this case, we need to add one back.
            comp->fgAddRefPred(currentBlock->bbNext, currentBlock);
        }

        if (!fUsedAfterDefaultCondBlock)
        {
            // All the cases were fall-through! We don't need this block.
            // Convert it from BBJ_SWITCH to BBJ_NONE and unset the BBF_DONT_REMOVE flag
            // so fgRemoveBlock() doesn't complain.
            JITDUMP("Lowering switch BB%02u: all switch cases were fall-through\n", originalSwitchBB->bbNum);
            assert(currentBlock == afterDefaultCondBlock);
            assert(currentBlock->bbJumpKind == BBJ_SWITCH);
            currentBlock->bbJumpKind = BBJ_NONE;
            currentBlock->bbFlags &= ~BBF_DONT_REMOVE;
            comp->fgRemoveBlock(currentBlock, /* unreachable */ false); // It's an empty block.
        }
    }
    else
    {
        // At this point the default case has already been handled and we need to generate a jump
        // table based switch or a bit test based switch at the end of afterDefaultCondBlock. Both
        // switch variants need the switch value so create the necessary LclVar node here.
        GenTree*    switchValue      = comp->gtNewLclvNode(tempLclNum, tempLclType);
        LIR::Range& switchBlockRange = LIR::AsRange(afterDefaultCondBlock);
        tempVarDsc->incRefCnts(blockWeight, comp);
        switchBlockRange.InsertAtEnd(switchValue);

        // Try generating a bit test based switch first,
        // if that's not possible a jump table based switch will be generated.
        if (!TryLowerSwitchToBitTest(jumpTab, jumpCnt, targetCnt, afterDefaultCondBlock, switchValue))
        {
            JITDUMP("Lowering switch BB%02u: using jump table expansion\n", originalSwitchBB->bbNum);

#ifdef _TARGET_64BIT_
            if (tempLclType != TYP_I_IMPL)
            {
                // SWITCH_TABLE expects the switch value (the index into the jump table) to be TYP_I_IMPL.
                // Note that the switch value is unsigned so the cast should be unsigned as well.
                switchValue = comp->gtNewCastNode(TYP_I_IMPL, switchValue, true, TYP_U_IMPL);
                switchBlockRange.InsertAtEnd(switchValue);
            }
#endif

            GenTree* switchTable = comp->gtNewJmpTableNode();
            GenTree* switchJump  = comp->gtNewOperNode(GT_SWITCH_TABLE, TYP_VOID, switchValue, switchTable);
            switchBlockRange.InsertAfter(switchValue, switchTable, switchJump);

            // this block no longer branches to the default block
            afterDefaultCondBlock->bbJumpSwt->removeDefault();
        }

        comp->fgInvalidateSwitchDescMapEntry(afterDefaultCondBlock);
    }

    GenTree* next = node->gtNext;

    // Get rid of the GT_SWITCH(temp).
    switchBBRange.Remove(node->gtOp.gtOp1);
    switchBBRange.Remove(node);

    return next;
}

//------------------------------------------------------------------------
// TryLowerSwitchToBitTest: Attempts to transform a jump table switch into a bit test.
//
// Arguments:
//    jumpTable - The jump table
//    jumpCount - The number of blocks in the jump table
//    targetCount - The number of distinct blocks in the jump table
//    bbSwitch - The switch block
//    switchValue - A LclVar node that provides the switch value
//
// Return value:
//    true if the switch has been lowered to a bit test
//
// Notes:
//    If the jump table contains less than 32 (64 on 64 bit targets) entries and there
//    are at most 2 distinct jump targets then the jump table can be converted to a word
//    of bits where a 0 bit corresponds to one jump target and a 1 bit corresponds to the
//    other jump target. Instead of the indirect jump a BT-JCC sequnce is used to jump
//    to the appropiate target:
//        mov eax, 245 ; jump table converted to a "bit table"
//        bt  eax, ebx ; ebx is supposed to contain the switch value
//        jc target1
//      target0:
//        ...
//      target1:
//    Such code is both shorter and faster (in part due to the removal of a memory load)
//    than the traditional jump table base code. And of course, it also avoids the need
//    to emit the jump table itself that can reach up to 256 bytes (for 64 entries).
//
bool Lowering::TryLowerSwitchToBitTest(
    BasicBlock* jumpTable[], unsigned jumpCount, unsigned targetCount, BasicBlock* bbSwitch, GenTree* switchValue)
{
#ifndef _TARGET_XARCH_
    // Other architectures may use this if they substitute GT_BT with equivalent code.
    return false;
#else
    assert(jumpCount >= 2);
    assert(targetCount >= 2);
    assert(bbSwitch->bbJumpKind == BBJ_SWITCH);
    assert(switchValue->OperIs(GT_LCL_VAR));

    //
    // Quick check to see if it's worth going through the jump table. The bit test switch supports
    // up to 2 targets but targetCount also includes the default block so we need to allow 3 targets.
    // We'll ensure that there are only 2 targets when building the bit table.
    //

    if (targetCount > 3)
    {
        return false;
    }

    //
    // The number of bits in the bit table is the same as the number of jump table entries. But the
    // jump table also includes the default target (at the end) so we need to ignore it. The default
    // has already been handled by a JTRUE(GT(switchValue, jumpCount - 2)) that LowerSwitch generates.
    //

    const unsigned bitCount = jumpCount - 1;

    if (bitCount > (genTypeSize(TYP_I_IMPL) * 8))
    {
        return false;
    }

    //
    // Build a bit table where a bit set to 0 corresponds to bbCase0 and a bit set to 1 corresponds to
    // bbCase1. Simply use the first block in the jump table as bbCase1, later we can invert the bit
    // table and/or swap the blocks if it's beneficial.
    //

    BasicBlock* bbCase0  = nullptr;
    BasicBlock* bbCase1  = jumpTable[0];
    size_t      bitTable = 1;

    for (unsigned bitIndex = 1; bitIndex < bitCount; bitIndex++)
    {
        if (jumpTable[bitIndex] == bbCase1)
        {
            bitTable |= (size_t(1) << bitIndex);
        }
        else if (bbCase0 == nullptr)
        {
            bbCase0 = jumpTable[bitIndex];
        }
        else if (jumpTable[bitIndex] != bbCase0)
        {
            // If it's neither bbCase0 nor bbCase1 then it means we have 3 targets. There can't be more
            // than 3 because of the check at the start of the function.
            assert(targetCount == 3);
            return false;
        }
    }

    //
    // One of the case blocks has to follow the switch block. This requirement could be avoided
    // by adding a BBJ_ALWAYS block after the switch block but doing that sometimes negatively
    // impacts register allocation.
    //

    if ((bbSwitch->bbNext != bbCase0) && (bbSwitch->bbNext != bbCase1))
    {
        return false;
    }

#ifdef _TARGET_64BIT_
    //
    // See if we can avoid a 8 byte immediate on 64 bit targets. If all upper 32 bits are 1
    // then inverting the bit table will make them 0 so that the table now fits in 32 bits.
    // Note that this does not change the number of bits in the bit table, it just takes
    // advantage of the fact that loading a 32 bit immediate into a 64 bit register zero
    // extends the immediate value to 64 bit.
    //

    if (~bitTable <= UINT32_MAX)
    {
        bitTable = ~bitTable;
        std::swap(bbCase0, bbCase1);
    }
#endif

    //
    // Rewire the blocks as needed and figure out the condition to use for JCC.
    //

    genTreeOps bbSwitchCondition = GT_NONE;
    bbSwitch->bbJumpKind         = BBJ_COND;

    comp->fgRemoveAllRefPreds(bbCase1, bbSwitch);
    comp->fgRemoveAllRefPreds(bbCase0, bbSwitch);

    if (bbSwitch->bbNext == bbCase0)
    {
        // GT_LT + GTF_UNSIGNED generates JC so we jump to bbCase1 when the bit is set
        bbSwitchCondition    = GT_LT;
        bbSwitch->bbJumpDest = bbCase1;

        comp->fgAddRefPred(bbCase0, bbSwitch);
        comp->fgAddRefPred(bbCase1, bbSwitch);
    }
    else
    {
        assert(bbSwitch->bbNext == bbCase1);

        // GT_GE + GTF_UNSIGNED generates JNC so we jump to bbCase0 when the bit is not set
        bbSwitchCondition    = GT_GE;
        bbSwitch->bbJumpDest = bbCase0;

        comp->fgAddRefPred(bbCase0, bbSwitch);
        comp->fgAddRefPred(bbCase1, bbSwitch);
    }

    //
    // Append BT(bitTable, switchValue) and JCC(condition) to the switch block.
    //

    var_types bitTableType = (bitCount <= (genTypeSize(TYP_INT) * 8)) ? TYP_INT : TYP_LONG;
    GenTree*  bitTableIcon = comp->gtNewIconNode(bitTable, bitTableType);
    GenTree*  bitTest      = comp->gtNewOperNode(GT_BT, TYP_VOID, bitTableIcon, switchValue);
    bitTest->gtFlags |= GTF_SET_FLAGS;
    GenTreeCC* jcc = new (comp, GT_JCC) GenTreeCC(GT_JCC, bbSwitchCondition);
    jcc->gtFlags |= GTF_UNSIGNED | GTF_USE_FLAGS;

    LIR::AsRange(bbSwitch).InsertAfter(switchValue, bitTableIcon, bitTest, jcc);

    return true;
#endif // _TARGET_XARCH_
}

// NOTE: this method deliberately does not update the call arg table. It must only
// be used by NewPutArg and LowerArg; these functions are responsible for updating
// the call arg table as necessary.
void Lowering::ReplaceArgWithPutArgOrBitcast(GenTree** argSlot, GenTree* putArgOrBitcast)
{
    assert(argSlot != nullptr);
    assert(*argSlot != nullptr);
    assert(putArgOrBitcast->OperIsPutArg() || putArgOrBitcast->OperIs(GT_BITCAST));

    GenTree* arg = *argSlot;

    // Replace the argument with the putarg/copy
    *argSlot                    = putArgOrBitcast;
    putArgOrBitcast->gtOp.gtOp1 = arg;

    // Insert the putarg/copy into the block
    BlockRange().InsertAfter(arg, putArgOrBitcast);
}

//------------------------------------------------------------------------
// NewPutArg: rewrites the tree to put an arg in a register or on the stack.
//
// Arguments:
//    call - the call whose arg is being rewritten.
//    arg  - the arg being rewritten.
//    info - the fgArgTabEntry information for the argument.
//    type - the type of the argument.
//
// Return Value:
//    The new tree that was created to put the arg in the right place
//    or the incoming arg if the arg tree was not rewritten.
//
// Assumptions:
//    call, arg, and info must be non-null.
//
// Notes:
//    For System V systems with native struct passing (i.e. UNIX_AMD64_ABI defined)
//    this method allocates a single GT_PUTARG_REG for 1 eightbyte structs and a GT_FIELD_LIST of two GT_PUTARG_REGs
//    for two eightbyte structs.
//
//    For STK passed structs the method generates GT_PUTARG_STK tree. For System V systems with native struct passing
//    (i.e. UNIX_AMD64_ABI defined) this method also sets the GC pointers count and the pointers
//    layout object, so the codegen of the GT_PUTARG_STK could use this for optimizing copying to the stack by value.
//    (using block copy primitives for non GC pointers and a single TARGET_POINTER_SIZE copy with recording GC info.)
//
GenTree* Lowering::NewPutArg(GenTreeCall* call, GenTree* arg, fgArgTabEntry* info, var_types type)
{
    assert(call != nullptr);
    assert(arg != nullptr);
    assert(info != nullptr);

    GenTree* putArg         = nullptr;
    bool     updateArgTable = true;

    bool isOnStack = true;
    isOnStack      = info->regNum == REG_STK;

#ifdef _TARGET_ARMARCH_
    // Mark contained when we pass struct
    // GT_FIELD_LIST is always marked conatained when it is generated
    if (type == TYP_STRUCT)
    {
        arg->SetContained();
        if ((arg->OperGet() == GT_OBJ) && (arg->AsObj()->Addr()->OperGet() == GT_LCL_VAR_ADDR))
        {
            MakeSrcContained(arg, arg->AsObj()->Addr());
        }
    }
#endif

#ifdef _TARGET_ARM_
    // Struct can be split into register(s) and stack on ARM
    if (info->isSplit)
    {
        assert(arg->OperGet() == GT_OBJ || arg->OperGet() == GT_FIELD_LIST);
        // TODO: Need to check correctness for FastTailCall
        if (call->IsFastTailCall())
        {
            NYI_ARM("lower: struct argument by fast tail call");
        }

        putArg = new (comp, GT_PUTARG_SPLIT)
            GenTreePutArgSplit(arg, info->slotNum PUT_STRUCT_ARG_STK_ONLY_ARG(info->numSlots), info->numRegs,
                               call->IsFastTailCall(), call);
        putArg->gtRegNum = info->regNum;

        // If struct argument is morphed to GT_FIELD_LIST node(s),
        // we can know GC info by type of each GT_FIELD_LIST node.
        // So we skip setting GC Pointer info.
        //
        GenTreePutArgSplit* argSplit = putArg->AsPutArgSplit();
        if (arg->OperGet() == GT_OBJ)
        {
            BYTE*       gcLayout = nullptr;
            unsigned    numRefs  = 0;
            GenTreeObj* argObj   = arg->AsObj();

            if (argObj->IsGCInfoInitialized())
            {
                gcLayout = argObj->gtGcPtrs;
                numRefs  = argObj->GetGcPtrCount();
            }
            else
            {
                // Set GC Pointer info
                gcLayout = new (comp, CMK_Codegen) BYTE[info->numSlots + info->numRegs];
                numRefs  = comp->info.compCompHnd->getClassGClayout(arg->gtObj.gtClass, gcLayout);
                argSplit->setGcPointers(numRefs, gcLayout);
            }

            // Set type of registers
            for (unsigned index = 0; index < info->numRegs; index++)
            {
                var_types regType          = comp->getJitGCType(gcLayout[index]);
                argSplit->m_regType[index] = regType;
            }
        }
        else
        {
            GenTreeFieldList* fieldListPtr = arg->AsFieldList();
            for (unsigned index = 0; index < info->numRegs; fieldListPtr = fieldListPtr->Rest(), index++)
            {
                var_types regType          = fieldListPtr->gtGetOp1()->TypeGet();
                argSplit->m_regType[index] = regType;

                // Clear the register assignments on the fieldList nodes, as these are contained.
                fieldListPtr->gtRegNum = REG_NA;
            }
        }
    }
    else
#endif // _TARGET_ARM_
    {
        if (!isOnStack)
        {
#if FEATURE_MULTIREG_ARGS
            if ((info->numRegs > 1) && (arg->OperGet() == GT_FIELD_LIST))
            {
                assert(arg->OperGet() == GT_FIELD_LIST);

                assert(arg->AsFieldList()->IsFieldListHead());
                unsigned int regIndex = 0;
                for (GenTreeFieldList* fieldListPtr = arg->AsFieldList(); fieldListPtr != nullptr;
                     fieldListPtr                   = fieldListPtr->Rest())
                {
                    regNumber argReg = info->getRegNum(regIndex);
                    GenTree*  curOp  = fieldListPtr->gtOp.gtOp1;
                    var_types curTyp = curOp->TypeGet();

                    // Create a new GT_PUTARG_REG node with op1
                    GenTree* newOper = comp->gtNewPutArgReg(curTyp, curOp, argReg);

                    // Splice in the new GT_PUTARG_REG node in the GT_FIELD_LIST
                    ReplaceArgWithPutArgOrBitcast(&fieldListPtr->gtOp.gtOp1, newOper);
                    regIndex++;

                    // Initialize all the gtRegNum's since the list won't be traversed in an LIR traversal.
                    fieldListPtr->gtRegNum = REG_NA;
                }

                // Just return arg. The GT_FIELD_LIST is not replaced.
                // Nothing more to do.
                return arg;
            }
            else
#endif // FEATURE_MULTIREG_ARGS
            {
                putArg = comp->gtNewPutArgReg(type, arg, info->regNum);
            }
        }
        else
        {
            // Mark this one as tail call arg if it is a fast tail call.
            // This provides the info to put this argument in in-coming arg area slot
            // instead of in out-going arg area slot.

            // Make sure state is correct. The PUTARG_STK has TYP_VOID, as it doesn't produce
            // a result. So the type of its operand must be the correct type to push on the stack.
            // For a FIELD_LIST, this will be the type of the field (not the type of the arg),
            // but otherwise it is generally the type of the operand.
            info->checkIsStruct();
            if ((arg->OperGet() != GT_FIELD_LIST))
            {
#if defined(FEATURE_SIMD) && defined(FEATURE_PUT_STRUCT_ARG_STK)
                if (type == TYP_SIMD12)
                {
                    assert(info->numSlots == 3);
                }
                else
#endif // defined(FEATURE_SIMD) && defined(FEATURE_PUT_STRUCT_ARG_STK)
                {
                    assert(genActualType(arg->TypeGet()) == type);
                }
            }

            putArg =
                new (comp, GT_PUTARG_STK) GenTreePutArgStk(GT_PUTARG_STK, TYP_VOID, arg,
                                                           info->slotNum PUT_STRUCT_ARG_STK_ONLY_ARG(info->numSlots),
                                                           call->IsFastTailCall(), call);

#ifdef FEATURE_PUT_STRUCT_ARG_STK
            // If the ArgTabEntry indicates that this arg is a struct
            // get and store the number of slots that are references.
            // This is later used in the codegen for PUT_ARG_STK implementation
            // for struct to decide whether and how many single eight-byte copies
            // to be done (only for reference slots), so gcinfo is emitted.
            // For non-reference slots faster/smaller size instructions are used -
            // pair copying using XMM registers or rep mov instructions.
            if (info->isStruct)
            {
                // We use GT_OBJ only for non-lclVar, non-SIMD, non-FIELD_LIST struct arguments.
                if (arg->OperIsLocal())
                {
                    // This must have a type with a known size (SIMD or has been morphed to a primitive type).
                    assert(arg->TypeGet() != TYP_STRUCT);
                }
                else if (arg->OperIs(GT_OBJ))
                {
                    unsigned numRefs  = 0;
                    BYTE*    gcLayout = new (comp, CMK_Codegen) BYTE[info->numSlots];
                    assert(!varTypeIsSIMD(arg));
                    numRefs = comp->info.compCompHnd->getClassGClayout(arg->gtObj.gtClass, gcLayout);
                    putArg->AsPutArgStk()->setGcPointers(numRefs, gcLayout);

#ifdef _TARGET_X86_
                    // On x86 VM lies about the type of a struct containing a pointer sized
                    // integer field by returning the type of its field as the type of struct.
                    // Such struct can be passed in a register depending its position in
                    // parameter list.  VM does this unwrapping only one level and therefore
                    // a type like Struct Foo { Struct Bar { int f}} awlays needs to be
                    // passed on stack.  Also, VM doesn't lie about type of such a struct
                    // when it is a field of another struct.  That is VM doesn't lie about
                    // the type of Foo.Bar
                    //
                    // We now support the promotion of fields that are of type struct.
                    // However we only support a limited case where the struct field has a
                    // single field and that single field must be a scalar type. Say Foo.Bar
                    // field is getting passed as a parameter to a call, Since it is a TYP_STRUCT,
                    // as per x86 ABI it should always be passed on stack.  Therefore GenTree
                    // node under a PUTARG_STK could be GT_OBJ(GT_LCL_VAR_ADDR(v1)), where
                    // local v1 could be a promoted field standing for Foo.Bar.  Note that
                    // the type of v1 will be the type of field of Foo.Bar.f when Foo is
                    // promoted.  That is v1 will be a scalar type.  In this case we need to
                    // pass v1 on stack instead of in a register.
                    //
                    // TODO-PERF: replace GT_OBJ(GT_LCL_VAR_ADDR(v1)) with v1 if v1 is
                    // a scalar type and the width of GT_OBJ matches the type size of v1.
                    // Note that this cannot be done till call node arguments are morphed
                    // because we should not lose the fact that the type of argument is
                    // a struct so that the arg gets correctly marked to be passed on stack.
                    GenTree* objOp1 = arg->gtGetOp1();
                    if (objOp1->OperGet() == GT_LCL_VAR_ADDR)
                    {
                        unsigned lclNum = objOp1->AsLclVarCommon()->GetLclNum();
                        if (comp->lvaTable[lclNum].lvType != TYP_STRUCT)
                        {
                            comp->lvaSetVarDoNotEnregister(lclNum DEBUGARG(Compiler::DNER_VMNeedsStackAddr));
                        }
                    }
#endif // _TARGET_X86_
                }
                else if (!arg->OperIs(GT_FIELD_LIST))
                {
                    assert(varTypeIsSIMD(arg) || (info->numSlots == 1));
                }
            }
#endif // FEATURE_PUT_STRUCT_ARG_STK
        }
    }

    JITDUMP("new node is : ");
    DISPNODE(putArg);
    JITDUMP("\n");

    if (arg->gtFlags & GTF_LATE_ARG)
    {
        putArg->gtFlags |= GTF_LATE_ARG;
    }
    else if (updateArgTable)
    {
        info->node = putArg;
    }
    return putArg;
}

//------------------------------------------------------------------------
// LowerArg: Lower one argument of a call. This entails splicing a "putarg" node between
// the argument evaluation and the call. This is the point at which the source is
// consumed and the value transitions from control of the register allocator to the calling
// convention.
//
// Arguments:
//    call  - The call node
//    ppArg - Pointer to the call argument pointer. We might replace the call argument by
//            changing *ppArg.
//
// Return Value:
//    None.
//
void Lowering::LowerArg(GenTreeCall* call, GenTree** ppArg)
{
    GenTree* arg = *ppArg;

    JITDUMP("lowering arg : ");
    DISPNODE(arg);

    // No assignments should remain by Lowering.
    assert(!arg->OperIsAssignment());
    assert(!arg->OperIsPutArgStk());

    // Assignments/stores at this level are not really placing an argument.
    // They are setting up temporary locals that will later be placed into
    // outgoing regs or stack.
    if (arg->OperIsStore() || arg->IsArgPlaceHolderNode() || arg->IsNothingNode() || arg->OperIsCopyBlkOp())
    {
        return;
    }

    fgArgTabEntry* info = comp->gtArgEntryByNode(call, arg);
    assert(info->node == arg);
    var_types type = arg->TypeGet();

    if (varTypeIsSmall(type))
    {
        // Normalize 'type', it represents the item that we will be storing in the Outgoing Args
        type = TYP_INT;
    }

#if defined(FEATURE_SIMD)
#if defined(_TARGET_X86_)
    // Non-param TYP_SIMD12 local var nodes are massaged in Lower to TYP_SIMD16 to match their
    // allocated size (see lvSize()). However, when passing the variables as arguments, and
    // storing the variables to the outgoing argument area on the stack, we must use their
    // actual TYP_SIMD12 type, so exactly 12 bytes is allocated and written.
    if (type == TYP_SIMD16)
    {
        if ((arg->OperGet() == GT_LCL_VAR) || (arg->OperGet() == GT_STORE_LCL_VAR))
        {
            unsigned   varNum = arg->AsLclVarCommon()->GetLclNum();
            LclVarDsc* varDsc = &comp->lvaTable[varNum];
            type              = varDsc->lvType;
        }
        else if (arg->OperGet() == GT_SIMD)
        {
            assert((arg->AsSIMD()->gtSIMDSize == 16) || (arg->AsSIMD()->gtSIMDSize == 12));

            if (arg->AsSIMD()->gtSIMDSize == 12)
            {
                type = TYP_SIMD12;
            }
        }
    }
#elif defined(_TARGET_AMD64_)
    // TYP_SIMD8 parameters that are passed as longs
    if (type == TYP_SIMD8 && genIsValidIntReg(info->regNum))
    {
        GenTreeUnOp* bitcast = new (comp, GT_BITCAST) GenTreeOp(GT_BITCAST, TYP_LONG, arg, nullptr);
        BlockRange().InsertAfter(arg, bitcast);

        info->node = *ppArg = arg = bitcast;
        type                      = TYP_LONG;
    }
#endif // defined(_TARGET_X86_)
#endif // defined(FEATURE_SIMD)

    // If we hit this we are probably double-lowering.
    assert(!arg->OperIsPutArg());

#if !defined(_TARGET_64BIT_)
    if (varTypeIsLong(type))
    {
        bool isReg = (info->regNum != REG_STK);
        if (isReg)
        {
            noway_assert(arg->OperGet() == GT_LONG);
            assert(info->numRegs == 2);

            GenTree* argLo = arg->gtGetOp1();
            GenTree* argHi = arg->gtGetOp2();

            GenTreeFieldList* fieldList = new (comp, GT_FIELD_LIST) GenTreeFieldList(argLo, 0, TYP_INT, nullptr);
            // Only the first fieldList node (GTF_FIELD_LIST_HEAD) is in the instruction sequence.
            (void)new (comp, GT_FIELD_LIST) GenTreeFieldList(argHi, 4, TYP_INT, fieldList);
            GenTree* putArg = NewPutArg(call, fieldList, info, type);

            BlockRange().InsertBefore(arg, putArg);
            BlockRange().Remove(arg);
            *ppArg     = fieldList;
            info->node = fieldList;
        }
        else
        {
            assert(arg->OperGet() == GT_LONG);
            // For longs, we will replace the GT_LONG with a GT_FIELD_LIST, and put that under a PUTARG_STK.
            // Although the hi argument needs to be pushed first, that will be handled by the general case,
            // in which the fields will be reversed.
            assert(info->numSlots == 2);
            GenTree*          argLo     = arg->gtGetOp1();
            GenTree*          argHi     = arg->gtGetOp2();
            GenTreeFieldList* fieldList = new (comp, GT_FIELD_LIST) GenTreeFieldList(argLo, 0, TYP_INT, nullptr);
            // Only the first fieldList node (GTF_FIELD_LIST_HEAD) is in the instruction sequence.
            (void)new (comp, GT_FIELD_LIST) GenTreeFieldList(argHi, 4, TYP_INT, fieldList);
            GenTree* putArg  = NewPutArg(call, fieldList, info, type);
            putArg->gtRegNum = info->regNum;

            // We can't call ReplaceArgWithPutArgOrBitcast here because it presumes that we are keeping the original
            // arg.
            BlockRange().InsertBefore(arg, fieldList, putArg);
            BlockRange().Remove(arg);
            *ppArg = putArg;
        }
    }
    else
#endif // !defined(_TARGET_64BIT_)
    {

#ifdef _TARGET_ARMARCH_
        if (call->IsVarargs() || comp->opts.compUseSoftFP)
        {
            // For vararg call or on armel, reg args should be all integer.
            // Insert copies as needed to move float value to integer register.
            GenTree* newNode = LowerFloatArg(ppArg, info);
            if (newNode != nullptr)
            {
                type = newNode->TypeGet();
            }
        }
#endif // _TARGET_ARMARCH_

        GenTree* putArg = NewPutArg(call, arg, info, type);

        // In the case of register passable struct (in one or two registers)
        // the NewPutArg returns a new node (GT_PUTARG_REG or a GT_FIELD_LIST with two GT_PUTARG_REGs.)
        // If an extra node is returned, splice it in the right place in the tree.
        if (arg != putArg)
        {
            ReplaceArgWithPutArgOrBitcast(ppArg, putArg);
        }
    }
}

#ifdef _TARGET_ARMARCH_
//------------------------------------------------------------------------
// LowerFloatArg: Lower float call arguments on the arm platform.
//
// Arguments:
//    arg  - The arg node
//    info - call argument info
//
// Return Value:
//    Return nullptr, if no transformation was done;
//    return arg if there was in place transformation;
//    return a new tree if the root was changed.
//
// Notes:
//    This must handle scalar float arguments as well as GT_FIELD_LISTs
//    with floating point fields.
//
GenTree* Lowering::LowerFloatArg(GenTree** pArg, fgArgTabEntry* info)
{
    GenTree* arg = *pArg;
    if (info->regNum != REG_STK)
    {
        if (arg->OperIsFieldList())
        {
            GenTreeFieldList* currListNode  = arg->AsFieldList();
            regNumber         currRegNumber = info->regNum;

            // Transform fields that are passed as registers in place.
            unsigned fieldRegCount;
            for (unsigned i = 0; i < info->numRegs; i += fieldRegCount)
            {
                assert(currListNode != nullptr);
                GenTree* node = currListNode->Current();
                if (varTypeIsFloating(node))
                {
                    GenTree* intNode = LowerFloatArgReg(node, currRegNumber);
                    assert(intNode != nullptr);

                    ReplaceArgWithPutArgOrBitcast(currListNode->pCurrent(), intNode);
                    currListNode->ChangeType(intNode->TypeGet());
                }

                if (node->TypeGet() == TYP_DOUBLE)
                {
                    currRegNumber = REG_NEXT(REG_NEXT(currRegNumber));
                    fieldRegCount = 2;
                }
                else
                {
                    currRegNumber = REG_NEXT(currRegNumber);
                    fieldRegCount = 1;
                }
                currListNode = currListNode->Rest();
            }
            // List fields were replaced in place.
            return arg;
        }
        else if (varTypeIsFloating(arg))
        {
            GenTree* intNode = LowerFloatArgReg(arg, info->regNum);
            assert(intNode != nullptr);
            ReplaceArgWithPutArgOrBitcast(pArg, intNode);
            return *pArg;
        }
    }
    return nullptr;
}

//------------------------------------------------------------------------
// LowerFloatArgReg: Lower the float call argument node that is passed via register.
//
// Arguments:
//    arg    - The arg node
//    regNum - register number
//
// Return Value:
//    Return new bitcast node, that moves float to int register.
//
GenTree* Lowering::LowerFloatArgReg(GenTree* arg, regNumber regNum)
{
    var_types floatType = arg->TypeGet();
    assert(varTypeIsFloating(floatType));
    var_types intType = (floatType == TYP_DOUBLE) ? TYP_LONG : TYP_INT;
    GenTree*  intArg  = comp->gtNewBitCastNode(intType, arg);
    intArg->gtRegNum  = regNum;
#ifdef _TARGET_ARM_
    if (floatType == TYP_DOUBLE)
    {
        regNumber nextReg                  = REG_NEXT(regNum);
        intArg->AsMultiRegOp()->gtOtherReg = nextReg;
    }
#endif
    return intArg;
}
#endif

// do lowering steps for each arg of a call
void Lowering::LowerArgsForCall(GenTreeCall* call)
{
    JITDUMP("objp:\n======\n");
    if (call->gtCallObjp)
    {
        LowerArg(call, &call->gtCallObjp);
    }

    GenTreeArgList* args = call->gtCallArgs;

    JITDUMP("\nargs:\n======\n");
    for (; args; args = args->Rest())
    {
        LowerArg(call, &args->Current());
    }

    JITDUMP("\nlate:\n======\n");
    for (args = call->gtCallLateArgs; args; args = args->Rest())
    {
        LowerArg(call, &args->Current());
    }
}

// helper that create a node representing a relocatable physical address computation
GenTree* Lowering::AddrGen(ssize_t addr)
{
    // this should end up in codegen as : instGen_Set_Reg_To_Imm(EA_HANDLE_CNS_RELOC, reg, addr)
    GenTree* result = comp->gtNewIconHandleNode(addr, GTF_ICON_FTN_ADDR);
    return result;
}

// variant that takes a void*
GenTree* Lowering::AddrGen(void* addr)
{
    return AddrGen((ssize_t)addr);
}

// do lowering steps for a call
// this includes:
//   - adding the placement nodes (either stack or register variety) for arguments
//   - lowering the expression that calculates the target address
//   - adding nodes for other operations that occur after the call sequence starts and before
//        control transfer occurs (profiling and tail call helpers, pinvoke incantations)
//
void Lowering::LowerCall(GenTree* node)
{
    GenTreeCall* call = node->AsCall();

    JITDUMP("lowering call (before):\n");
    DISPTREERANGE(BlockRange(), call);
    JITDUMP("\n");

    call->ClearOtherRegs();
    LowerArgsForCall(call);

    // note that everything generated from this point on runs AFTER the outgoing args are placed
    GenTree* result = nullptr;

    // for x86, this is where we record ESP for checking later to make sure stack is balanced

    // Check for Delegate.Invoke(). If so, we inline it. We get the
    // target-object and target-function from the delegate-object, and do
    // an indirect call.
    if (call->IsDelegateInvoke())
    {
        result = LowerDelegateInvoke(call);
    }
    else
    {
        //  Virtual and interface calls
        switch (call->gtFlags & GTF_CALL_VIRT_KIND_MASK)
        {
            case GTF_CALL_VIRT_STUB:
                result = LowerVirtualStubCall(call);
                break;

            case GTF_CALL_VIRT_VTABLE:
                // stub dispatching is off or this is not a virtual call (could be a tailcall)
                result = LowerVirtualVtableCall(call);
                break;

            case GTF_CALL_NONVIRT:
                if (call->IsUnmanaged())
                {
                    result = LowerNonvirtPinvokeCall(call);
                }
                else if (call->gtCallType == CT_INDIRECT)
                {
                    result = LowerIndirectNonvirtCall(call);
                }
                else
                {
                    result = LowerDirectCall(call);
                }
                break;

            default:
                noway_assert(!"strange call type");
                break;
        }
    }

    if (call->IsTailCallViaHelper())
    {
        // Either controlExpr or gtCallAddr must contain real call target.
        if (result == nullptr)
        {
            assert(call->gtCallType == CT_INDIRECT);
            assert(call->gtCallAddr != nullptr);
            result = call->gtCallAddr;
        }

        result = LowerTailCallViaHelper(call, result);
    }
    else if (call->IsFastTailCall())
    {
        LowerFastTailCall(call);
    }

    if (result != nullptr)
    {
        LIR::Range resultRange = LIR::SeqTree(comp, result);

        JITDUMP("results of lowering call:\n");
        DISPRANGE(resultRange);

        GenTree* insertionPoint = call;
        if (!call->IsTailCallViaHelper())
        {
            // The controlExpr should go before the gtCallCookie and the gtCallAddr, if they exist
            //
            // TODO-LIR: find out what's really required here, as this is currently a tree order
            // dependency.
            if (call->gtCallType == CT_INDIRECT)
            {
                bool isClosed = false;
                if (call->gtCallCookie != nullptr)
                {
#ifdef DEBUG
                    GenTree* firstCallAddrNode = BlockRange().GetTreeRange(call->gtCallAddr, &isClosed).FirstNode();
                    assert(isClosed);
                    assert(call->gtCallCookie->Precedes(firstCallAddrNode));
#endif // DEBUG

                    insertionPoint = BlockRange().GetTreeRange(call->gtCallCookie, &isClosed).FirstNode();
                    assert(isClosed);
                }
                else if (call->gtCallAddr != nullptr)
                {
                    insertionPoint = BlockRange().GetTreeRange(call->gtCallAddr, &isClosed).FirstNode();
                    assert(isClosed);
                }
            }
        }

        ContainCheckRange(resultRange);
        BlockRange().InsertBefore(insertionPoint, std::move(resultRange));

        call->gtControlExpr = result;
    }

    if (comp->opts.IsJit64Compat())
    {
        CheckVSQuirkStackPaddingNeeded(call);
    }

    ContainCheckCallOperands(call);
    JITDUMP("lowering call (after):\n");
    DISPTREERANGE(BlockRange(), call);
    JITDUMP("\n");
}

// Though the below described issue gets fixed in intellitrace dll of VS2015 (a.k.a Dev14),
// we still need this quirk for desktop so that older version of VS (e.g. VS2010/2012)
// continues to work.
// This quirk is excluded from other targets that have no back compat burden.
//
// Quirk for VS debug-launch scenario to work:
// See if this is a PInvoke call with exactly one param that is the address of a struct local.
// In such a case indicate to frame-layout logic to add 16-bytes of padding
// between save-reg area and locals.  This is to protect against the buffer
// overrun bug in microsoft.intellitrace.11.0.0.dll!ProfilerInterop.InitInterop().
//
// A work-around to this bug is to disable IntelliTrace debugging
// (VS->Tools->Options->IntelliTrace->Enable IntelliTrace - uncheck this option).
// The reason why this works on Jit64 is that at the point of AV the call stack is
//
// GetSystemInfo() Native call
// IL_Stub generated for PInvoke declaration.
// ProfilerInterface::InitInterop()
// ProfilerInterface.Cctor()
// VM asm worker
//
// The cctor body has just the call to InitInterop().  VM asm worker is holding
// something in rbx that is used immediately after the Cctor call.  Jit64 generated
// InitInterop() method is pushing the registers in the following order
//
//  rbx
//  rbp
//  rsi
//  rdi
//  r12
//  r13
//  Struct local
//
// Due to buffer overrun, rbx doesn't get impacted.  Whereas RyuJIT jitted code of
// the same method is pushing regs in the following order
//
//  rbp
//  rdi
//  rsi
//  rbx
//  struct local
//
// Therefore as a fix, we add padding between save-reg area and locals to
// make this scenario work against JB.
//
// Note: If this quirk gets broken due to other JIT optimizations, we should consider
// more tolerant fix.  One such fix is to padd the struct.
void Lowering::CheckVSQuirkStackPaddingNeeded(GenTreeCall* call)
{
    assert(comp->opts.IsJit64Compat());

#ifdef _TARGET_AMD64_
    // Confine this to IL stub calls which aren't marked as unmanaged.
    if (call->IsPInvoke() && !call->IsUnmanaged())
    {
        bool     paddingNeeded  = false;
        GenTree* firstPutArgReg = nullptr;
        for (GenTreeArgList* args = call->gtCallLateArgs; args; args = args->Rest())
        {
            GenTree* tmp = args->Current();
            if (tmp->OperGet() == GT_PUTARG_REG)
            {
                if (firstPutArgReg == nullptr)
                {
                    firstPutArgReg = tmp;
                    GenTree* op1   = firstPutArgReg->gtOp.gtOp1;

                    if (op1->OperGet() == GT_LCL_VAR_ADDR)
                    {
                        unsigned lclNum = op1->AsLclVarCommon()->GetLclNum();
                        // TODO-1stClassStructs: This is here to duplicate previous behavior,
                        // but is not needed because the scenario being quirked did not involve
                        // a SIMD or enregisterable struct.
                        // if(comp->lvaTable[lclNum].TypeGet() == TYP_STRUCT)
                        if (varTypeIsStruct(comp->lvaTable[lclNum].TypeGet()))
                        {
                            // First arg is addr of a struct local.
                            paddingNeeded = true;
                        }
                        else
                        {
                            // Not a struct local.
                            assert(paddingNeeded == false);
                            break;
                        }
                    }
                    else
                    {
                        // First arg is not a local var addr.
                        assert(paddingNeeded == false);
                        break;
                    }
                }
                else
                {
                    // Has more than one arg.
                    paddingNeeded = false;
                    break;
                }
            }
        }

        if (paddingNeeded)
        {
            comp->compVSQuirkStackPaddingNeeded = VSQUIRK_STACK_PAD;
        }
    }
#endif // _TARGET_AMD64_
}

// Inserts profiler hook, GT_PROF_HOOK for a tail call node.
//
// AMD64:
// We need to insert this after all nested calls, but before all the arguments to this call have been set up.
// To do this, we look for the first GT_PUTARG_STK or GT_PUTARG_REG, and insert the hook immediately before
// that. If there are no args, then it should be inserted before the call node.
//
// For example:
//              *  stmtExpr  void  (top level) (IL 0x000...0x010)
// arg0 SETUP   |  /--*  argPlace  ref    REG NA $c5
// this in rcx  |  |     /--*  argPlace  ref    REG NA $c1
//              |  |     |  /--*  call      ref    System.Globalization.CultureInfo.get_InvariantCulture $c2
// arg1 SETUP   |  |     +--*  st.lclVar ref    V02 tmp1          REG NA $c2
//              |  |     |  /--*  lclVar    ref    V02 tmp1         u : 2 (last use) REG NA $c2
// arg1 in rdx  |  |     +--*  putarg_reg ref    REG NA
//              |  |     |  /--*  lclVar    ref    V00 arg0         u : 2 (last use) REG NA $80
// this in rcx  |  |     +--*  putarg_reg ref    REG NA
//              |  |  /--*  call nullcheck ref    System.String.ToLower $c5
//              |  |  {  *  stmtExpr  void  (embedded)(IL 0x000... ? ? ? )
//              |  |  {  \--*  prof_hook void   REG NA
// arg0 in rcx  |  +--*  putarg_reg ref    REG NA
// control expr |  +--*  const(h)  long   0x7ffe8e910e98 ftn REG NA
//              \--*  call      void   System.Runtime.Remoting.Identity.RemoveAppNameOrAppGuidIfNecessary $VN.Void
//
// In this case, the GT_PUTARG_REG src is a nested call. We need to put the instructions after that call
// (as shown). We assume that of all the GT_PUTARG_*, only the first one can have a nested call.
//
// X86:
// Insert the profiler hook immediately before the call. The profiler hook will preserve
// all argument registers (ECX, EDX), but nothing else.
//
// Params:
//    callNode        - tail call node
//    insertionPoint  - if non-null, insert the profiler hook before this point.
//                      If null, insert the profiler hook before args are setup
//                      but after all arg side effects are computed.
//
void Lowering::InsertProfTailCallHook(GenTreeCall* call, GenTree* insertionPoint)
{
    assert(call->IsTailCall());
    assert(comp->compIsProfilerHookNeeded());

#if defined(_TARGET_X86_)

    if (insertionPoint == nullptr)
    {
        insertionPoint = call;
    }

#else // !defined(_TARGET_X86_)

    if (insertionPoint == nullptr)
    {
        GenTree* tmp = nullptr;
        for (GenTreeArgList* args = call->gtCallArgs; args; args = args->Rest())
        {
            tmp = args->Current();
            assert(tmp->OperGet() != GT_PUTARG_REG); // We don't expect to see these in gtCallArgs
            if (tmp->OperGet() == GT_PUTARG_STK)
            {
                // found it
                insertionPoint = tmp;
                break;
            }
        }

        if (insertionPoint == nullptr)
        {
            for (GenTreeArgList* args = call->gtCallLateArgs; args; args = args->Rest())
            {
                tmp = args->Current();
                if ((tmp->OperGet() == GT_PUTARG_REG) || (tmp->OperGet() == GT_PUTARG_STK))
                {
                    // found it
                    insertionPoint = tmp;
                    break;
                }
            }

            // If there are no args, insert before the call node
            if (insertionPoint == nullptr)
            {
                insertionPoint = call;
            }
        }
    }

#endif // !defined(_TARGET_X86_)

    assert(insertionPoint != nullptr);
    GenTree* profHookNode = new (comp, GT_PROF_HOOK) GenTree(GT_PROF_HOOK, TYP_VOID);
    BlockRange().InsertBefore(insertionPoint, profHookNode);
}

// Lower fast tail call implemented as epilog+jmp.
// Also inserts PInvoke method epilog if required.
void Lowering::LowerFastTailCall(GenTreeCall* call)
{
#if FEATURE_FASTTAILCALL
    // Tail call restrictions i.e. conditions under which tail prefix is ignored.
    // Most of these checks are already done by importer or fgMorphTailCall().
    // This serves as a double sanity check.
    assert((comp->info.compFlags & CORINFO_FLG_SYNCH) == 0); // tail calls from synchronized methods
    assert(!comp->opts.compNeedSecurityCheck);               // tail call from methods that need security check
    assert(!call->IsUnmanaged());                            // tail calls to unamanaged methods
    assert(!comp->compLocallocUsed);                         // tail call from methods that also do localloc

#ifdef _TARGET_AMD64_
    assert(!comp->getNeedsGSSecurityCookie()); // jit64 compat: tail calls from methods that need GS check
#endif                                         // _TARGET_AMD64_

    // We expect to see a call that meets the following conditions
    assert(call->IsFastTailCall());

    // VM cannot use return address hijacking when A() and B() tail call each
    // other in mutual recursion.  Therefore, this block is reachable through
    // a GC-safe point or the whole method is marked as fully interruptible.
    //
    // TODO-Cleanup:
    // optReachWithoutCall() depends on the fact that loop headers blocks
    // will have a block number > fgLastBB.  These loop headers gets added
    // after dominator computation and get skipped by OptReachWithoutCall().
    // The below condition cannot be asserted in lower because fgSimpleLowering()
    // can add a new basic block for range check failure which becomes
    // fgLastBB with block number > loop header block number.
    // assert((comp->compCurBB->bbFlags & BBF_GC_SAFE_POINT) ||
    //         !comp->optReachWithoutCall(comp->fgFirstBB, comp->compCurBB) || comp->genInterruptible);

    // If PInvokes are in-lined, we have to remember to execute PInvoke method epilog anywhere that
    // a method returns.  This is a case of caller method has both PInvokes and tail calls.
    if (comp->info.compCallUnmanaged)
    {
        InsertPInvokeMethodEpilog(comp->compCurBB DEBUGARG(call));
    }

    // Args for tail call are setup in incoming arg area.  The gc-ness of args of
    // caller and callee (which being tail called) may not match.  Therefore, everything
    // from arg setup until the epilog need to be non-interuptible by GC.  This is
    // achieved by inserting GT_START_NONGC before the very first GT_PUTARG_STK node
    // of call is setup.  Note that once a stack arg is setup, it cannot have nested
    // calls subsequently in execution order to setup other args, because the nested
    // call could over-write the stack arg that is setup earlier.
    GenTree*             firstPutArgStk = nullptr;
    GenTreeArgList*      args;
    ArrayStack<GenTree*> putargs(comp);

    for (args = call->gtCallArgs; args; args = args->Rest())
    {
        GenTree* tmp = args->Current();
        if (tmp->OperGet() == GT_PUTARG_STK)
        {
            putargs.Push(tmp);
        }
    }

    for (args = call->gtCallLateArgs; args; args = args->Rest())
    {
        GenTree* tmp = args->Current();
        if (tmp->OperGet() == GT_PUTARG_STK)
        {
            putargs.Push(tmp);
        }
    }

    if (putargs.Height() > 0)
    {
        firstPutArgStk = putargs.Bottom();
    }

    // If we have a putarg_stk node, also count the number of non-standard args the
    // call node has.  Note that while determining whether a tail call can be fast
    // tail called, we don't count non-standard args (passed in R10 or R11) since they
    // don't contribute to outgoing arg space.  These non-standard args are not
    // accounted in caller's arg count but accounted in callee's arg count after
    // fgMorphArgs(). Therefore, exclude callee's non-standard args while mapping
    // callee's stack arg num to corresponding caller's stack arg num.
    unsigned calleeNonStandardArgCount = call->GetNonStandardAddedArgCount(comp);

    // Say Caller(a, b, c, d, e) fast tail calls Callee(e, d, c, b, a)
    // i.e. passes its arguments in reverse to Callee. During call site
    // setup, after computing argument side effects, stack args are setup
    // first and reg args next.  In the above example, both Callers and
    // Callee stack args (e and a respectively) share the same stack slot
    // and are alive at the same time.  The act of setting up Callee's
    // stack arg will over-write the stack arg of Caller and if there are
    // further uses of Caller stack arg we have to make sure that we move
    // it to a temp before over-writing its slot and use temp in place of
    // the corresponding Caller stack arg.
    //
    // For the above example, conceptually this is what is done
    //       tmp = e;
    //       Stack slot of e  = a
    //       R9 = b, R8 = c, RDx = d
    //       RCX = tmp
    //
    // The below logic is meant to detect cases like this and introduce
    // temps to set up args correctly for Callee.

    for (int i = 0; i < putargs.Height(); i++)
    {
        GenTree* putArgStkNode = putargs.Bottom(i);

        assert(putArgStkNode->OperGet() == GT_PUTARG_STK);

        // Get the caller arg num corresponding to this callee arg.
        // Note that these two args share the same stack slot. Therefore,
        // if there are further uses of corresponding caller arg, we need
        // to move it to a temp and use the temp in this call tree.
        //
        // Note that Caller is guaranteed to have a param corresponding to
        // this Callee's arg since fast tail call mechanism counts the
        // stack slots required for both Caller and Callee for passing params
        // and allow fast tail call only if stack slots required by Caller >=
        // Callee.
        fgArgTabEntry* argTabEntry = comp->gtArgEntryByNode(call, putArgStkNode);
        assert(argTabEntry);
        unsigned callerArgNum = argTabEntry->argNum - calleeNonStandardArgCount;
        noway_assert(callerArgNum < comp->info.compArgsCount);

        unsigned   callerArgLclNum = callerArgNum;
        LclVarDsc* callerArgDsc    = comp->lvaTable + callerArgLclNum;
        if (callerArgDsc->lvPromoted)
        {
            callerArgLclNum =
                callerArgDsc->lvFieldLclStart; // update the callerArgNum to the promoted struct field's lclNum
            callerArgDsc = comp->lvaTable + callerArgLclNum;
        }
        noway_assert(callerArgDsc->lvIsParam);

        // Start searching in execution order list till we encounter call node
        unsigned  tmpLclNum = BAD_VAR_NUM;
        var_types tmpType   = TYP_UNDEF;
        for (GenTree* treeNode = putArgStkNode->gtNext; treeNode != call; treeNode = treeNode->gtNext)
        {
            if (treeNode->OperIsLocal() || treeNode->OperIsLocalAddr())
            {
                // This should neither be a GT_REG_VAR nor GT_PHI_ARG.
                assert((treeNode->OperGet() != GT_REG_VAR) && (treeNode->OperGet() != GT_PHI_ARG));

                GenTreeLclVarCommon* lcl    = treeNode->AsLclVarCommon();
                LclVarDsc*           lclVar = &comp->lvaTable[lcl->gtLclNum];

                // Fast tail calling criteria permits passing of structs of size 1, 2, 4 and 8 as args.
                // It is possible that the callerArgLclNum corresponds to such a struct whose stack slot
                // is getting over-written by setting up of a stack arg and there are further uses of
                // any of its fields if such a struct is type-dependently promoted.  In this case too
                // we need to introduce a temp.
                if ((lcl->gtLclNum == callerArgNum) || (lcl->gtLclNum == callerArgLclNum))
                {
                    // Create tmp and use it in place of callerArgDsc
                    if (tmpLclNum == BAD_VAR_NUM)
                    {
                        // Set tmpType first before calling lvaGrabTemp, as that call invalidates callerArgDsc
                        tmpType   = genActualType(callerArgDsc->lvaArgType());
                        tmpLclNum = comp->lvaGrabTemp(
                            true DEBUGARG("Fast tail call lowering is creating a new local variable"));

                        comp->lvaSortAgain                          = true;
                        comp->lvaTable[tmpLclNum].lvType            = tmpType;
                        comp->lvaTable[tmpLclNum].lvRefCnt          = 1;
                        comp->lvaTable[tmpLclNum].lvDoNotEnregister = comp->lvaTable[lcl->gtLclNum].lvDoNotEnregister;
                    }

                    lcl->SetLclNum(tmpLclNum);
                }
            }
        }

        // If we have created a temp, insert an embedded assignment stmnt before
        // the first putargStkNode i.e.
        //     tmpLcl = CallerArg
        if (tmpLclNum != BAD_VAR_NUM)
        {
            assert(tmpType != TYP_UNDEF);
            GenTreeLclVar* local =
                new (comp, GT_LCL_VAR) GenTreeLclVar(GT_LCL_VAR, tmpType, callerArgLclNum, BAD_IL_OFFSET);
            GenTree* assignExpr = comp->gtNewTempAssign(tmpLclNum, local);
            ContainCheckRange(local, assignExpr);
            BlockRange().InsertBefore(firstPutArgStk, LIR::SeqTree(comp, assignExpr));
        }
    }

    // Insert GT_START_NONGC node before the first GT_PUTARG_STK node.
    // Note that if there are no args to be setup on stack, no need to
    // insert GT_START_NONGC node.
    GenTree* startNonGCNode = nullptr;
    if (firstPutArgStk != nullptr)
    {
        startNonGCNode = new (comp, GT_START_NONGC) GenTree(GT_START_NONGC, TYP_VOID);
        BlockRange().InsertBefore(firstPutArgStk, startNonGCNode);

        // Gc-interruptability in the following case:
        //     foo(a, b, c, d, e) { bar(a, b, c, d, e); }
        //     bar(a, b, c, d, e) { foo(a, b, d, d, e); }
        //
        // Since the instruction group starting from the instruction that sets up first
        // stack arg to the end of the tail call is marked as non-gc interruptible,
        // this will form a non-interruptible tight loop causing gc-starvation. To fix
        // this we insert GT_NO_OP as embedded stmt before GT_START_NONGC, if the method
        // has a single basic block and is not a GC-safe point.  The presence of a single
        // nop outside non-gc interruptible region will prevent gc starvation.
        if ((comp->fgBBcount == 1) && !(comp->compCurBB->bbFlags & BBF_GC_SAFE_POINT))
        {
            assert(comp->fgFirstBB == comp->compCurBB);
            GenTree* noOp = new (comp, GT_NO_OP) GenTree(GT_NO_OP, TYP_VOID);
            BlockRange().InsertBefore(startNonGCNode, noOp);
        }
    }

    // Insert GT_PROF_HOOK node to emit profiler tail call hook. This should be
    // inserted before the args are setup but after the side effects of args are
    // computed. That is, GT_PROF_HOOK node needs to be inserted before GT_START_NONGC
    // node if one exists.
    if (comp->compIsProfilerHookNeeded())
    {
        InsertProfTailCallHook(call, startNonGCNode);
    }

#else // !FEATURE_FASTTAILCALL

    // Platform choose not to implement fast tail call mechanism.
    // In such a case we should never be reaching this method as
    // the expectation is that IsTailCallViaHelper() will always
    // be true on such a platform.
    unreached();
#endif
}

//------------------------------------------------------------------------
// LowerTailCallViaHelper: lower a call via the tailcall helper. Morph
// has already inserted tailcall helper special arguments. This function
// inserts actual data for some placeholders.
//
// For ARM32, AMD64, lower
//      tail.call(void* copyRoutine, void* dummyArg, ...)
// as
//      Jit_TailCall(void* copyRoutine, void* callTarget, ...)
//
// For x86, lower
//      tail.call(<function args>, int numberOfOldStackArgs, int dummyNumberOfNewStackArgs, int flags, void* dummyArg)
// as
//      JIT_TailCall(<function args>, int numberOfOldStackArgsWords, int numberOfNewStackArgsWords, int flags, void*
//      callTarget)
// Note that the special arguments are on the stack, whereas the function arguments follow the normal convention.
//
// Also inserts PInvoke method epilog if required.
//
// Arguments:
//    call         -  The call node
//    callTarget   -  The real call target. This is used to replace the dummyArg during lowering.
//
// Return Value:
//    Returns control expression tree for making a call to helper Jit_TailCall.
//
GenTree* Lowering::LowerTailCallViaHelper(GenTreeCall* call, GenTree* callTarget)
{
    // Tail call restrictions i.e. conditions under which tail prefix is ignored.
    // Most of these checks are already done by importer or fgMorphTailCall().
    // This serves as a double sanity check.
    assert((comp->info.compFlags & CORINFO_FLG_SYNCH) == 0); // tail calls from synchronized methods
    assert(!comp->opts.compNeedSecurityCheck);               // tail call from methods that need security check
    assert(!call->IsUnmanaged());                            // tail calls to unamanaged methods
    assert(!comp->compLocallocUsed);                         // tail call from methods that also do localloc

#ifdef _TARGET_AMD64_
    assert(!comp->getNeedsGSSecurityCookie()); // jit64 compat: tail calls from methods that need GS check
#endif                                         // _TARGET_AMD64_

    // We expect to see a call that meets the following conditions
    assert(call->IsTailCallViaHelper());
    assert(callTarget != nullptr);

    // The TailCall helper call never returns to the caller and is not GC interruptible.
    // Therefore the block containing the tail call should be a GC safe point to avoid
    // GC starvation. It is legal for the block to be unmarked iff the entry block is a
    // GC safe point, as the entry block trivially dominates every reachable block.
    assert((comp->compCurBB->bbFlags & BBF_GC_SAFE_POINT) || (comp->fgFirstBB->bbFlags & BBF_GC_SAFE_POINT));

    // If PInvokes are in-lined, we have to remember to execute PInvoke method epilog anywhere that
    // a method returns.  This is a case of caller method has both PInvokes and tail calls.
    if (comp->info.compCallUnmanaged)
    {
        InsertPInvokeMethodEpilog(comp->compCurBB DEBUGARG(call));
    }

    // Remove gtCallAddr from execution order if present.
    if (call->gtCallType == CT_INDIRECT)
    {
        assert(call->gtCallAddr != nullptr);

        bool               isClosed;
        LIR::ReadOnlyRange callAddrRange = BlockRange().GetTreeRange(call->gtCallAddr, &isClosed);
        assert(isClosed);

        BlockRange().Remove(std::move(callAddrRange));
    }

    // The callTarget tree needs to be sequenced.
    LIR::Range callTargetRange = LIR::SeqTree(comp, callTarget);

#if defined(_TARGET_AMD64_) || defined(_TARGET_ARM_)

    // For ARM32 and AMD64, first argument is CopyRoutine and second argument is a place holder node.
    fgArgTabEntry* argEntry;

#ifdef DEBUG
    argEntry = comp->gtArgEntryByArgNum(call, 0);
    assert(argEntry != nullptr);
    assert(argEntry->node->gtOper == GT_PUTARG_REG);
    GenTree* firstArg = argEntry->node->gtOp.gtOp1;
    assert(firstArg->gtOper == GT_CNS_INT);
#endif

    // Replace second arg by callTarget.
    argEntry = comp->gtArgEntryByArgNum(call, 1);
    assert(argEntry != nullptr);
    assert(argEntry->node->gtOper == GT_PUTARG_REG);
    GenTree* secondArg = argEntry->node->gtOp.gtOp1;

    ContainCheckRange(callTargetRange);
    BlockRange().InsertAfter(secondArg, std::move(callTargetRange));

    bool               isClosed;
    LIR::ReadOnlyRange secondArgRange = BlockRange().GetTreeRange(secondArg, &isClosed);
    assert(isClosed);

    BlockRange().Remove(std::move(secondArgRange));

    argEntry->node->gtOp.gtOp1 = callTarget;

#elif defined(_TARGET_X86_)

    // Verify the special args are what we expect, and replace the dummy args with real values.
    // We need to figure out the size of the outgoing stack arguments, not including the special args.
    // The number of 4-byte words is passed to the helper for the incoming and outgoing argument sizes.
    // This number is exactly the next slot number in the call's argument info struct.
    unsigned nNewStkArgsWords = call->fgArgInfo->GetNextSlotNum();
    assert(nNewStkArgsWords >= 4); // There must be at least the four special stack args.
    nNewStkArgsWords -= 4;

    unsigned numArgs = call->fgArgInfo->ArgCount();

    fgArgTabEntry* argEntry;

    // arg 0 == callTarget.
    argEntry = comp->gtArgEntryByArgNum(call, numArgs - 1);
    assert(argEntry != nullptr);
    assert(argEntry->node->gtOper == GT_PUTARG_STK);
    GenTree* arg0 = argEntry->node->gtOp.gtOp1;

    ContainCheckRange(callTargetRange);
    BlockRange().InsertAfter(arg0, std::move(callTargetRange));

    bool               isClosed;
    LIR::ReadOnlyRange secondArgRange = BlockRange().GetTreeRange(arg0, &isClosed);
    assert(isClosed);
    BlockRange().Remove(std::move(secondArgRange));

    argEntry->node->gtOp.gtOp1 = callTarget;

    // arg 1 == flags
    argEntry = comp->gtArgEntryByArgNum(call, numArgs - 2);
    assert(argEntry != nullptr);
    assert(argEntry->node->gtOper == GT_PUTARG_STK);
    GenTree* arg1 = argEntry->node->gtOp.gtOp1;
    assert(arg1->gtOper == GT_CNS_INT);

    ssize_t tailCallHelperFlags = 1 |                                  // always restore EDI,ESI,EBX
                                  (call->IsVirtualStub() ? 0x2 : 0x0); // Stub dispatch flag
    arg1->gtIntCon.gtIconVal = tailCallHelperFlags;

    // arg 2 == numberOfNewStackArgsWords
    argEntry = comp->gtArgEntryByArgNum(call, numArgs - 3);
    assert(argEntry != nullptr);
    assert(argEntry->node->gtOper == GT_PUTARG_STK);
    GenTree* arg2 = argEntry->node->gtOp.gtOp1;
    assert(arg2->gtOper == GT_CNS_INT);

    arg2->gtIntCon.gtIconVal = nNewStkArgsWords;

#ifdef DEBUG
    // arg 3 == numberOfOldStackArgsWords
    argEntry = comp->gtArgEntryByArgNum(call, numArgs - 4);
    assert(argEntry != nullptr);
    assert(argEntry->node->gtOper == GT_PUTARG_STK);
    GenTree* arg3 = argEntry->node->gtOp.gtOp1;
    assert(arg3->gtOper == GT_CNS_INT);
#endif // DEBUG

#else
    NYI("LowerTailCallViaHelper");
#endif // _TARGET_*

    // Transform this call node into a call to Jit tail call helper.
    call->gtCallType    = CT_HELPER;
    call->gtCallMethHnd = comp->eeFindHelper(CORINFO_HELP_TAILCALL);
    call->gtFlags &= ~GTF_CALL_VIRT_KIND_MASK;

    // Lower this as if it were a pure helper call.
    call->gtCallMoreFlags &= ~(GTF_CALL_M_TAILCALL | GTF_CALL_M_TAILCALL_VIA_HELPER);
    GenTree* result = LowerDirectCall(call);

    // Now add back tail call flags for identifying this node as tail call dispatched via helper.
    call->gtCallMoreFlags |= GTF_CALL_M_TAILCALL | GTF_CALL_M_TAILCALL_VIA_HELPER;

#ifdef PROFILING_SUPPORTED
    // Insert profiler tail call hook if needed.
    // Since we don't know the insertion point, pass null for second param.
    if (comp->compIsProfilerHookNeeded())
    {
        InsertProfTailCallHook(call, nullptr);
    }
#endif // PROFILING_SUPPORTED

    assert(call->IsTailCallViaHelper());

    return result;
}

#ifndef _TARGET_64BIT_
//------------------------------------------------------------------------
// Lowering::DecomposeLongCompare: Decomposes a TYP_LONG compare node.
//
// Arguments:
//    cmp - the compare node
//
// Return Value:
//    The next node to lower.
//
// Notes:
//    This is done during lowering because DecomposeLongs handles only nodes
//    that produce TYP_LONG values. Compare nodes may consume TYP_LONG values
//    but produce TYP_INT values.
//
GenTree* Lowering::DecomposeLongCompare(GenTree* cmp)
{
    assert(cmp->gtGetOp1()->TypeGet() == TYP_LONG);

    GenTree* src1 = cmp->gtGetOp1();
    GenTree* src2 = cmp->gtGetOp2();
    assert(src1->OperIs(GT_LONG));
    assert(src2->OperIs(GT_LONG));
    GenTree* loSrc1 = src1->gtGetOp1();
    GenTree* hiSrc1 = src1->gtGetOp2();
    GenTree* loSrc2 = src2->gtGetOp1();
    GenTree* hiSrc2 = src2->gtGetOp2();
    BlockRange().Remove(src1);
    BlockRange().Remove(src2);

    genTreeOps condition = cmp->OperGet();
    GenTree*   loCmp;
    GenTree*   hiCmp;

    if (cmp->OperIs(GT_EQ, GT_NE))
    {
        //
        // Transform (x EQ|NE y) into (((x.lo XOR y.lo) OR (x.hi XOR y.hi)) EQ|NE 0). If y is 0 then this can
        // be reduced to just ((x.lo OR x.hi) EQ|NE 0). The OR is expected to set the condition flags so we
        // don't need to generate a redundant compare against 0, we only generate a SETCC|JCC instruction.
        //
        // XOR is used rather than SUB because it is commutative and thus allows swapping the operands when
        // the first happens to be a constant. Usually only the second compare operand is a constant but it's
        // still possible to have a constant on the left side. For example, when src1 is a uint->ulong cast
        // then hiSrc1 would be 0.
        //

        if (loSrc1->OperIs(GT_CNS_INT))
        {
            std::swap(loSrc1, loSrc2);
        }

        if (loSrc2->IsIntegralConst(0))
        {
            BlockRange().Remove(loSrc2);
            loCmp = loSrc1;
        }
        else
        {
            loCmp = comp->gtNewOperNode(GT_XOR, TYP_INT, loSrc1, loSrc2);
            BlockRange().InsertBefore(cmp, loCmp);
            ContainCheckBinary(loCmp->AsOp());
        }

        if (hiSrc1->OperIs(GT_CNS_INT))
        {
            std::swap(hiSrc1, hiSrc2);
        }

        if (hiSrc2->IsIntegralConst(0))
        {
            BlockRange().Remove(hiSrc2);
            hiCmp = hiSrc1;
        }
        else
        {
            hiCmp = comp->gtNewOperNode(GT_XOR, TYP_INT, hiSrc1, hiSrc2);
            BlockRange().InsertBefore(cmp, hiCmp);
            ContainCheckBinary(hiCmp->AsOp());
        }

        hiCmp = comp->gtNewOperNode(GT_OR, TYP_INT, loCmp, hiCmp);
        BlockRange().InsertBefore(cmp, hiCmp);
        ContainCheckBinary(hiCmp->AsOp());
    }
    else
    {
        assert(cmp->OperIs(GT_LT, GT_LE, GT_GE, GT_GT));

        //
        // If the compare is signed then (x LT|GE y) can be transformed into ((x SUB y) LT|GE 0).
        // If the compare is unsigned we can still use SUB but we need to check the Carry flag,
        // not the actual result. In both cases we can simply check the appropiate condition flags
        // and ignore the actual result:
        //     SUB_LO loSrc1, loSrc2
        //     SUB_HI hiSrc1, hiSrc2
        //     SETCC|JCC (signed|unsigned LT|GE)
        // If loSrc2 happens to be 0 then the first SUB can be eliminated and the second one can
        // be turned into a CMP because the first SUB would have set carry to 0. This effectively
        // transforms a long compare against 0 into an int compare of the high part against 0.
        //
        // (x LE|GT y) can to be transformed into ((x SUB y) LE|GT 0) but checking that a long value
        // is greater than 0 is not so easy. We need to turn this into a positive/negative check
        // like the one we get for LT|GE compares, this can be achieved by swapping the compare:
        //     (x LE|GT y) becomes (y GE|LT x)
        //
        // Having to swap operands is problematic when the second operand is a constant. The constant
        // moves to the first operand where it cannot be contained and thus needs a register. This can
        // be avoided by changing the constant such that LE|GT becomes LT|GE:
        //     (x LE|GT 41) becomes (x LT|GE 42)
        //

        if (cmp->OperIs(GT_LE, GT_GT))
        {
            bool mustSwap = true;

            if (loSrc2->OperIs(GT_CNS_INT) && hiSrc2->OperIs(GT_CNS_INT))
            {
                uint32_t loValue  = static_cast<uint32_t>(loSrc2->AsIntCon()->IconValue());
                uint32_t hiValue  = static_cast<uint32_t>(hiSrc2->AsIntCon()->IconValue());
                uint64_t value    = static_cast<uint64_t>(loValue) | (static_cast<uint64_t>(hiValue) << 32);
                uint64_t maxValue = cmp->IsUnsigned() ? UINT64_MAX : INT64_MAX;

                if (value != maxValue)
                {
                    value++;
                    loValue = value & UINT32_MAX;
                    hiValue = (value >> 32) & UINT32_MAX;
                    loSrc2->AsIntCon()->SetIconValue(loValue);
                    hiSrc2->AsIntCon()->SetIconValue(hiValue);

                    condition = cmp->OperIs(GT_LE) ? GT_LT : GT_GE;
                    mustSwap  = false;
                }
            }

            if (mustSwap)
            {
                std::swap(loSrc1, loSrc2);
                std::swap(hiSrc1, hiSrc2);
                condition = GenTree::SwapRelop(condition);
            }
        }

        assert((condition == GT_LT) || (condition == GT_GE));

        if (loSrc2->IsIntegralConst(0))
        {
            BlockRange().Remove(loSrc2);

            // Very conservative dead code removal... but it helps.

            if (loSrc1->OperIs(GT_CNS_INT, GT_LCL_VAR, GT_LCL_FLD))
            {
                BlockRange().Remove(loSrc1);

                if (loSrc1->OperIs(GT_LCL_VAR, GT_LCL_FLD))
                {
                    comp->lvaDecRefCnts(m_block, loSrc1);
                }
            }
            else
            {
                loSrc1->SetUnusedValue();
            }

            hiCmp = comp->gtNewOperNode(GT_CMP, TYP_VOID, hiSrc1, hiSrc2);
            BlockRange().InsertBefore(cmp, hiCmp);
            ContainCheckCompare(hiCmp->AsOp());
        }
        else
        {
            loCmp = comp->gtNewOperNode(GT_CMP, TYP_VOID, loSrc1, loSrc2);
            hiCmp = comp->gtNewOperNode(GT_SUB_HI, TYP_INT, hiSrc1, hiSrc2);
            BlockRange().InsertBefore(cmp, loCmp, hiCmp);
            ContainCheckCompare(loCmp->AsOp());
            ContainCheckBinary(hiCmp->AsOp());

            //
            // Try to move the first SUB_HI operands right in front of it, this allows using
            // a single temporary register instead of 2 (one for CMP and one for SUB_HI). Do
            // this only for locals as they won't change condition flags. Note that we could
            // move constants (except 0 which generates XOR reg, reg) but it's extremly rare
            // to have a constant as the first operand.
            //

            if (hiSrc1->OperIs(GT_LCL_VAR, GT_LCL_FLD))
            {
                BlockRange().Remove(hiSrc1);
                BlockRange().InsertBefore(hiCmp, hiSrc1);
            }
        }
    }

    hiCmp->gtFlags |= GTF_SET_FLAGS;
    if (hiCmp->IsValue())
    {
        hiCmp->SetUnusedValue();
    }

    LIR::Use cmpUse;
    if (BlockRange().TryGetUse(cmp, &cmpUse) && cmpUse.User()->OperIs(GT_JTRUE))
    {
        BlockRange().Remove(cmp);

        GenTree* jcc    = cmpUse.User();
        jcc->gtOp.gtOp1 = nullptr;
        jcc->ChangeOper(GT_JCC);
        jcc->gtFlags |= (cmp->gtFlags & GTF_UNSIGNED) | GTF_USE_FLAGS;
        jcc->AsCC()->gtCondition = condition;
    }
    else
    {
        cmp->gtOp.gtOp1 = nullptr;
        cmp->gtOp.gtOp2 = nullptr;
        cmp->ChangeOper(GT_SETCC);
        cmp->gtFlags |= GTF_USE_FLAGS;
        cmp->AsCC()->gtCondition = condition;
    }

    return cmp->gtNext;
}
#endif // !_TARGET_64BIT_

//------------------------------------------------------------------------
// Lowering::OptimizeConstCompare: Performs various "compare with const" optimizations.
//
// Arguments:
//    cmp - the compare node
//
// Return Value:
//    The original compare node if lowering should proceed as usual or the next node
//    to lower if the compare node was changed in such a way that lowering is no
//    longer needed.
//
// Notes:
//    - Narrow operands to enable memory operand containment (XARCH specific).
//    - Transform cmp(and(x, y), 0) into test(x, y) (XARCH/Arm64 specific but could
//      be used for ARM as well if support for GT_TEST_EQ/GT_TEST_NE is added).
//    - Transform TEST(x, LSH(1, y)) into BT(x, y) (XARCH specific)
//    - Transform RELOP(OP, 0) into SETCC(OP) or JCC(OP) if OP can set the
//      condition flags appropriately (XARCH/ARM64 specific but could be extended
//      to ARM32 as well if ARM32 codegen supports GTF_SET_FLAGS).
//
GenTree* Lowering::OptimizeConstCompare(GenTree* cmp)
{
    assert(cmp->gtGetOp2()->IsIntegralConst());

#if defined(_TARGET_XARCH_) || defined(_TARGET_ARM64_)
    GenTree*       op1      = cmp->gtGetOp1();
    var_types      op1Type  = op1->TypeGet();
    GenTreeIntCon* op2      = cmp->gtGetOp2()->AsIntCon();
    ssize_t        op2Value = op2->IconValue();

#ifdef _TARGET_XARCH_
    if (IsContainableMemoryOp(op1) && varTypeIsSmall(op1Type) && genSmallTypeCanRepresentValue(op1Type, op2Value))
    {
        //
        // If op1's type is small then try to narrow op2 so it has the same type as op1.
        // Small types are usually used by memory loads and if both compare operands have
        // the same type then the memory load can be contained. In certain situations
        // (e.g "cmp ubyte, 200") we also get a smaller instruction encoding.
        //

        op2->gtType = op1Type;
    }
    else
#endif
        if (op1->OperIs(GT_CAST) && !op1->gtOverflow())
    {
        GenTreeCast* cast       = op1->AsCast();
        var_types    castToType = cast->CastToType();
        GenTree*     castOp     = cast->gtGetOp1();

        if (((castToType == TYP_BOOL) || (castToType == TYP_UBYTE)) && FitsIn<UINT8>(op2Value))
        {
            //
            // Since we're going to remove the cast we need to be able to narrow the cast operand
            // to the cast type. This can be done safely only for certain opers (e.g AND, OR, XOR).
            // Some opers just can't be narrowed (e.g DIV, MUL) while other could be narrowed but
            // doing so would produce incorrect results (e.g. RSZ, RSH).
            //
            // The below list of handled opers is conservative but enough to handle the most common
            // situations. In particular this include CALL, sometimes the JIT unnecessarilly widens
            // the result of bool returning calls.
            //
            bool removeCast =
#ifdef _TARGET_ARM64_
                (op2Value == 0) && cmp->OperIs(GT_EQ, GT_NE, GT_GT) &&
#endif
                (castOp->OperIs(GT_CALL, GT_LCL_VAR) || castOp->OperIsLogical()
#ifdef _TARGET_XARCH_
                 || IsContainableMemoryOp(castOp)
#endif
                     );

            if (removeCast)
            {
                assert(!castOp->gtOverflowEx()); // Must not be an overflow checking operation

#ifdef _TARGET_ARM64_
                bool cmpEq = cmp->OperIs(GT_EQ);

                cmp->SetOperRaw(cmpEq ? GT_TEST_EQ : GT_TEST_NE);
                op2->SetIconValue(0xff);
                op2->gtType = castOp->gtType;
#else
                castOp->gtType = castToType;
                op2->gtType    = castToType;
#endif
                // If we have any contained memory ops on castOp, they must now not be contained.
                if (castOp->OperIsLogical())
                {
                    GenTree* op1 = castOp->gtGetOp1();
                    if ((op1 != nullptr) && !op1->IsCnsIntOrI())
                    {
                        op1->ClearContained();
                    }
                    GenTree* op2 = castOp->gtGetOp2();
                    if ((op2 != nullptr) && !op2->IsCnsIntOrI())
                    {
                        op2->ClearContained();
                    }
                }
                cmp->gtOp.gtOp1 = castOp;

                BlockRange().Remove(cast);
            }
        }
    }
    else if (op1->OperIs(GT_AND) && cmp->OperIs(GT_EQ, GT_NE))
    {
        //
        // Transform ((x AND y) EQ|NE 0) into (x TEST_EQ|TEST_NE y) when possible.
        //

        GenTree* andOp1 = op1->gtGetOp1();
        GenTree* andOp2 = op1->gtGetOp2();

        if (op2Value != 0)
        {
            //
            // If we don't have a 0 compare we can get one by transforming ((x AND mask) EQ|NE mask)
            // into ((x AND mask) NE|EQ 0) when mask is a single bit.
            //

            if (isPow2(static_cast<size_t>(op2Value)) && andOp2->IsIntegralConst(op2Value))
            {
                op2Value = 0;
                op2->SetIconValue(0);
                cmp->SetOperRaw(GenTree::ReverseRelop(cmp->OperGet()));
            }
        }

        if (op2Value == 0)
        {
            BlockRange().Remove(op1);
            BlockRange().Remove(op2);

            cmp->SetOperRaw(cmp->OperIs(GT_EQ) ? GT_TEST_EQ : GT_TEST_NE);
            cmp->gtOp.gtOp1 = andOp1;
            cmp->gtOp.gtOp2 = andOp2;
            // We will re-evaluate containment below
            andOp1->ClearContained();
            andOp2->ClearContained();

#ifdef _TARGET_XARCH_
            if (IsContainableMemoryOp(andOp1) && andOp2->IsIntegralConst())
            {
                //
                // For "test" we only care about the bits that are set in the second operand (mask).
                // If the mask fits in a small type then we can narrow both operands to generate a "test"
                // instruction with a smaller encoding ("test" does not have a r/m32, imm8 form) and avoid
                // a widening load in some cases.
                //
                // For 16 bit operands we narrow only if the memory operand is already 16 bit. This matches
                // the behavior of a previous implementation and avoids adding more cases where we generate
                // 16 bit instructions that require a length changing prefix (0x66). These suffer from
                // significant decoder stalls on Intel CPUs.
                //
                // We could also do this for 64 bit masks that fit into 32 bit but it doesn't help.
                // In such cases morph narrows down the existing GT_AND by inserting a cast between it and
                // the memory operand so we'd need to add more code to recognize and eliminate that cast.
                //

                size_t mask = static_cast<size_t>(andOp2->AsIntCon()->IconValue());

                if (FitsIn<UINT8>(mask))
                {
                    andOp1->gtType = TYP_UBYTE;
                    andOp2->gtType = TYP_UBYTE;
                }
                else if (FitsIn<UINT16>(mask) && genTypeSize(andOp1) == 2)
                {
                    andOp1->gtType = TYP_USHORT;
                    andOp2->gtType = TYP_USHORT;
                }
            }
#endif
        }
    }

    if (cmp->OperIs(GT_TEST_EQ, GT_TEST_NE))
    {
#ifdef _TARGET_XARCH_
        //
        // Transform TEST_EQ|NE(x, LSH(1, y)) into BT(x, y) when possible. Using BT
        // results in smaller and faster code. It also doesn't have special register
        // requirements, unlike LSH that requires the shift count to be in ECX.
        // Note that BT has the same behavior as LSH when the bit index exceeds the
        // operand bit size - it uses (bit_index MOD bit_size).
        //

        GenTree* lsh = cmp->gtGetOp2();
        LIR::Use cmpUse;

        if (lsh->OperIs(GT_LSH) && varTypeIsIntOrI(lsh->TypeGet()) && lsh->gtGetOp1()->IsIntegralConst(1) &&
            BlockRange().TryGetUse(cmp, &cmpUse))
        {
            genTreeOps condition = cmp->OperIs(GT_TEST_NE) ? GT_LT : GT_GE;

            cmp->SetOper(GT_BT);
            cmp->gtType = TYP_VOID;
            cmp->gtFlags |= GTF_SET_FLAGS;
            cmp->gtOp.gtOp2 = lsh->gtGetOp2();
            cmp->gtGetOp2()->ClearContained();

            BlockRange().Remove(lsh->gtGetOp1());
            BlockRange().Remove(lsh);

            GenTreeCC* cc;

            if (cmpUse.User()->OperIs(GT_JTRUE))
            {
                cmpUse.User()->ChangeOper(GT_JCC);
                cc              = cmpUse.User()->AsCC();
                cc->gtCondition = condition;
            }
            else
            {
                cc = new (comp, GT_SETCC) GenTreeCC(GT_SETCC, condition, TYP_INT);
                BlockRange().InsertAfter(cmp, cc);
                cmpUse.ReplaceWith(comp, cc);
            }

            cc->gtFlags |= GTF_USE_FLAGS | GTF_UNSIGNED;

            return cmp->gtNext;
        }
#endif // _TARGET_XARCH_
    }
    else if (cmp->OperIs(GT_EQ, GT_NE))
    {
        GenTree* op1 = cmp->gtGetOp1();
        GenTree* op2 = cmp->gtGetOp2();

        // TODO-CQ: right now the below peep is inexpensive and gets the benefit in most
        // cases because in majority of cases op1, op2 and cmp would be in that order in
        // execution. In general we should be able to check that all the nodes that come
        // after op1 do not modify the flags so that it is safe to avoid generating a
        // test instruction.

        if (op2->IsIntegralConst(0) && (op1->gtNext == op2) && (op2->gtNext == cmp) &&
#ifdef _TARGET_XARCH_
            op1->OperIs(GT_AND, GT_OR, GT_XOR, GT_ADD, GT_SUB, GT_NEG))
#else // _TARGET_ARM64_
            op1->OperIs(GT_AND, GT_ADD, GT_SUB))
#endif
        {
            op1->gtFlags |= GTF_SET_FLAGS;
            op1->SetUnusedValue();

            BlockRange().Remove(op2);

            GenTree*   next = cmp->gtNext;
            GenTree*   cc;
            genTreeOps ccOp;
            LIR::Use   cmpUse;

            // Fast check for the common case - relop used by a JTRUE that immediately follows it.
            if ((next != nullptr) && next->OperIs(GT_JTRUE) && (next->gtGetOp1() == cmp))
            {
                cc   = next;
                ccOp = GT_JCC;
                next = nullptr;
                BlockRange().Remove(cmp);
            }
            else if (BlockRange().TryGetUse(cmp, &cmpUse) && cmpUse.User()->OperIs(GT_JTRUE))
            {
                cc   = cmpUse.User();
                ccOp = GT_JCC;
                next = nullptr;
                BlockRange().Remove(cmp);
            }
            else // The relop is not used by a JTRUE or it is not used at all.
            {
                // Transform the relop node it into a SETCC. If it's not used we could remove
                // it completely but that means doing more work to handle a rare case.
                cc   = cmp;
                ccOp = GT_SETCC;
            }

            genTreeOps condition = cmp->OperGet();
            cc->ChangeOper(ccOp);
            cc->AsCC()->gtCondition = condition;
            cc->gtFlags |= GTF_USE_FLAGS | (cmp->gtFlags & GTF_UNSIGNED);

            return next;
        }
    }
#endif // defined(_TARGET_XARCH_) || defined(_TARGET_ARM64_)

    return cmp;
}

//------------------------------------------------------------------------
// Lowering::LowerCompare: Lowers a compare node.
//
// Arguments:
//    cmp - the compare node
//
// Return Value:
//    The next node to lower.
//
GenTree* Lowering::LowerCompare(GenTree* cmp)
{
#ifndef _TARGET_64BIT_
    if (cmp->gtGetOp1()->TypeGet() == TYP_LONG)
    {
        return DecomposeLongCompare(cmp);
    }
#endif

    if (cmp->gtGetOp2()->IsIntegralConst() && !comp->opts.MinOpts())
    {
        GenTree* next = OptimizeConstCompare(cmp);

        // If OptimizeConstCompare return the compare node as "next" then we need to continue lowering.
        if (next != cmp)
        {
            return next;
        }
    }

#ifdef _TARGET_XARCH_
    if (cmp->gtGetOp1()->TypeGet() == cmp->gtGetOp2()->TypeGet())
    {
        if (varTypeIsSmall(cmp->gtGetOp1()->TypeGet()) && varTypeIsUnsigned(cmp->gtGetOp1()->TypeGet()))
        {
            //
            // If both operands have the same type then codegen will use the common operand type to
            // determine the instruction type. For small types this would result in performing a
            // signed comparison of two small unsigned values without zero extending them to TYP_INT
            // which is incorrect. Note that making the comparison unsigned doesn't imply that codegen
            // has to generate a small comparison, it can still correctly generate a TYP_INT comparison.
            //

            cmp->gtFlags |= GTF_UNSIGNED;
        }
    }
#endif // _TARGET_XARCH_
    ContainCheckCompare(cmp->AsOp());
    return cmp->gtNext;
}

//------------------------------------------------------------------------
// Lowering::LowerJTrue: Lowers a JTRUE node.
//
// Arguments:
//    jtrue - the JTRUE node
//
// Return Value:
//    The next node to lower (usually nullptr).
//
// Notes:
//    On ARM64 this may remove the JTRUE node and transform its associated
//    relop into a JCMP node.
//
GenTree* Lowering::LowerJTrue(GenTreeOp* jtrue)
{
#ifdef _TARGET_ARM64_
    GenTree* relop    = jtrue->gtGetOp1();
    GenTree* relopOp2 = relop->gtOp.gtGetOp2();

    if ((relop->gtNext == jtrue) && relopOp2->IsCnsIntOrI())
    {
        bool     useJCMP = false;
        unsigned flags   = 0;

        if (relop->OperIs(GT_EQ, GT_NE) && relopOp2->IsIntegralConst(0))
        {
            // Codegen will use cbz or cbnz in codegen which do not affect the flag register
            flags   = relop->OperIs(GT_EQ) ? GTF_JCMP_EQ : 0;
            useJCMP = true;
        }
        else if (relop->OperIs(GT_TEST_EQ, GT_TEST_NE) && isPow2(relopOp2->AsIntCon()->IconValue()))
        {
            // Codegen will use tbz or tbnz in codegen which do not affect the flag register
            flags   = GTF_JCMP_TST | (relop->OperIs(GT_TEST_EQ) ? GTF_JCMP_EQ : 0);
            useJCMP = true;
        }

        if (useJCMP)
        {
            relop->SetOper(GT_JCMP);
            relop->gtFlags &= ~(GTF_JCMP_TST | GTF_JCMP_EQ);
            relop->gtFlags |= flags;
            relop->gtType = TYP_VOID;

            relopOp2->SetContained();

            BlockRange().Remove(jtrue);

            assert(relop->gtNext == nullptr);
            return nullptr;
        }
    }
#endif // _TARGET_ARM64_

    ContainCheckJTrue(jtrue);

    assert(jtrue->gtNext == nullptr);
    return nullptr;
}

// Lower "jmp <method>" tail call to insert PInvoke method epilog if required.
void Lowering::LowerJmpMethod(GenTree* jmp)
{
    assert(jmp->OperGet() == GT_JMP);

    JITDUMP("lowering GT_JMP\n");
    DISPNODE(jmp);
    JITDUMP("============");

    // If PInvokes are in-lined, we have to remember to execute PInvoke method epilog anywhere that
    // a method returns.
    if (comp->info.compCallUnmanaged)
    {
        InsertPInvokeMethodEpilog(comp->compCurBB DEBUGARG(jmp));
    }
}

// Lower GT_RETURN node to insert PInvoke method epilog if required.
void Lowering::LowerRet(GenTree* ret)
{
    assert(ret->OperGet() == GT_RETURN);

    JITDUMP("lowering GT_RETURN\n");
    DISPNODE(ret);
    JITDUMP("============");

#if defined(_TARGET_AMD64_) && defined(FEATURE_SIMD)
    GenTreeUnOp* const unOp = ret->AsUnOp();
    if ((unOp->TypeGet() == TYP_LONG) && (unOp->gtOp1->TypeGet() == TYP_SIMD8))
    {
        GenTreeUnOp* bitcast = new (comp, GT_BITCAST) GenTreeOp(GT_BITCAST, TYP_LONG, unOp->gtOp1, nullptr);
        unOp->gtOp1          = bitcast;
        BlockRange().InsertBefore(unOp, bitcast);
    }
#endif // _TARGET_AMD64_

    // Method doing PInvokes has exactly one return block unless it has tail calls.
    if (comp->info.compCallUnmanaged && (comp->compCurBB == comp->genReturnBB))
    {
        InsertPInvokeMethodEpilog(comp->compCurBB DEBUGARG(ret));
    }
    ContainCheckRet(ret->AsOp());
}

GenTree* Lowering::LowerDirectCall(GenTreeCall* call)
{
    noway_assert(call->gtCallType == CT_USER_FUNC || call->gtCallType == CT_HELPER);

    // Don't support tail calling helper methods.
    // But we might encounter tail calls dispatched via JIT helper appear as a tail call to helper.
    noway_assert(!call->IsTailCall() || call->IsTailCallViaHelper() || call->gtCallType == CT_USER_FUNC);

    // Non-virtual direct/indirect calls: Work out if the address of the
    // call is known at JIT time.  If not it is either an indirect call
    // or the address must be accessed via an single/double indirection.

    void*           addr;
    InfoAccessType  accessType;
    CorInfoHelpFunc helperNum = comp->eeGetHelperNum(call->gtCallMethHnd);

#ifdef FEATURE_READYTORUN_COMPILER
    if (call->gtEntryPoint.addr != nullptr)
    {
        accessType = call->gtEntryPoint.accessType;
        addr       = call->gtEntryPoint.addr;
    }
    else
#endif
        if (call->gtCallType == CT_HELPER)
    {
        noway_assert(helperNum != CORINFO_HELP_UNDEF);

        // the convention on getHelperFtn seems to be (it's not documented)
        // that it returns an address or if it returns null, pAddr is set to
        // another address, which requires an indirection
        void* pAddr;
        addr = comp->info.compCompHnd->getHelperFtn(helperNum, (void**)&pAddr);

        if (addr != nullptr)
        {
            assert(pAddr == nullptr);
            accessType = IAT_VALUE;
        }
        else
        {
            accessType = IAT_PVALUE;
            addr       = pAddr;
        }
    }
    else
    {
        noway_assert(helperNum == CORINFO_HELP_UNDEF);

        CORINFO_ACCESS_FLAGS aflags = CORINFO_ACCESS_ANY;

        if (call->IsSameThis())
        {
            aflags = (CORINFO_ACCESS_FLAGS)(aflags | CORINFO_ACCESS_THIS);
        }

        if (!call->NeedsNullCheck())
        {
            aflags = (CORINFO_ACCESS_FLAGS)(aflags | CORINFO_ACCESS_NONNULL);
        }

        CORINFO_CONST_LOOKUP addrInfo;
        comp->info.compCompHnd->getFunctionEntryPoint(call->gtCallMethHnd, &addrInfo, aflags);

        accessType = addrInfo.accessType;
        addr       = addrInfo.addr;
    }

    GenTree* result = nullptr;
    switch (accessType)
    {
        case IAT_VALUE:
            // Non-virtual direct call to known address
            if (!IsCallTargetInRange(addr) || call->IsTailCall())
            {
                result = AddrGen(addr);
            }
            else
            {
                // a direct call within range of hardware relative call instruction
                // stash the address for codegen
                call->gtDirectCallAddress = addr;
            }
            break;

        case IAT_PVALUE:
        {
            // Non-virtual direct calls to addresses accessed by
            // a single indirection.
            GenTree* cellAddr = AddrGen(addr);
            GenTree* indir    = Ind(cellAddr);
            result            = indir;
            break;
        }

        case IAT_PPVALUE:
            // Non-virtual direct calls to addresses accessed by
            // a double indirection.
            //
            // Double-indirection. Load the address into a register
            // and call indirectly through the register
            noway_assert(helperNum == CORINFO_HELP_UNDEF);
            result = AddrGen(addr);
            result = Ind(Ind(result));
            break;

        default:
            noway_assert(!"Bad accessType");
            break;
    }

    return result;
}

GenTree* Lowering::LowerDelegateInvoke(GenTreeCall* call)
{
    noway_assert(call->gtCallType == CT_USER_FUNC);

    assert((comp->info.compCompHnd->getMethodAttribs(call->gtCallMethHnd) &
            (CORINFO_FLG_DELEGATE_INVOKE | CORINFO_FLG_FINAL)) == (CORINFO_FLG_DELEGATE_INVOKE | CORINFO_FLG_FINAL));

    GenTree* thisArgNode;
    if (call->IsTailCallViaHelper())
    {
#ifdef _TARGET_X86_ // x86 tailcall via helper follows normal calling convention, but with extra stack args.
        const unsigned argNum = 0;
#else  // !_TARGET_X86_
        // In case of helper dispatched tail calls, "thisptr" will be the third arg.
        // The first two args are: real call target and addr of args copy routine.
        const unsigned argNum  = 2;
#endif // !_TARGET_X86_

        fgArgTabEntry* thisArgTabEntry = comp->gtArgEntryByArgNum(call, argNum);
        thisArgNode                    = thisArgTabEntry->node;
    }
    else
    {
        thisArgNode = comp->gtGetThisArg(call);
    }

    assert(thisArgNode->gtOper == GT_PUTARG_REG);
    GenTree* originalThisExpr = thisArgNode->gtOp.gtOp1;
    GenTree* thisExpr         = originalThisExpr;

    // We're going to use the 'this' expression multiple times, so make a local to copy it.

    unsigned lclNum;

#ifdef _TARGET_X86_
    if (call->IsTailCallViaHelper() && originalThisExpr->IsLocal())
    {
        // For ordering purposes for the special tailcall arguments on x86, we forced the
        // 'this' pointer in this case to a local in Compiler::fgMorphTailCall().
        // We could possibly use this case to remove copies for all architectures and non-tailcall
        // calls by creating a new lcl var or lcl field reference, as is done in the
        // LowerVirtualVtableCall() code.
        assert(originalThisExpr->OperGet() == GT_LCL_VAR);
        lclNum = originalThisExpr->AsLclVarCommon()->GetLclNum();
    }
    else
#endif // _TARGET_X86_
    {
        unsigned delegateInvokeTmp = comp->lvaGrabTemp(true DEBUGARG("delegate invoke call"));

        LIR::Use thisExprUse(BlockRange(), &thisArgNode->gtOp.gtOp1, thisArgNode);
        ReplaceWithLclVar(thisExprUse, delegateInvokeTmp);

        thisExpr = thisExprUse.Def(); // it's changed; reload it.
        lclNum   = delegateInvokeTmp;
    }

    // replace original expression feeding into thisPtr with
    // [originalThis + offsetOfDelegateInstance]

    GenTree* newThisAddr = new (comp, GT_LEA)
        GenTreeAddrMode(TYP_BYREF, thisExpr, nullptr, 0, comp->eeGetEEInfo()->offsetOfDelegateInstance);

    GenTree* newThis = comp->gtNewOperNode(GT_IND, TYP_REF, newThisAddr);

    BlockRange().InsertAfter(thisExpr, newThisAddr, newThis);

    thisArgNode->gtOp.gtOp1 = newThis;
    ContainCheckIndir(newThis->AsIndir());

    // the control target is
    // [originalThis + firstTgtOffs]

    GenTree* base = new (comp, GT_LCL_VAR) GenTreeLclVar(originalThisExpr->TypeGet(), lclNum, BAD_IL_OFFSET);

    unsigned targetOffs = comp->eeGetEEInfo()->offsetOfDelegateFirstTarget;
    GenTree* result     = new (comp, GT_LEA) GenTreeAddrMode(TYP_REF, base, nullptr, 0, targetOffs);
    GenTree* callTarget = Ind(result);

    // don't need to sequence and insert this tree, caller will do it

    return callTarget;
}

GenTree* Lowering::LowerIndirectNonvirtCall(GenTreeCall* call)
{
#ifdef _TARGET_X86_
    if (call->gtCallCookie != nullptr)
    {
        NYI_X86("Morphing indirect non-virtual call with non-standard args");
    }
#endif

    // Indirect cookie calls gets transformed by fgMorphArgs as indirect call with non-standard args.
    // Hence we should never see this type of call in lower.

    noway_assert(call->gtCallCookie == nullptr);

    return nullptr;
}

//------------------------------------------------------------------------
// CreateReturnTrapSeq: Create a tree to perform a "return trap", used in PInvoke
// epilogs to invoke a GC under a condition. The return trap checks some global
// location (the runtime tells us where that is and how many indirections to make),
// then, based on the result, conditionally calls a GC helper. We use a special node
// for this because at this time (late in the compilation phases), introducing flow
// is tedious/difficult.
//
// This is used for PInvoke inlining.
//
// Return Value:
//    Code tree to perform the action.
//
GenTree* Lowering::CreateReturnTrapSeq()
{
    // The GT_RETURNTRAP node expands to this:
    //    if (g_TrapReturningThreads)
    //    {
    //       RareDisablePreemptiveGC();
    //    }

    // The only thing to do here is build up the expression that evaluates 'g_TrapReturningThreads'.

    void* pAddrOfCaptureThreadGlobal = nullptr;
    LONG* addrOfCaptureThreadGlobal = comp->info.compCompHnd->getAddrOfCaptureThreadGlobal(&pAddrOfCaptureThreadGlobal);

    GenTree* testTree;
    if (addrOfCaptureThreadGlobal != nullptr)
    {
        testTree = Ind(AddrGen(addrOfCaptureThreadGlobal));
    }
    else
    {
        testTree = Ind(Ind(AddrGen(pAddrOfCaptureThreadGlobal)));
    }
    return comp->gtNewOperNode(GT_RETURNTRAP, TYP_INT, testTree);
}

//------------------------------------------------------------------------
// SetGCState: Create a tree that stores the given constant (0 or 1) into the
// thread's GC state field.
//
// This is used for PInvoke inlining.
//
// Arguments:
//    state - constant (0 or 1) to store into the thread's GC state field.
//
// Return Value:
//    Code tree to perform the action.
//
GenTree* Lowering::SetGCState(int state)
{
    // Thread.offsetOfGcState = 0/1

    assert(state == 0 || state == 1);

    const CORINFO_EE_INFO* pInfo = comp->eeGetEEInfo();

    GenTree* base = new (comp, GT_LCL_VAR) GenTreeLclVar(TYP_I_IMPL, comp->info.compLvFrameListRoot, -1);

    GenTree* stateNode    = new (comp, GT_CNS_INT) GenTreeIntCon(TYP_BYTE, state);
    GenTree* addr         = new (comp, GT_LEA) GenTreeAddrMode(TYP_I_IMPL, base, nullptr, 1, pInfo->offsetOfGCState);
    GenTree* storeGcState = new (comp, GT_STOREIND) GenTreeStoreInd(TYP_BYTE, addr, stateNode);
    return storeGcState;
}

//------------------------------------------------------------------------
// CreateFrameLinkUpdate: Create a tree that either links or unlinks the
// locally-allocated InlinedCallFrame from the Frame list.
//
// This is used for PInvoke inlining.
//
// Arguments:
//    action - whether to link (push) or unlink (pop) the Frame
//
// Return Value:
//    Code tree to perform the action.
//
GenTree* Lowering::CreateFrameLinkUpdate(FrameLinkAction action)
{
    const CORINFO_EE_INFO*                       pInfo         = comp->eeGetEEInfo();
    const CORINFO_EE_INFO::InlinedCallFrameInfo& callFrameInfo = pInfo->inlinedCallFrameInfo;

    GenTree* TCB = new (comp, GT_LCL_VAR) GenTreeLclVar(GT_LCL_VAR, TYP_I_IMPL, comp->info.compLvFrameListRoot,
                                                        (IL_OFFSET)-1); // cast to resolve ambiguity.

    // Thread->m_pFrame
    GenTree* addr = new (comp, GT_LEA) GenTreeAddrMode(TYP_I_IMPL, TCB, nullptr, 1, pInfo->offsetOfThreadFrame);

    GenTree* data = nullptr;

    if (action == PushFrame)
    {
        // Thread->m_pFrame = &inlinedCallFrame;
        data = new (comp, GT_LCL_FLD_ADDR)
            GenTreeLclFld(GT_LCL_FLD_ADDR, TYP_BYREF, comp->lvaInlinedPInvokeFrameVar, callFrameInfo.offsetOfFrameVptr);
    }
    else
    {
        assert(action == PopFrame);
        // Thread->m_pFrame = inlinedCallFrame.m_pNext;

        data = new (comp, GT_LCL_FLD) GenTreeLclFld(GT_LCL_FLD, TYP_BYREF, comp->lvaInlinedPInvokeFrameVar,
                                                    pInfo->inlinedCallFrameInfo.offsetOfFrameLink);
    }
    GenTree* storeInd = new (comp, GT_STOREIND) GenTreeStoreInd(TYP_I_IMPL, addr, data);
    return storeInd;
}

//------------------------------------------------------------------------
// InsertPInvokeMethodProlog: Create the code that runs at the start of
// every method that has PInvoke calls.
//
// Initialize the TCB local and the InlinedCallFrame object. Then link ("push")
// the InlinedCallFrame object on the Frame chain. The layout of InlinedCallFrame
// is defined in vm/frames.h. See also vm/jitinterface.cpp for more information.
// The offsets of these fields is returned by the VM in a call to ICorStaticInfo::getEEInfo().
//
// The (current) layout is as follows:
//
//  64-bit  32-bit                                    CORINFO_EE_INFO
//  offset  offset  field name                        offset                  when set
//  -----------------------------------------------------------------------------------------
//  +00h    +00h    GS cookie                         offsetOfGSCookie
//  +08h    +04h    vptr for class InlinedCallFrame   offsetOfFrameVptr       method prolog
//  +10h    +08h    m_Next                            offsetOfFrameLink       method prolog
//  +18h    +0Ch    m_Datum                           offsetOfCallTarget      call site
//  +20h    n/a     m_StubSecretArg                                           not set by JIT
//  +28h    +10h    m_pCallSiteSP                     offsetOfCallSiteSP      x86: call site, and zeroed in method
//                                                                              prolog;
//                                                                            non-x86: method prolog (SP remains
//                                                                              constant in function, after prolog: no
//                                                                              localloc and PInvoke in same function)
//  +30h    +14h    m_pCallerReturnAddress            offsetOfReturnAddress   call site
//  +38h    +18h    m_pCalleeSavedFP                  offsetOfCalleeSavedFP   not set by JIT
//          +1Ch    JIT retval spill area (int)                               before call_gc    ???
//          +20h    JIT retval spill area (long)                              before call_gc    ???
//          +24h    Saved value of EBP                                        method prolog     ???
//
// Note that in the VM, InlinedCallFrame is a C++ class whose objects have a 'this' pointer that points
// to the InlinedCallFrame vptr (the 2nd field listed above), and the GS cookie is stored *before*
// the object. When we link the InlinedCallFrame onto the Frame chain, we must point at this location,
// and not at the beginning of the InlinedCallFrame local, which is actually the GS cookie.
//
// Return Value:
//    none
//
void Lowering::InsertPInvokeMethodProlog()
{
    noway_assert(comp->info.compCallUnmanaged);
    noway_assert(comp->lvaInlinedPInvokeFrameVar != BAD_VAR_NUM);

    if (comp->opts.ShouldUsePInvokeHelpers())
    {
        return;
    }

    JITDUMP("======= Inserting PInvoke method prolog\n");

    // The first BB must be a scratch BB in order for us to be able to safely insert the P/Invoke prolog.
    assert(comp->fgFirstBBisScratch());

    LIR::Range& firstBlockRange = LIR::AsRange(comp->fgFirstBB);

    const CORINFO_EE_INFO*                       pInfo         = comp->eeGetEEInfo();
    const CORINFO_EE_INFO::InlinedCallFrameInfo& callFrameInfo = pInfo->inlinedCallFrameInfo;

    // First arg:  &compiler->lvaInlinedPInvokeFrameVar + callFrameInfo.offsetOfFrameVptr

    GenTree* frameAddr = new (comp, GT_LCL_FLD_ADDR)
        GenTreeLclFld(GT_LCL_FLD_ADDR, TYP_BYREF, comp->lvaInlinedPInvokeFrameVar, callFrameInfo.offsetOfFrameVptr);

    // Call runtime helper to fill in our InlinedCallFrame and push it on the Frame list:
    //     TCB = CORINFO_HELP_INIT_PINVOKE_FRAME(&symFrameStart, secretArg);
    // for x86, don't pass the secretArg.
    CLANG_FORMAT_COMMENT_ANCHOR;

#if defined(_TARGET_X86_) || defined(_TARGET_ARM_)
    GenTreeArgList* argList = comp->gtNewArgList(frameAddr);
#else
    GenTreeArgList*    argList = comp->gtNewArgList(frameAddr, PhysReg(REG_SECRET_STUB_PARAM));
#endif

    GenTree* call = comp->gtNewHelperCallNode(CORINFO_HELP_INIT_PINVOKE_FRAME, TYP_I_IMPL, argList);

    // some sanity checks on the frame list root vardsc
    LclVarDsc* varDsc = &comp->lvaTable[comp->info.compLvFrameListRoot];
    noway_assert(!varDsc->lvIsParam);
    noway_assert(varDsc->lvType == TYP_I_IMPL);

    GenTree* store =
        new (comp, GT_STORE_LCL_VAR) GenTreeLclVar(GT_STORE_LCL_VAR, TYP_I_IMPL, comp->info.compLvFrameListRoot,
                                                   (IL_OFFSET)-1); // cast to resolve ambiguity.
    store->gtOp.gtOp1 = call;
    store->gtFlags |= GTF_VAR_DEF;

    GenTree* const insertionPoint = firstBlockRange.FirstNonPhiOrCatchArgNode();

    comp->fgMorphTree(store);
    firstBlockRange.InsertBefore(insertionPoint, LIR::SeqTree(comp, store));
    DISPTREERANGE(firstBlockRange, store);

#if !defined(_TARGET_X86_) && !defined(_TARGET_ARM_)
    // For x86, this step is done at the call site (due to stack pointer not being static in the function).
    // For arm32, CallSiteSP is set up by the call to CORINFO_HELP_INIT_PINVOKE_FRAME.

    // --------------------------------------------------------
    // InlinedCallFrame.m_pCallSiteSP = @RSP;

    GenTreeLclFld* storeSP = new (comp, GT_STORE_LCL_FLD)
        GenTreeLclFld(GT_STORE_LCL_FLD, TYP_I_IMPL, comp->lvaInlinedPInvokeFrameVar, callFrameInfo.offsetOfCallSiteSP);
    storeSP->gtOp1 = PhysReg(REG_SPBASE);
    storeSP->gtFlags |= GTF_VAR_DEF;

    firstBlockRange.InsertBefore(insertionPoint, LIR::SeqTree(comp, storeSP));
    DISPTREERANGE(firstBlockRange, storeSP);

#endif // !defined(_TARGET_X86_) && !defined(_TARGET_ARM_)

#if !defined(_TARGET_ARM_)
    // For arm32, CalleeSavedFP is set up by the call to CORINFO_HELP_INIT_PINVOKE_FRAME.

    // --------------------------------------------------------
    // InlinedCallFrame.m_pCalleeSavedEBP = @RBP;

    GenTreeLclFld* storeFP =
        new (comp, GT_STORE_LCL_FLD) GenTreeLclFld(GT_STORE_LCL_FLD, TYP_I_IMPL, comp->lvaInlinedPInvokeFrameVar,
                                                   callFrameInfo.offsetOfCalleeSavedFP);
    storeFP->gtOp1 = PhysReg(REG_FPBASE);
    storeFP->gtFlags |= GTF_VAR_DEF;

    firstBlockRange.InsertBefore(insertionPoint, LIR::SeqTree(comp, storeFP));
    DISPTREERANGE(firstBlockRange, storeFP);
#endif // !defined(_TARGET_ARM_)

    // --------------------------------------------------------
    // On 32-bit targets, CORINFO_HELP_INIT_PINVOKE_FRAME initializes the PInvoke frame and then pushes it onto
    // the current thread's Frame stack. On 64-bit targets, it only initializes the PInvoke frame.
    CLANG_FORMAT_COMMENT_ANCHOR;

#ifdef _TARGET_64BIT_
    if (comp->opts.jitFlags->IsSet(JitFlags::JIT_FLAG_IL_STUB))
    {
        // Push a frame - if we are NOT in an IL stub, this is done right before the call
        // The init routine sets InlinedCallFrame's m_pNext, so we just set the thead's top-of-stack
        GenTree* frameUpd = CreateFrameLinkUpdate(PushFrame);
        firstBlockRange.InsertBefore(insertionPoint, LIR::SeqTree(comp, frameUpd));
        ContainCheckStoreIndir(frameUpd->AsIndir());
        DISPTREERANGE(firstBlockRange, frameUpd);
    }
#endif // _TARGET_64BIT_
}

//------------------------------------------------------------------------
// InsertPInvokeMethodEpilog: Code that needs to be run when exiting any method
// that has PInvoke inlines. This needs to be inserted any place you can exit the
// function: returns, tailcalls and jmps.
//
// Arguments:
//    returnBB   -  basic block from which a method can return
//    lastExpr   -  GenTree of the last top level stmnt of returnBB (debug only arg)
//
// Return Value:
//    Code tree to perform the action.
//
void Lowering::InsertPInvokeMethodEpilog(BasicBlock* returnBB DEBUGARG(GenTree* lastExpr))
{
    assert(returnBB != nullptr);
    assert(comp->info.compCallUnmanaged);

    if (comp->opts.ShouldUsePInvokeHelpers())
    {
        return;
    }

    JITDUMP("======= Inserting PInvoke method epilog\n");

    // Method doing PInvoke calls has exactly one return block unless it has "jmp" or tail calls.
    assert(((returnBB == comp->genReturnBB) && (returnBB->bbJumpKind == BBJ_RETURN)) ||
           returnBB->endsWithTailCallOrJmp(comp));

    LIR::Range& returnBlockRange = LIR::AsRange(returnBB);

    GenTree* insertionPoint = returnBlockRange.LastNode();
    assert(insertionPoint == lastExpr);

    // Note: PInvoke Method Epilog (PME) needs to be inserted just before GT_RETURN, GT_JMP or GT_CALL node in execution
    // order so that it is guaranteed that there will be no further PInvokes after that point in the method.
    //
    // Example1: GT_RETURN(op1) - say execution order is: Op1, GT_RETURN.  After inserting PME, execution order would be
    //           Op1, PME, GT_RETURN
    //
    // Example2: GT_CALL(arg side effect computing nodes, Stk Args Setup, Reg Args setup). The execution order would be
    //           arg side effect computing nodes, Stk Args setup, Reg Args setup, GT_CALL
    //           After inserting PME execution order would be:
    //           arg side effect computing nodes, Stk Args setup, Reg Args setup, PME, GT_CALL
    //
    // Example3: GT_JMP.  After inserting PME execution order would be: PME, GT_JMP
    //           That is after PME, args for GT_JMP call will be setup.

    // TODO-Cleanup: setting GCState to 1 seems to be redundant as InsertPInvokeCallProlog will set it to zero before a
    // PInvoke call and InsertPInvokeCallEpilog() will set it back to 1 after the PInvoke.  Though this is redundant,
    // it is harmeless.
    // Note that liveness is artificially extending the life of compLvFrameListRoot var if the method being compiled has
    // PInvokes.  Deleting the below stmnt would cause an an assert in lsra.cpp::SetLastUses() since compLvFrameListRoot
    // will be live-in to a BBJ_RETURN block without any uses.  Long term we need to fix liveness for x64 case to
    // properly extend the life of compLvFrameListRoot var.
    //
    // Thread.offsetOfGcState = 0/1
    // That is [tcb + offsetOfGcState] = 1
    GenTree* storeGCState = SetGCState(1);
    returnBlockRange.InsertBefore(insertionPoint, LIR::SeqTree(comp, storeGCState));
    ContainCheckStoreIndir(storeGCState->AsIndir());

    // Pop the frame if necessary. This always happens in the epilog on 32-bit targets. For 64-bit targets, we only do
    // this in the epilog for IL stubs; for non-IL stubs the frame is popped after every PInvoke call.
    CLANG_FORMAT_COMMENT_ANCHOR;

#ifdef _TARGET_64BIT_
    if (comp->opts.jitFlags->IsSet(JitFlags::JIT_FLAG_IL_STUB))
#endif // _TARGET_64BIT_
    {
        GenTree* frameUpd = CreateFrameLinkUpdate(PopFrame);
        returnBlockRange.InsertBefore(insertionPoint, LIR::SeqTree(comp, frameUpd));
        ContainCheckStoreIndir(frameUpd->AsIndir());
    }
}

//------------------------------------------------------------------------
// InsertPInvokeCallProlog: Emit the call-site prolog for direct calls to unmanaged code.
// It does all the necessary call-site setup of the InlinedCallFrame.
//
// Arguments:
//    call - the call for which we are inserting the PInvoke prolog.
//
// Return Value:
//    None.
//
void Lowering::InsertPInvokeCallProlog(GenTreeCall* call)
{
    JITDUMP("======= Inserting PInvoke call prolog\n");

    GenTree* insertBefore = call;
    if (call->gtCallType == CT_INDIRECT)
    {
        bool isClosed;
        insertBefore = BlockRange().GetTreeRange(call->gtCallAddr, &isClosed).FirstNode();
        assert(isClosed);
    }

    const CORINFO_EE_INFO::InlinedCallFrameInfo& callFrameInfo = comp->eeGetEEInfo()->inlinedCallFrameInfo;

    gtCallTypes callType = (gtCallTypes)call->gtCallType;

    noway_assert(comp->lvaInlinedPInvokeFrameVar != BAD_VAR_NUM);

    if (comp->opts.ShouldUsePInvokeHelpers())
    {
        // First argument is the address of the frame variable.
        GenTree* frameAddr = new (comp, GT_LCL_VAR_ADDR)
            GenTreeLclVar(GT_LCL_VAR_ADDR, TYP_BYREF, comp->lvaInlinedPInvokeFrameVar, BAD_IL_OFFSET);

        // Insert call to CORINFO_HELP_JIT_PINVOKE_BEGIN
        GenTree* helperCall =
            comp->gtNewHelperCallNode(CORINFO_HELP_JIT_PINVOKE_BEGIN, TYP_VOID, comp->gtNewArgList(frameAddr));

        comp->fgMorphTree(helperCall);
        BlockRange().InsertBefore(insertBefore, LIR::SeqTree(comp, helperCall));
        LowerNode(helperCall); // helper call is inserted before current node and should be lowered here.
        return;
    }

    // Emit the following sequence:
    //
    // InlinedCallFrame.callTarget = methodHandle   // stored in m_Datum
    // InlinedCallFrame.m_pCallSiteSP = SP          // x86 only
    // InlinedCallFrame.m_pCallerReturnAddress = return address
    // Thread.gcState = 0
    // (non-stub) - update top Frame on TCB         // 64-bit targets only

    // ----------------------------------------------------------------------------------
    // Setup InlinedCallFrame.callSiteTarget (which is how the JIT refers to it).
    // The actual field is InlinedCallFrame.m_Datum which has many different uses and meanings.

    GenTree* src = nullptr;

    if (callType == CT_INDIRECT)
    {
#if !defined(_TARGET_64BIT_)
        // On 32-bit targets, indirect calls need the size of the stack args in InlinedCallFrame.m_Datum.
        const unsigned numStkArgBytes = call->fgArgInfo->GetNextSlotNum() * TARGET_POINTER_SIZE;

        src = comp->gtNewIconNode(numStkArgBytes, TYP_INT);
#else
        // On 64-bit targets, indirect calls may need the stub parameter value in InlinedCallFrame.m_Datum.
        // If the stub parameter value is not needed, m_Datum will be initialized by the VM.
        if (comp->info.compPublishStubParam)
        {
            src = comp->gtNewLclvNode(comp->lvaStubArgumentVar, TYP_I_IMPL);
        }
#endif // !defined(_TARGET_64BIT_)
    }
    else
    {
        assert(callType == CT_USER_FUNC);

        void*                 pEmbedMethodHandle = nullptr;
        CORINFO_METHOD_HANDLE embedMethodHandle =
            comp->info.compCompHnd->embedMethodHandle(call->gtCallMethHnd, &pEmbedMethodHandle);

        noway_assert((!embedMethodHandle) != (!pEmbedMethodHandle));

        if (embedMethodHandle != nullptr)
        {
            // InlinedCallFrame.callSiteTarget = methodHandle
            src = AddrGen(embedMethodHandle);
        }
        else
        {
            // InlinedCallFrame.callSiteTarget = *pEmbedMethodHandle
            src = Ind(AddrGen(pEmbedMethodHandle));
        }
    }

    if (src != nullptr)
    {
        // Store into InlinedCallFrame.m_Datum, the offset of which is given by offsetOfCallTarget.
        GenTreeLclFld* store =
            new (comp, GT_STORE_LCL_FLD) GenTreeLclFld(GT_STORE_LCL_FLD, TYP_I_IMPL, comp->lvaInlinedPInvokeFrameVar,
                                                       callFrameInfo.offsetOfCallTarget);
        store->gtOp1 = src;
        store->gtFlags |= GTF_VAR_DEF;

        InsertTreeBeforeAndContainCheck(insertBefore, store);
    }

#ifdef _TARGET_X86_

    // ----------------------------------------------------------------------------------
    // InlinedCallFrame.m_pCallSiteSP = SP

    GenTreeLclFld* storeCallSiteSP = new (comp, GT_STORE_LCL_FLD)
        GenTreeLclFld(GT_STORE_LCL_FLD, TYP_I_IMPL, comp->lvaInlinedPInvokeFrameVar, callFrameInfo.offsetOfCallSiteSP);

    storeCallSiteSP->gtOp1 = PhysReg(REG_SPBASE);
    storeCallSiteSP->gtFlags |= GTF_VAR_DEF;

    InsertTreeBeforeAndContainCheck(insertBefore, storeCallSiteSP);

#endif

    // ----------------------------------------------------------------------------------
    // InlinedCallFrame.m_pCallerReturnAddress = &label (the address of the instruction immediately following the call)

    GenTreeLclFld* storeLab =
        new (comp, GT_STORE_LCL_FLD) GenTreeLclFld(GT_STORE_LCL_FLD, TYP_I_IMPL, comp->lvaInlinedPInvokeFrameVar,
                                                   callFrameInfo.offsetOfReturnAddress);

    // We don't have a real label, and inserting one is hard (even if we made a special node),
    // so for now we will just 'know' what this means in codegen.
    GenTreeLabel* labelRef = new (comp, GT_LABEL) GenTreeLabel(nullptr);
    labelRef->gtType       = TYP_I_IMPL;
    storeLab->gtOp1        = labelRef;
    storeLab->gtFlags |= GTF_VAR_DEF;

    InsertTreeBeforeAndContainCheck(insertBefore, storeLab);

    // Push the PInvoke frame if necessary. On 32-bit targets this only happens in the method prolog if a method
    // contains PInvokes; on 64-bit targets this is necessary in non-stubs.
    CLANG_FORMAT_COMMENT_ANCHOR;

#ifdef _TARGET_64BIT_
    if (!comp->opts.jitFlags->IsSet(JitFlags::JIT_FLAG_IL_STUB))
    {
        // Set the TCB's frame to be the one we just created.
        // Note the init routine for the InlinedCallFrame (CORINFO_HELP_INIT_PINVOKE_FRAME)
        // has prepended it to the linked list to maintain the stack of Frames.
        //
        // Stubs do this once per stub, not once per call.
        GenTree* frameUpd = CreateFrameLinkUpdate(PushFrame);
        BlockRange().InsertBefore(insertBefore, LIR::SeqTree(comp, frameUpd));
        ContainCheckStoreIndir(frameUpd->AsIndir());
    }
#endif // _TARGET_64BIT_

    // IMPORTANT **** This instruction must come last!!! ****
    // It changes the thread's state to Preemptive mode
    // ----------------------------------------------------------------------------------
    //  [tcb + offsetOfGcState] = 0

    GenTree* storeGCState = SetGCState(0);
    BlockRange().InsertBefore(insertBefore, LIR::SeqTree(comp, storeGCState));
    ContainCheckStoreIndir(storeGCState->AsIndir());
}

//------------------------------------------------------------------------
// InsertPInvokeCallEpilog: Insert the code that goes after every inlined pinvoke call.
//
// Arguments:
//    call - the call for which we are inserting the PInvoke epilog.
//
// Return Value:
//    None.
//
void Lowering::InsertPInvokeCallEpilog(GenTreeCall* call)
{
    JITDUMP("======= Inserting PInvoke call epilog\n");

    if (comp->opts.ShouldUsePInvokeHelpers())
    {
        noway_assert(comp->lvaInlinedPInvokeFrameVar != BAD_VAR_NUM);

        // First argument is the address of the frame variable.
        GenTree* frameAddr =
            new (comp, GT_LCL_VAR) GenTreeLclVar(GT_LCL_VAR, TYP_BYREF, comp->lvaInlinedPInvokeFrameVar, BAD_IL_OFFSET);
        frameAddr->SetOperRaw(GT_LCL_VAR_ADDR);

        // Insert call to CORINFO_HELP_JIT_PINVOKE_END
        GenTreeCall* helperCall =
            comp->gtNewHelperCallNode(CORINFO_HELP_JIT_PINVOKE_END, TYP_VOID, comp->gtNewArgList(frameAddr));

        comp->fgMorphTree(helperCall);
        BlockRange().InsertAfter(call, LIR::SeqTree(comp, helperCall));
        ContainCheckCallOperands(helperCall);
        return;
    }

    // gcstate = 1
    GenTree* insertionPoint = call->gtNext;

    GenTree* tree = SetGCState(1);
    BlockRange().InsertBefore(insertionPoint, LIR::SeqTree(comp, tree));
    ContainCheckStoreIndir(tree->AsIndir());

    tree = CreateReturnTrapSeq();
    BlockRange().InsertBefore(insertionPoint, LIR::SeqTree(comp, tree));
    ContainCheckReturnTrap(tree->AsOp());

    // Pop the frame if necessary. On 32-bit targets this only happens in the method epilog; on 64-bit targets thi
    // happens after every PInvoke call in non-stubs. 32-bit targets instead mark the frame as inactive.
    CLANG_FORMAT_COMMENT_ANCHOR;

#ifdef _TARGET_64BIT_
    if (!comp->opts.jitFlags->IsSet(JitFlags::JIT_FLAG_IL_STUB))
    {
        tree = CreateFrameLinkUpdate(PopFrame);
        BlockRange().InsertBefore(insertionPoint, LIR::SeqTree(comp, tree));
        ContainCheckStoreIndir(tree->AsIndir());
    }
#else
    const CORINFO_EE_INFO::InlinedCallFrameInfo& callFrameInfo = comp->eeGetEEInfo()->inlinedCallFrameInfo;

    // ----------------------------------------------------------------------------------
    // InlinedCallFrame.m_pCallerReturnAddress = nullptr

    GenTreeLclFld* const storeCallSiteTracker =
        new (comp, GT_STORE_LCL_FLD) GenTreeLclFld(GT_STORE_LCL_FLD, TYP_I_IMPL, comp->lvaInlinedPInvokeFrameVar,
                                                   callFrameInfo.offsetOfReturnAddress);

    GenTreeIntCon* const constantZero = new (comp, GT_CNS_INT) GenTreeIntCon(TYP_I_IMPL, 0);

    storeCallSiteTracker->gtOp1 = constantZero;
    storeCallSiteTracker->gtFlags |= GTF_VAR_DEF;

    BlockRange().InsertBefore(insertionPoint, constantZero, storeCallSiteTracker);
    ContainCheckStoreLoc(storeCallSiteTracker);
#endif // _TARGET_64BIT_
}

//------------------------------------------------------------------------
// LowerNonvirtPinvokeCall: Lower a non-virtual / indirect PInvoke call
//
// Arguments:
//    call - The call to lower.
//
// Return Value:
//    The lowered call tree.
//
GenTree* Lowering::LowerNonvirtPinvokeCall(GenTreeCall* call)
{
    // PInvoke lowering varies depending on the flags passed in by the EE. By default,
    // GC transitions are generated inline; if CORJIT_FLAG_USE_PINVOKE_HELPERS is specified,
    // GC transitions are instead performed using helper calls. Examples of each case are given
    // below. Note that the data structure that is used to store information about a call frame
    // containing any P/Invoke calls is initialized in the method prolog (see
    // InsertPInvokeMethod{Prolog,Epilog} for details).
    //
    // Inline transitions:
    //     InlinedCallFrame inlinedCallFrame;
    //
    //     ...
    //
    //     // Set up frame information
    //     inlinedCallFrame.callTarget = methodHandle;      // stored in m_Datum
    //     inlinedCallFrame.m_pCallSiteSP = SP;             // x86 only
    //     inlinedCallFrame.m_pCallerReturnAddress = &label; (the address of the instruction immediately following the
    //     call)
    //     Thread.m_pFrame = &inlinedCallFrame; (non-IL-stub only)
    //
    //     // Switch the thread's GC mode to preemptive mode
    //     thread->m_fPreemptiveGCDisabled = 0;
    //
    //     // Call the unmanaged method
    //     target();
    //
    //     // Switch the thread's GC mode back to cooperative mode
    //     thread->m_fPreemptiveGCDisabled = 1;
    //
    //     // Rendezvous with a running collection if necessary
    //     if (g_TrapReturningThreads)
    //         RareDisablePreemptiveGC();
    //
    // Transistions using helpers:
    //
    //     OpaqueFrame opaqueFrame;
    //
    //     ...
    //
    //     // Call the JIT_PINVOKE_BEGIN helper
    //     JIT_PINVOKE_BEGIN(&opaqueFrame);
    //
    //     // Call the unmanaged method
    //     target();
    //
    //     // Call the JIT_PINVOKE_END helper
    //     JIT_PINVOKE_END(&opaqueFrame);
    //
    // Note that the JIT_PINVOKE_{BEGIN.END} helpers currently use the default calling convention for the target
    // platform. They may be changed in the future such that they preserve all register values.

    GenTree* result = nullptr;
    void*    addr   = nullptr;

    // assert we have seen one of these
    noway_assert(comp->info.compCallUnmanaged != 0);

    // All code generated by this function must not contain the randomly-inserted NOPs
    // that we insert to inhibit JIT spraying in partial trust scenarios.
    // The PINVOKE_PROLOG op signals this to the code generator/emitter.

    GenTree* prolog = new (comp, GT_NOP) GenTree(GT_PINVOKE_PROLOG, TYP_VOID);
    BlockRange().InsertBefore(call, prolog);

    InsertPInvokeCallProlog(call);

    if (call->gtCallType != CT_INDIRECT)
    {
        noway_assert(call->gtCallType == CT_USER_FUNC);
        CORINFO_METHOD_HANDLE methHnd = call->gtCallMethHnd;

        CORINFO_CONST_LOOKUP lookup;
        comp->info.compCompHnd->getAddressOfPInvokeTarget(methHnd, &lookup);

        void* addr = lookup.addr;
        switch (lookup.accessType)
        {
            case IAT_VALUE:
                if (!IsCallTargetInRange(addr))
                {
                    result = AddrGen(addr);
                }
                else
                {
                    // a direct call within range of hardware relative call instruction
                    // stash the address for codegen
                    call->gtDirectCallAddress = addr;
#ifdef FEATURE_READYTORUN_COMPILER
                    call->gtEntryPoint.addr       = nullptr;
                    call->gtEntryPoint.accessType = IAT_VALUE;
#endif
                }
                break;

            case IAT_PVALUE:
                result = Ind(AddrGen(addr));
                break;

            case IAT_PPVALUE:
                result = Ind(Ind(AddrGen(addr)));
                break;
        }
    }

    InsertPInvokeCallEpilog(call);

    return result;
}

// Expand the code necessary to calculate the control target.
// Returns: the expression needed to calculate the control target
// May insert embedded statements
GenTree* Lowering::LowerVirtualVtableCall(GenTreeCall* call)
{
    noway_assert(call->gtCallType == CT_USER_FUNC);

    // If this is a tail call via helper, thisPtr will be the third argument.
    int       thisPtrArgNum;
    regNumber thisPtrArgReg;

#ifndef _TARGET_X86_ // x86 tailcall via helper follows normal calling convention, but with extra stack args.
    if (call->IsTailCallViaHelper())
    {
        thisPtrArgNum = 2;
        thisPtrArgReg = REG_ARG_2;
    }
    else
#endif // !_TARGET_X86_
    {
        thisPtrArgNum = 0;
        thisPtrArgReg = comp->codeGen->genGetThisArgReg(call);
    }

    // get a reference to the thisPtr being passed
    fgArgTabEntry* argEntry = comp->gtArgEntryByArgNum(call, thisPtrArgNum);
    assert(argEntry->regNum == thisPtrArgReg);
    assert(argEntry->node->gtOper == GT_PUTARG_REG);
    GenTree* thisPtr = argEntry->node->gtOp.gtOp1;

    // If what we are passing as the thisptr is not already a local, make a new local to place it in
    // because we will be creating expressions based on it.
    unsigned lclNum;
    if (thisPtr->IsLocal())
    {
        lclNum = thisPtr->gtLclVarCommon.gtLclNum;
    }
    else
    {
        // Split off the thisPtr and store to a temporary variable.
        if (vtableCallTemp == BAD_VAR_NUM)
        {
            vtableCallTemp = comp->lvaGrabTemp(true DEBUGARG("virtual vtable call"));
        }

        LIR::Use thisPtrUse(BlockRange(), &(argEntry->node->gtOp.gtOp1), argEntry->node);
        ReplaceWithLclVar(thisPtrUse, vtableCallTemp);

        lclNum = vtableCallTemp;
    }

    // We'll introduce another use of this local so increase its ref count.
    comp->lvaTable[lclNum].incRefCnts(comp->compCurBB->getBBWeight(comp), comp);

    // Get hold of the vtable offset (note: this might be expensive)
    unsigned vtabOffsOfIndirection;
    unsigned vtabOffsAfterIndirection;
    bool     isRelative;
    comp->info.compCompHnd->getMethodVTableOffset(call->gtCallMethHnd, &vtabOffsOfIndirection,
                                                  &vtabOffsAfterIndirection, &isRelative);

    // If the thisPtr is a local field, then construct a local field type node
    GenTree* local;
    if (thisPtr->isLclField())
    {
        local = new (comp, GT_LCL_FLD)
            GenTreeLclFld(GT_LCL_FLD, thisPtr->TypeGet(), lclNum, thisPtr->AsLclFld()->gtLclOffs);
    }
    else
    {
        local = new (comp, GT_LCL_VAR) GenTreeLclVar(GT_LCL_VAR, thisPtr->TypeGet(), lclNum, BAD_IL_OFFSET);
    }

    // pointer to virtual table = [REG_CALL_THIS + offs]
    GenTree* result = Ind(Offset(local, VPTR_OFFS));

    // Get the appropriate vtable chunk
    if (vtabOffsOfIndirection != CORINFO_VIRTUALCALL_NO_CHUNK)
    {
        if (isRelative)
        {
            // MethodTable offset is a relative pointer.
            //
            // Additional temporary variable is used to store virtual table pointer.
            // Address of method is obtained by the next computations:
            //
            // Save relative offset to tmp (vtab is virtual table pointer, vtabOffsOfIndirection is offset of
            // vtable-1st-level-indirection):
            // tmp = [vtab + vtabOffsOfIndirection]
            //
            // Save address of method to result (vtabOffsAfterIndirection is offset of vtable-2nd-level-indirection):
            // result = [vtab + vtabOffsOfIndirection + vtabOffsAfterIndirection + tmp]
            unsigned lclNumTmp = comp->lvaGrabTemp(true DEBUGARG("lclNumTmp"));

            comp->lvaTable[lclNumTmp].incRefCnts(comp->compCurBB->getBBWeight(comp), comp);
            GenTree* lclvNodeStore = comp->gtNewTempAssign(lclNumTmp, result);

            LIR::Range range = LIR::SeqTree(comp, lclvNodeStore);
            JITDUMP("result of obtaining pointer to virtual table:\n");
            DISPRANGE(range);
            BlockRange().InsertBefore(call, std::move(range));

            GenTree* tmpTree = comp->gtNewLclvNode(lclNumTmp, result->TypeGet());
            tmpTree          = Offset(tmpTree, vtabOffsOfIndirection);

            tmpTree       = comp->gtNewOperNode(GT_IND, TYP_I_IMPL, tmpTree, false);
            GenTree* offs = comp->gtNewIconNode(vtabOffsOfIndirection + vtabOffsAfterIndirection, TYP_INT);
            result = comp->gtNewOperNode(GT_ADD, TYP_I_IMPL, comp->gtNewLclvNode(lclNumTmp, result->TypeGet()), offs);

            result = Ind(OffsetByIndex(result, tmpTree));
        }
        else
        {
            // result = [REG_CALL_IND_SCRATCH + vtabOffsOfIndirection]
            result = Ind(Offset(result, vtabOffsOfIndirection));
        }
    }
    else
    {
        assert(!isRelative);
    }

    // Load the function address
    // result = [reg+vtabOffs]
    if (!isRelative)
    {
        result = Ind(Offset(result, vtabOffsAfterIndirection));
    }

    return result;
}

// Lower stub dispatched virtual calls.
GenTree* Lowering::LowerVirtualStubCall(GenTreeCall* call)
{
    assert(call->IsVirtualStub());

    // An x86 JIT which uses full stub dispatch must generate only
    // the following stub dispatch calls:
    //
    // (1) isCallRelativeIndirect:
    //        call dword ptr [rel32]  ;  FF 15 ---rel32----
    // (2) isCallRelative:
    //        call abc                ;     E8 ---rel32----
    // (3) isCallRegisterIndirect:
    //     3-byte nop                 ;
    //     call dword ptr [eax]       ;     FF 10
    //
    // THIS IS VERY TIGHTLY TIED TO THE PREDICATES IN
    // vm\i386\cGenCpu.h, esp. isCallRegisterIndirect.

    GenTree* result = nullptr;

#ifdef _TARGET_64BIT_
    // Non-tail calls: Jump Stubs are not taken into account by VM for mapping an AV into a NullRef
    // exception. Therefore, JIT needs to emit an explicit null check.  Note that Jit64 too generates
    // an explicit null check.
    //
    // Tail calls: fgMorphTailCall() materializes null check explicitly and hence no need to emit
    // null check.

    // Non-64-bit: No need to null check the this pointer - the dispatch code will deal with this.
    // The VM considers exceptions that occur in stubs on 64-bit to be not managed exceptions and
    // it would be difficult to change this in a way so that it affects only the right stubs.

    if (!call->IsTailCallViaHelper())
    {
        call->gtFlags |= GTF_CALL_NULLCHECK;
    }
#endif

    // This is code to set up an indirect call to a stub address computed
    // via dictionary lookup.
    if (call->gtCallType == CT_INDIRECT)
    {
        // The importer decided we needed a stub call via a computed
        // stub dispatch address, i.e. an address which came from a dictionary lookup.
        //   - The dictionary lookup produces an indirected address, suitable for call
        //     via "call [VirtualStubParam.reg]"
        //
        // This combination will only be generated for shared generic code and when
        // stub dispatch is active.

        // fgMorphArgs will have created trees to pass the address in VirtualStubParam.reg.
        // All we have to do here is add an indirection to generate the actual call target.

        GenTree* ind = Ind(call->gtCallAddr);
        BlockRange().InsertAfter(call->gtCallAddr, ind);
        call->gtCallAddr = ind;

        ind->gtFlags |= GTF_IND_REQ_ADDR_IN_REG;

        ContainCheckIndir(ind->AsIndir());
    }
    else
    {
        // Direct stub call.
        // Get stub addr. This will return NULL if virtual call stubs are not active
        void* stubAddr = call->gtStubCallStubAddr;
        noway_assert(stubAddr != nullptr);

        // If not CT_INDIRECT,  then it should always be relative indir call.
        // This is ensured by VM.
        noway_assert(call->IsVirtualStubRelativeIndir());

        // Direct stub calls, though the stubAddr itself may still need to be
        // accessed via an indirection.
        GenTree* addr = AddrGen(stubAddr);

#ifdef _TARGET_X86_
        // On x86, for tailcall via helper, the JIT_TailCall helper takes the stubAddr as
        // the target address, and we set a flag that it's a VSD call. The helper then
        // handles any necessary indirection.
        if (call->IsTailCallViaHelper())
        {
            result = addr;
        }
#endif // _TARGET_X86_

        if (result == nullptr)
        {
            result = Ind(addr);
        }
    }

    // TODO-Cleanup: start emitting random NOPS
    return result;
}

//------------------------------------------------------------------------
// AddrModeCleanupHelper: Remove the nodes that are no longer used after an
// addressing mode is constructed
//
// Arguments:
//    addrMode - A pointer to a new GenTreeAddrMode
//    node     - The node currently being considered for removal
//
// Return Value:
//    None.
//
// Assumptions:
//    'addrMode' and 'node' must be contained in the current block
//
void Lowering::AddrModeCleanupHelper(GenTreeAddrMode* addrMode, GenTree* node)
{
    if (node == addrMode->Base() || node == addrMode->Index())
    {
        return;
    }

    // TODO-LIR: change this to use the LIR mark bit and iterate instead of recursing
    node->VisitOperands([this, addrMode](GenTree* operand) -> GenTree::VisitResult {
        AddrModeCleanupHelper(addrMode, operand);
        return GenTree::VisitResult::Continue;
    });

    BlockRange().Remove(node);
}

//------------------------------------------------------------------------
// Lowering::AreSourcesPossibleModifiedLocals:
//    Given two nodes which will be used in an addressing mode (base,
//    index), check to see if they are lclVar reads, and if so, walk
//    backwards from the use until both reads have been visited to
//    determine if they are potentially modified in that range.
//
// Arguments:
//    addr - the node that uses the base and index nodes
//    base - the base node
//    index - the index node
//
// Returns: true if either the base or index may be modified between the
//          node and addr.
//
bool Lowering::AreSourcesPossiblyModifiedLocals(GenTree* addr, GenTree* base, GenTree* index)
{
    assert(addr != nullptr);

    unsigned markCount = 0;

    SideEffectSet baseSideEffects;
    if (base != nullptr)
    {
        if (base->OperIsLocalRead())
        {
            baseSideEffects.AddNode(comp, base);
        }
        else
        {
            base = nullptr;
        }
    }

    SideEffectSet indexSideEffects;
    if (index != nullptr)
    {
        if (index->OperIsLocalRead())
        {
            indexSideEffects.AddNode(comp, index);
        }
        else
        {
            index = nullptr;
        }
    }

    for (GenTree* cursor = addr;; cursor = cursor->gtPrev)
    {
        assert(cursor != nullptr);

        if (cursor == base)
        {
            base = nullptr;
        }

        if (cursor == index)
        {
            index = nullptr;
        }

        if ((base == nullptr) && (index == nullptr))
        {
            return false;
        }

        m_scratchSideEffects.Clear();
        m_scratchSideEffects.AddNode(comp, cursor);
        if ((base != nullptr) && m_scratchSideEffects.InterferesWith(baseSideEffects, false))
        {
            return true;
        }

        if ((index != nullptr) && m_scratchSideEffects.InterferesWith(indexSideEffects, false))
        {
            return true;
        }
    }
}

//------------------------------------------------------------------------
// TryCreateAddrMode: recognize trees which can be implemented using an
//    addressing mode and transform them to a GT_LEA
//
// Arguments:
//    use:     the use of the address we want to transform
//    isIndir: true if this addressing mode is the child of an indir
//
// Returns:
//    The created LEA node or the original address node if an LEA could
//    not be formed.
//
GenTree* Lowering::TryCreateAddrMode(LIR::Use&& use, bool isIndir)
{
    GenTree* addr   = use.Def();
    GenTree* base   = nullptr;
    GenTree* index  = nullptr;
    unsigned scale  = 0;
    ssize_t  offset = 0;
    bool     rev    = false;

    // TODO-1stClassStructs: This logic is here to preserve prior behavior. Note that previously
    // block ops were not considered for addressing modes, but an add under it may have been.
    // This should be replaced with logic that more carefully determines when an addressing mode
    // would be beneficial for a block op.
    if (isIndir)
    {
        GenTree* indir = use.User();
        if (indir->TypeGet() == TYP_STRUCT)
        {
            isIndir = false;
        }
        else if (varTypeIsStruct(indir))
        {
            // We can have an indirection on the rhs of a block copy (it is the source
            // object). This is not a "regular" indirection.
            // (Note that the user check could be costly.)
            LIR::Use indirUse;
            if (BlockRange().TryGetUse(indir, &indirUse) && indirUse.User()->OperIsIndir())
            {
                isIndir = false;
            }
            else
            {
                isIndir = !indir->OperIsBlk();
            }
        }
    }

    // Find out if an addressing mode can be constructed
    bool doAddrMode = comp->codeGen->genCreateAddrMode(addr,   // address
                                                       true,   // fold
                                                       &rev,   // reverse ops
                                                       &base,  // base addr
                                                       &index, // index val
#if SCALED_ADDR_MODES
                                                       &scale,   // scaling
#endif                                                           // SCALED_ADDR_MODES
                                                       &offset); // displacement

    if (scale == 0)
    {
        scale = 1;
    }

    if (!isIndir)
    {
        // this is just a reg-const add
        if (index == nullptr)
        {
            return addr;
        }

        // this is just a reg-reg add
        if (scale == 1 && offset == 0)
        {
            return addr;
        }
    }

    // make sure there are not any side effects between def of leaves and use
    if (!doAddrMode || AreSourcesPossiblyModifiedLocals(addr, base, index))
    {
        JITDUMP("No addressing mode:\n  ");
        DISPNODE(addr);
        return addr;
    }

    GenTree* arrLength = nullptr;

    JITDUMP("Addressing mode:\n");
    JITDUMP("  Base\n    ");
    DISPNODE(base);
    if (index != nullptr)
    {
        JITDUMP("  + Index * %u + %d\n    ", scale, offset);
        DISPNODE(index);
    }
    else
    {
        JITDUMP("  + %d\n", offset);
    }

    var_types addrModeType = addr->TypeGet();
    if (addrModeType == TYP_REF)
    {
        addrModeType = TYP_BYREF;
    }

    GenTreeAddrMode* addrMode = new (comp, GT_LEA) GenTreeAddrMode(addrModeType, base, index, scale, offset);

    // Neither the base nor the index should now be contained.
    if (base != nullptr)
    {
        base->ClearContained();
    }
    if (index != nullptr)
    {
        index->ClearContained();
    }
    addrMode->gtRsvdRegs = addr->gtRsvdRegs;
    addrMode->gtFlags |= (addr->gtFlags & GTF_IND_FLAGS);
    addrMode->gtFlags &= ~GTF_ALL_EFFECT; // LEAs are side-effect-free.

    JITDUMP("New addressing mode node:\n");
    DISPNODE(addrMode);
    JITDUMP("\n");

    BlockRange().InsertAfter(addr, addrMode);

    // Now we need to remove all the nodes subsumed by the addrMode
    AddrModeCleanupHelper(addrMode, addr);

    // Replace the original address node with the addrMode.
    use.ReplaceWith(comp, addrMode);

    return addrMode;
}

//------------------------------------------------------------------------
// LowerAdd: turn this add into a GT_LEA if that would be profitable
//
// Arguments:
//    node - the node we care about
//
// Returns:
//    The next node to lower if we have transformed the ADD; nullptr otherwise.
//
GenTree* Lowering::LowerAdd(GenTree* node)
{
    GenTree* next = node->gtNext;

#ifndef _TARGET_ARMARCH_
    if (varTypeIsIntegralOrI(node))
    {
        LIR::Use use;
        if (BlockRange().TryGetUse(node, &use))
        {
            // If this is a child of an indir, let the parent handle it.
            // If there is a chain of adds, only look at the topmost one.
            GenTree* parent = use.User();
            if (!parent->OperIsIndir() && (parent->gtOper != GT_ADD))
            {
                GenTree* addr = TryCreateAddrMode(std::move(use), false);
                if (addr != node)
                {
                    return addr->gtNext;
                }
            }
        }
    }
#endif // !_TARGET_ARMARCH_

    return nullptr;
}

//------------------------------------------------------------------------
// LowerUnsignedDivOrMod: Lowers a GT_UDIV/GT_UMOD node.
//
// Arguments:
//    divMod - pointer to the GT_UDIV/GT_UMOD node to be lowered
//
// Return Value:
//    Returns a boolean indicating whether the node was transformed.
//
// Notes:
//    - Transform UDIV/UMOD by power of 2 into RSZ/AND
//    - Transform UDIV by constant >= 2^(N-1) into GE
//    - Transform UDIV/UMOD by constant >= 3 into "magic division"
//

bool Lowering::LowerUnsignedDivOrMod(GenTreeOp* divMod)
{
    assert(divMod->OperIs(GT_UDIV, GT_UMOD));

#if defined(USE_HELPERS_FOR_INT_DIV)
    if (!varTypeIsIntegral(divMod->TypeGet()))
    {
        assert(!"unreachable: integral GT_UDIV/GT_UMOD should get morphed into helper calls");
    }
    assert(varTypeIsFloating(divMod->TypeGet()));
#endif // USE_HELPERS_FOR_INT_DIV
#if defined(_TARGET_ARM64_)
    assert(divMod->OperGet() != GT_UMOD);
#endif // _TARGET_ARM64_

    GenTree* next     = divMod->gtNext;
    GenTree* dividend = divMod->gtGetOp1();
    GenTree* divisor  = divMod->gtGetOp2();

#if !defined(_TARGET_64BIT_)
    if (dividend->OperIs(GT_LONG))
    {
        return false;
    }
#endif

    if (!divisor->IsCnsIntOrI())
    {
        return false;
    }

    if (dividend->IsCnsIntOrI())
    {
        // We shouldn't see a divmod with constant operands here but if we do then it's likely
        // because optimizations are disabled or it's a case that's supposed to throw an exception.
        // Don't optimize this.
        return false;
    }

    const var_types type = divMod->TypeGet();
    assert((type == TYP_INT) || (type == TYP_I_IMPL));

    size_t divisorValue = static_cast<size_t>(divisor->AsIntCon()->IconValue());

    if (type == TYP_INT)
    {
        // Clear up the upper 32 bits of the value, they may be set to 1 because constants
        // are treated as signed and stored in ssize_t which is 64 bit in size on 64 bit targets.
        divisorValue &= UINT32_MAX;
    }

    if (divisorValue == 0)
    {
        return false;
    }

    const bool isDiv = divMod->OperIs(GT_UDIV);

    if (isPow2(divisorValue))
    {
        genTreeOps newOper;

        if (isDiv)
        {
            newOper      = GT_RSZ;
            divisorValue = genLog2(divisorValue);
        }
        else
        {
            newOper = GT_AND;
            divisorValue -= 1;
        }

        divMod->SetOper(newOper);
        divisor->gtIntCon.SetIconValue(divisorValue);
        ContainCheckNode(divMod);
        return true;
    }
    if (isDiv)
    {
        // If the divisor is greater or equal than 2^(N - 1) then the result is 1
        // iff the dividend is greater or equal than the divisor.
        if (((type == TYP_INT) && (divisorValue > (UINT32_MAX / 2))) ||
            ((type == TYP_LONG) && (divisorValue > (UINT64_MAX / 2))))
        {
            divMod->SetOper(GT_GE);
            divMod->gtFlags |= GTF_UNSIGNED;
            ContainCheckNode(divMod);
            return true;
        }
    }

// TODO-ARM-CQ: Currently there's no GT_MULHI for ARM32
#if defined(_TARGET_XARCH_) || defined(_TARGET_ARM64_)
    if (!comp->opts.MinOpts() && (divisorValue >= 3))
    {
        size_t magic;
        bool   add;
        int    shift;

        if (type == TYP_INT)
        {
            magic = MagicDivide::GetUnsigned32Magic(static_cast<uint32_t>(divisorValue), &add, &shift);
        }
        else
        {
#ifdef _TARGET_64BIT_
            magic = MagicDivide::GetUnsigned64Magic(static_cast<uint64_t>(divisorValue), &add, &shift);
#else
            unreached();
#endif
        }

        // Depending on the "add" flag returned by GetUnsignedMagicNumberForDivide we need to generate:
        // add == false (when divisor == 3 for example):
        //     div = (dividend MULHI magic) RSZ shift
        // add == true (when divisor == 7 for example):
        //     mulhi = dividend MULHI magic
        //     div   = (((dividend SUB mulhi) RSZ 1) ADD mulhi)) RSZ (shift - 1)
        const bool     requiresAdjustment       = add;
        const bool     requiresDividendMultiuse = requiresAdjustment || !isDiv;
        const unsigned curBBWeight              = m_block->getBBWeight(comp);
        unsigned       dividendLclNum           = BAD_VAR_NUM;

        if (requiresDividendMultiuse)
        {
            LIR::Use dividendUse(BlockRange(), &divMod->gtOp1, divMod);
            dividendLclNum = ReplaceWithLclVar(dividendUse);
            dividend       = divMod->gtGetOp1();
        }

        // Insert a new GT_MULHI node before the existing GT_UDIV/GT_UMOD node.
        // The existing node will later be transformed into a GT_RSZ/GT_SUB that
        // computes the final result. This way don't need to find and change the use
        // of the existing node.
        GenTree* mulhi = comp->gtNewOperNode(GT_MULHI, type, dividend, divisor);
        mulhi->gtFlags |= GTF_UNSIGNED;
        divisor->AsIntCon()->SetIconValue(magic);
        BlockRange().InsertBefore(divMod, mulhi);
        GenTree* firstNode = mulhi;

        if (requiresAdjustment)
        {
            GenTree* dividend = comp->gtNewLclvNode(dividendLclNum, type);
            GenTree* sub      = comp->gtNewOperNode(GT_SUB, type, dividend, mulhi);
            BlockRange().InsertBefore(divMod, dividend, sub);
            comp->lvaTable[dividendLclNum].incRefCnts(curBBWeight, comp);

            GenTree* one = comp->gtNewIconNode(1, TYP_INT);
            GenTree* rsz = comp->gtNewOperNode(GT_RSZ, type, sub, one);
            BlockRange().InsertBefore(divMod, one, rsz);

            LIR::Use mulhiUse(BlockRange(), &sub->gtOp.gtOp2, sub);
            unsigned mulhiLclNum = ReplaceWithLclVar(mulhiUse);

            GenTree* mulhiCopy = comp->gtNewLclvNode(mulhiLclNum, type);
            GenTree* add       = comp->gtNewOperNode(GT_ADD, type, rsz, mulhiCopy);
            BlockRange().InsertBefore(divMod, mulhiCopy, add);
            comp->lvaTable[mulhiLclNum].incRefCnts(curBBWeight, comp);

            mulhi = add;
            shift -= 1;
        }

        GenTree* shiftBy = comp->gtNewIconNode(shift, TYP_INT);
        BlockRange().InsertBefore(divMod, shiftBy);

        if (isDiv)
        {
            divMod->SetOper(GT_RSZ);
            divMod->gtOp1 = mulhi;
            divMod->gtOp2 = shiftBy;
        }
        else
        {
            GenTree* div = comp->gtNewOperNode(GT_RSZ, type, mulhi, shiftBy);

            // divisor UMOD dividend = dividend SUB (div MUL divisor)
            GenTree* divisor  = comp->gtNewIconNode(divisorValue, type);
            GenTree* mul      = comp->gtNewOperNode(GT_MUL, type, div, divisor);
            GenTree* dividend = comp->gtNewLclvNode(dividendLclNum, type);

            divMod->SetOper(GT_SUB);
            divMod->gtOp1 = dividend;
            divMod->gtOp2 = mul;

            BlockRange().InsertBefore(divMod, div, divisor, mul, dividend);
            comp->lvaTable[dividendLclNum].incRefCnts(curBBWeight, comp);
        }
        ContainCheckRange(firstNode, divMod);

        return true;
    }
#endif
    return false;
}

// LowerConstIntDivOrMod: Transform integer GT_DIV/GT_MOD nodes with a power of 2
//     const divisor into equivalent but faster sequences.
//
// Arguments:
//    node - pointer to the DIV or MOD node
//
// Returns:
//    nullptr if no transformation is done, or the next node in the transformed node sequence that
//    needs to be lowered.
//
GenTree* Lowering::LowerConstIntDivOrMod(GenTree* node)
{
    assert((node->OperGet() == GT_DIV) || (node->OperGet() == GT_MOD));
    GenTree* divMod   = node;
    GenTree* dividend = divMod->gtGetOp1();
    GenTree* divisor  = divMod->gtGetOp2();

    const var_types type = divMod->TypeGet();
    assert((type == TYP_INT) || (type == TYP_LONG));

#if defined(USE_HELPERS_FOR_INT_DIV)
    assert(!"unreachable: integral GT_DIV/GT_MOD should get morphed into helper calls");
#endif // USE_HELPERS_FOR_INT_DIV
#if defined(_TARGET_ARM64_)
    assert(node->OperGet() != GT_MOD);
#endif // _TARGET_ARM64_

    if (!divisor->IsCnsIntOrI())
    {
        return nullptr; // no transformations to make
    }

    if (dividend->IsCnsIntOrI())
    {
        // We shouldn't see a divmod with constant operands here but if we do then it's likely
        // because optimizations are disabled or it's a case that's supposed to throw an exception.
        // Don't optimize this.
        return nullptr;
    }

    ssize_t divisorValue = divisor->gtIntCon.IconValue();

    if (divisorValue == -1 || divisorValue == 0)
    {
        // x / 0 and x % 0 can't be optimized because they are required to throw an exception.

        // x / -1 can't be optimized because INT_MIN / -1 is required to throw an exception.

        // x % -1 is always 0 and the IL spec says that the rem instruction "can" throw an exception if x is
        // the minimum representable integer. However, the C# spec says that an exception "is" thrown in this
        // case so optimizing this case would break C# code.

        // A runtime check could be used to handle this case but it's probably too rare to matter.
        return nullptr;
    }

    bool isDiv = divMod->OperGet() == GT_DIV;

    if (isDiv)
    {
        if ((type == TYP_INT && divisorValue == INT_MIN) || (type == TYP_LONG && divisorValue == INT64_MIN))
        {
            // If the divisor is the minimum representable integer value then we can use a compare,
            // the result is 1 iff the dividend equals divisor.
            divMod->SetOper(GT_EQ);
            return node;
        }
    }

    size_t absDivisorValue =
        (divisorValue == SSIZE_T_MIN) ? static_cast<size_t>(divisorValue) : static_cast<size_t>(abs(divisorValue));

    if (!isPow2(absDivisorValue))
    {
        if (comp->opts.MinOpts())
        {
            return nullptr;
        }

#if defined(_TARGET_XARCH_) || defined(_TARGET_ARM64_)
        ssize_t magic;
        int     shift;

        if (type == TYP_INT)
        {
            magic = MagicDivide::GetSigned32Magic(static_cast<int32_t>(divisorValue), &shift);
        }
        else
        {
#ifdef _TARGET_64BIT_
            magic = MagicDivide::GetSigned64Magic(static_cast<int64_t>(divisorValue), &shift);
#else  // !_TARGET_64BIT_
            unreached();
#endif // !_TARGET_64BIT_
        }

        divisor->gtIntConCommon.SetIconValue(magic);

        // Insert a new GT_MULHI node in front of the existing GT_DIV/GT_MOD node.
        // The existing node will later be transformed into a GT_ADD/GT_SUB that
        // computes the final result. This way don't need to find and change the
        // use of the existing node.
        GenTree* mulhi = comp->gtNewOperNode(GT_MULHI, type, divisor, dividend);
        BlockRange().InsertBefore(divMod, mulhi);

        // mulhi was the easy part. Now we need to generate different code depending
        // on the divisor value:
        // For 3 we need:
        //     div = signbit(mulhi) + mulhi
        // For 5 we need:
        //     div = signbit(mulhi) + sar(mulhi, 1) ; requires shift adjust
        // For 7 we need:
        //     mulhi += dividend                    ; requires add adjust
        //     div = signbit(mulhi) + sar(mulhi, 2) ; requires shift adjust
        // For -3 we need:
        //     mulhi -= dividend                    ; requires sub adjust
        //     div = signbit(mulhi) + sar(mulhi, 1) ; requires shift adjust
        bool     requiresAddSubAdjust     = signum(divisorValue) != signum(magic);
        bool     requiresShiftAdjust      = shift != 0;
        bool     requiresDividendMultiuse = requiresAddSubAdjust || !isDiv;
        unsigned curBBWeight              = comp->compCurBB->getBBWeight(comp);
        unsigned dividendLclNum           = BAD_VAR_NUM;

        if (requiresDividendMultiuse)
        {
            LIR::Use dividendUse(BlockRange(), &mulhi->gtOp.gtOp2, mulhi);
            dividendLclNum = ReplaceWithLclVar(dividendUse);
        }

        GenTree* adjusted;

        if (requiresAddSubAdjust)
        {
            dividend = comp->gtNewLclvNode(dividendLclNum, type);
            comp->lvaTable[dividendLclNum].incRefCnts(curBBWeight, comp);

            adjusted = comp->gtNewOperNode(divisorValue > 0 ? GT_ADD : GT_SUB, type, mulhi, dividend);
            BlockRange().InsertBefore(divMod, dividend, adjusted);
        }
        else
        {
            adjusted = mulhi;
        }

        GenTree* shiftBy = comp->gtNewIconNode(genTypeSize(type) * 8 - 1, type);
        GenTree* signBit = comp->gtNewOperNode(GT_RSZ, type, adjusted, shiftBy);
        BlockRange().InsertBefore(divMod, shiftBy, signBit);

        LIR::Use adjustedUse(BlockRange(), &signBit->gtOp.gtOp1, signBit);
        unsigned adjustedLclNum = ReplaceWithLclVar(adjustedUse);
        adjusted                = comp->gtNewLclvNode(adjustedLclNum, type);
        comp->lvaTable[adjustedLclNum].incRefCnts(curBBWeight, comp);
        BlockRange().InsertBefore(divMod, adjusted);

        if (requiresShiftAdjust)
        {
            shiftBy  = comp->gtNewIconNode(shift, TYP_INT);
            adjusted = comp->gtNewOperNode(GT_RSH, type, adjusted, shiftBy);
            BlockRange().InsertBefore(divMod, shiftBy, adjusted);
        }

        if (isDiv)
        {
            divMod->SetOperRaw(GT_ADD);
            divMod->gtOp.gtOp1 = adjusted;
            divMod->gtOp.gtOp2 = signBit;
        }
        else
        {
            GenTree* div = comp->gtNewOperNode(GT_ADD, type, adjusted, signBit);

            dividend = comp->gtNewLclvNode(dividendLclNum, type);
            comp->lvaTable[dividendLclNum].incRefCnts(curBBWeight, comp);

            // divisor % dividend = dividend - divisor x div
            GenTree* divisor = comp->gtNewIconNode(divisorValue, type);
            GenTree* mul     = comp->gtNewOperNode(GT_MUL, type, div, divisor);
            BlockRange().InsertBefore(divMod, dividend, div, divisor, mul);

            divMod->SetOperRaw(GT_SUB);
            divMod->gtOp.gtOp1 = dividend;
            divMod->gtOp.gtOp2 = mul;
        }

        return mulhi;
#elif defined(_TARGET_ARM_)
        // Currently there's no GT_MULHI for ARM32
        return nullptr;
#else
#error Unsupported or unset target architecture
#endif
    }

    // We're committed to the conversion now. Go find the use if any.
    LIR::Use use;
    if (!BlockRange().TryGetUse(node, &use))
    {
        return nullptr;
    }

    // We need to use the dividend node multiple times so its value needs to be
    // computed once and stored in a temp variable.

    unsigned curBBWeight = comp->compCurBB->getBBWeight(comp);

    LIR::Use opDividend(BlockRange(), &divMod->gtOp.gtOp1, divMod);
    ReplaceWithLclVar(opDividend);

    dividend = divMod->gtGetOp1();
    assert(dividend->OperGet() == GT_LCL_VAR);

    unsigned dividendLclNum = dividend->gtLclVar.gtLclNum;

    GenTree* adjustment = comp->gtNewOperNode(GT_RSH, type, dividend, comp->gtNewIconNode(type == TYP_INT ? 31 : 63));

    if (absDivisorValue == 2)
    {
        // If the divisor is +/-2 then we'd end up with a bitwise and between 0/-1 and 1.
        // We can get the same result by using GT_RSZ instead of GT_RSH.
        adjustment->SetOper(GT_RSZ);
    }
    else
    {
        adjustment = comp->gtNewOperNode(GT_AND, type, adjustment, comp->gtNewIconNode(absDivisorValue - 1, type));
    }

    GenTree* adjustedDividend =
        comp->gtNewOperNode(GT_ADD, type, adjustment, comp->gtNewLclvNode(dividendLclNum, type));

    comp->lvaTable[dividendLclNum].incRefCnts(curBBWeight, comp);

    GenTree* newDivMod;

    if (isDiv)
    {
        // perform the division by right shifting the adjusted dividend
        divisor->gtIntCon.SetIconValue(genLog2(absDivisorValue));

        newDivMod = comp->gtNewOperNode(GT_RSH, type, adjustedDividend, divisor);
        ContainCheckShiftRotate(newDivMod->AsOp());

        if (divisorValue < 0)
        {
            // negate the result if the divisor is negative
            newDivMod = comp->gtNewOperNode(GT_NEG, type, newDivMod);
            ContainCheckNode(newDivMod);
        }
    }
    else
    {
        // divisor % dividend = dividend - divisor x (dividend / divisor)
        // divisor x (dividend / divisor) translates to (dividend >> log2(divisor)) << log2(divisor)
        // which simply discards the low log2(divisor) bits, that's just dividend & ~(divisor - 1)
        divisor->gtIntCon.SetIconValue(~(absDivisorValue - 1));

        newDivMod = comp->gtNewOperNode(GT_SUB, type, comp->gtNewLclvNode(dividendLclNum, type),
                                        comp->gtNewOperNode(GT_AND, type, adjustedDividend, divisor));
        ContainCheckBinary(newDivMod->AsOp());

        comp->lvaTable[dividendLclNum].incRefCnts(curBBWeight, comp);
    }

    // Remove the divisor and dividend nodes from the linear order,
    // since we have reused them and will resequence the tree
    BlockRange().Remove(divisor);
    BlockRange().Remove(dividend);

    // linearize and insert the new tree before the original divMod node
    InsertTreeBeforeAndContainCheck(divMod, newDivMod);
    BlockRange().Remove(divMod);

    // replace the original divmod node with the new divmod tree
    use.ReplaceWith(comp, newDivMod);

    return newDivMod->gtNext;
}
//------------------------------------------------------------------------
// LowerSignedDivOrMod: transform integer GT_DIV/GT_MOD nodes with a power of 2
// const divisor into equivalent but faster sequences.
//
// Arguments:
//    node - the DIV or MOD node
//
// Returns:
//    The next node to lower.
//
GenTree* Lowering::LowerSignedDivOrMod(GenTree* node)
{
    assert((node->OperGet() == GT_DIV) || (node->OperGet() == GT_MOD));
    GenTree* next     = node->gtNext;
    GenTree* divMod   = node;
    GenTree* dividend = divMod->gtGetOp1();
    GenTree* divisor  = divMod->gtGetOp2();

    if (varTypeIsIntegral(node->TypeGet()))
    {
        // LowerConstIntDivOrMod will return nullptr if it doesn't transform the node.
        GenTree* newNode = LowerConstIntDivOrMod(node);
        if (newNode != nullptr)
        {
            return newNode;
        }
    }
    ContainCheckDivOrMod(node->AsOp());

    return next;
}

//------------------------------------------------------------------------
// LowerShift: Lower shift nodes
//
// Arguments:
//    shift - the shift node (GT_LSH, GT_RSH or GT_RSZ)
//
// Notes:
//    Remove unnecessary shift count masking, xarch shift instructions
//    mask the shift count to 5 bits (or 6 bits for 64 bit operations).

void Lowering::LowerShift(GenTreeOp* shift)
{
    assert(shift->OperIs(GT_LSH, GT_RSH, GT_RSZ));

    size_t mask = 0x1f;
#ifdef _TARGET_64BIT_
    if (varTypeIsLong(shift->TypeGet()))
    {
        mask = 0x3f;
    }
#else
    assert(!varTypeIsLong(shift->TypeGet()));
#endif

    for (GenTree* andOp = shift->gtGetOp2(); andOp->OperIs(GT_AND); andOp = andOp->gtGetOp1())
    {
        GenTree* maskOp = andOp->gtGetOp2();

        if (!maskOp->IsCnsIntOrI())
        {
            break;
        }

        if ((static_cast<size_t>(maskOp->AsIntCon()->IconValue()) & mask) != mask)
        {
            break;
        }

        shift->gtOp2 = andOp->gtGetOp1();
        BlockRange().Remove(andOp);
        BlockRange().Remove(maskOp);
        // The parent was replaced, clear contain and regOpt flag.
        shift->gtOp2->ClearContained();
    }
    ContainCheckShiftRotate(shift);
}

void Lowering::WidenSIMD12IfNecessary(GenTreeLclVarCommon* node)
{
#ifdef FEATURE_SIMD
    if (node->TypeGet() == TYP_SIMD12)
    {
        // Assumption 1:
        // RyuJit backend depends on the assumption that on 64-Bit targets Vector3 size is rounded off
        // to TARGET_POINTER_SIZE and hence Vector3 locals on stack can be treated as TYP_SIMD16 for
        // reading and writing purposes.
        //
        // Assumption 2:
        // RyuJit backend is making another implicit assumption that Vector3 type args when passed in
        // registers or on stack, the upper most 4-bytes will be zero.
        //
        // For P/Invoke return and Reverse P/Invoke argument passing, native compiler doesn't guarantee
        // that upper 4-bytes of a Vector3 type struct is zero initialized and hence assumption 2 is
        // invalid.
        //
        // RyuJIT x64 Windows: arguments are treated as passed by ref and hence read/written just 12
        // bytes. In case of Vector3 returns, Caller allocates a zero initialized Vector3 local and
        // passes it retBuf arg and Callee method writes only 12 bytes to retBuf. For this reason,
        // there is no need to clear upper 4-bytes of Vector3 type args.
        //
        // RyuJIT x64 Unix: arguments are treated as passed by value and read/writen as if TYP_SIMD16.
        // Vector3 return values are returned two return registers and Caller assembles them into a
        // single xmm reg. Hence RyuJIT explicitly generates code to clears upper 4-bytes of Vector3
        // type args in prolog and Vector3 type return value of a call
        //
        // RyuJIT x86 Windows: all non-param Vector3 local vars are allocated as 16 bytes. Vector3 arguments
        // are pushed as 12 bytes. For return values, a 16-byte local is allocated and the address passed
        // as a return buffer pointer. The callee doesn't write the high 4 bytes, and we don't need to clear
        // it either.

        unsigned   varNum = node->AsLclVarCommon()->GetLclNum();
        LclVarDsc* varDsc = &comp->lvaTable[varNum];

        if (comp->lvaMapSimd12ToSimd16(varDsc))
        {
            JITDUMP("Mapping TYP_SIMD12 lclvar node to TYP_SIMD16:\n");
            DISPNODE(node);
            JITDUMP("============");

            node->gtType = TYP_SIMD16;
        }
    }
#endif // FEATURE_SIMD
}

//------------------------------------------------------------------------
// LowerArrElem: Lower a GT_ARR_ELEM node
//
// Arguments:
//    node - the GT_ARR_ELEM node to lower.
//
// Return Value:
//    The next node to lower.
//
// Assumptions:
//    pTree points to a pointer to a GT_ARR_ELEM node.
//
// Notes:
//    This performs the following lowering.  We start with a node of the form:
//          /--*  <arrObj>
//          +--*  <index0>
//          +--*  <index1>
//       /--*  arrMD&[,]
//
//    First, we create temps for arrObj if it is not already a lclVar, and for any of the index
//    expressions that have side-effects.
//    We then transform the tree into:
//                      <offset is null - no accumulated offset for the first index>
//                   /--*  <arrObj>
//                   +--*  <index0>
//                /--*  ArrIndex[i, ]
//                +--*  <arrObj>
//             /--|  arrOffs[i, ]
//             |  +--*  <arrObj>
//             |  +--*  <index1>
//             +--*  ArrIndex[*,j]
//             +--*  <arrObj>
//          /--|  arrOffs[*,j]
//          +--*  lclVar NewTemp
//       /--*  lea (scale = element size, offset = offset of first element)
//
//    The new stmtExpr may be omitted if the <arrObj> is a lclVar.
//    The new stmtExpr may be embedded if the <arrObj> is not the first tree in linear order for
//    the statement containing the original arrMD.
//    Note that the arrMDOffs is the INDEX of the lea, but is evaluated before the BASE (which is the second
//    reference to NewTemp), because that provides more accurate lifetimes.
//    There may be 1, 2 or 3 dimensions, with 1, 2 or 3 arrMDIdx nodes, respectively.
//
GenTree* Lowering::LowerArrElem(GenTree* node)
{
    // This will assert if we don't have an ArrElem node
    GenTreeArrElem*     arrElem     = node->AsArrElem();
    const unsigned char rank        = arrElem->gtArrElem.gtArrRank;
    const unsigned      blockWeight = m_block->getBBWeight(comp);

    JITDUMP("Lowering ArrElem\n");
    JITDUMP("============\n");
    DISPTREERANGE(BlockRange(), arrElem);
    JITDUMP("\n");

    assert(arrElem->gtArrObj->TypeGet() == TYP_REF);

    // We need to have the array object in a lclVar.
    if (!arrElem->gtArrObj->IsLocal())
    {
        LIR::Use arrObjUse(BlockRange(), &arrElem->gtArrObj, arrElem);
        ReplaceWithLclVar(arrObjUse);
    }

    GenTree* arrObjNode = arrElem->gtArrObj;
    assert(arrObjNode->IsLocal());

    LclVarDsc* const varDsc = &comp->lvaTable[arrElem->gtArrObj->AsLclVarCommon()->gtLclNum];

    GenTree* insertionPoint = arrElem;

    // The first ArrOffs node will have 0 for the offset of the previous dimension.
    GenTree* prevArrOffs = new (comp, GT_CNS_INT) GenTreeIntCon(TYP_I_IMPL, 0);
    BlockRange().InsertBefore(insertionPoint, prevArrOffs);
    GenTree* nextToLower = prevArrOffs;

    for (unsigned char dim = 0; dim < rank; dim++)
    {
        GenTree* indexNode = arrElem->gtArrElem.gtArrInds[dim];

        // Use the original arrObjNode on the 0th ArrIndex node, and clone it for subsequent ones.
        GenTree* idxArrObjNode;
        if (dim == 0)
        {
            idxArrObjNode = arrObjNode;
        }
        else
        {
            idxArrObjNode = comp->gtClone(arrObjNode);
            varDsc->incRefCnts(blockWeight, comp);
            BlockRange().InsertBefore(insertionPoint, idxArrObjNode);
        }

        // Next comes the GT_ARR_INDEX node.
        GenTreeArrIndex* arrMDIdx = new (comp, GT_ARR_INDEX)
            GenTreeArrIndex(TYP_INT, idxArrObjNode, indexNode, dim, rank, arrElem->gtArrElem.gtArrElemType);
        arrMDIdx->gtFlags |= ((idxArrObjNode->gtFlags | indexNode->gtFlags) & GTF_ALL_EFFECT);
        BlockRange().InsertBefore(insertionPoint, arrMDIdx);

        GenTree* offsArrObjNode = comp->gtClone(arrObjNode);
        varDsc->incRefCnts(blockWeight, comp);
        BlockRange().InsertBefore(insertionPoint, offsArrObjNode);

        GenTreeArrOffs* arrOffs =
            new (comp, GT_ARR_OFFSET) GenTreeArrOffs(TYP_I_IMPL, prevArrOffs, arrMDIdx, offsArrObjNode, dim, rank,
                                                     arrElem->gtArrElem.gtArrElemType);
        arrOffs->gtFlags |= ((prevArrOffs->gtFlags | arrMDIdx->gtFlags | offsArrObjNode->gtFlags) & GTF_ALL_EFFECT);
        BlockRange().InsertBefore(insertionPoint, arrOffs);

        prevArrOffs = arrOffs;
    }

    // Generate the LEA and make it reverse evaluation, because we want to evaluate the index expression before the
    // base.
    unsigned scale  = arrElem->gtArrElem.gtArrElemSize;
    unsigned offset = comp->eeGetMDArrayDataOffset(arrElem->gtArrElem.gtArrElemType, arrElem->gtArrElem.gtArrRank);

    GenTree* leaIndexNode = prevArrOffs;
    if (!jitIsScaleIndexMul(scale))
    {
        // We do the address arithmetic in TYP_I_IMPL, though note that the lower bounds and lengths in memory are
        // TYP_INT
        GenTree* scaleNode = new (comp, GT_CNS_INT) GenTreeIntCon(TYP_I_IMPL, scale);
        GenTree* mulNode   = new (comp, GT_MUL) GenTreeOp(GT_MUL, TYP_I_IMPL, leaIndexNode, scaleNode);
        BlockRange().InsertBefore(insertionPoint, scaleNode, mulNode);
        leaIndexNode = mulNode;
        scale        = 1;
    }

    GenTree* leaBase = comp->gtClone(arrObjNode);
    varDsc->incRefCnts(blockWeight, comp);
    BlockRange().InsertBefore(insertionPoint, leaBase);

    GenTree* leaNode = new (comp, GT_LEA) GenTreeAddrMode(arrElem->TypeGet(), leaBase, leaIndexNode, scale, offset);

    BlockRange().InsertBefore(insertionPoint, leaNode);

    LIR::Use arrElemUse;
    if (BlockRange().TryGetUse(arrElem, &arrElemUse))
    {
        arrElemUse.ReplaceWith(comp, leaNode);
    }
    else
    {
        leaNode->SetUnusedValue();
    }

    BlockRange().Remove(arrElem);

    JITDUMP("Results of lowering ArrElem:\n");
    DISPTREERANGE(BlockRange(), leaNode);
    JITDUMP("\n\n");

    return nextToLower;
}

void Lowering::DoPhase()
{
    // If we have any PInvoke calls, insert the one-time prolog code. We'll inserted the epilog code in the
    // appropriate spots later. NOTE: there is a minor optimization opportunity here, as we still create p/invoke
    // data structures and setup/teardown even if we've eliminated all p/invoke calls due to dead code elimination.
    if (comp->info.compCallUnmanaged)
    {
        InsertPInvokeMethodProlog();
    }

#if !defined(_TARGET_64BIT_)
    DecomposeLongs decomp(comp); // Initialize the long decomposition class.
    if (comp->compLongUsed)
    {
        decomp.PrepareForDecomposition();
    }
#endif // !defined(_TARGET_64BIT_)

    for (BasicBlock* block = comp->fgFirstBB; block; block = block->bbNext)
    {
        /* Make the block publicly available */
        comp->compCurBB = block;

#if !defined(_TARGET_64BIT_)
        if (comp->compLongUsed)
        {
            decomp.DecomposeBlock(block);
        }
#endif //!_TARGET_64BIT_

        LowerBlock(block);
    }

#ifdef DEBUG
    JITDUMP("Lower has completed modifying nodes.\n");
    if (VERBOSE)
    {
        comp->fgDispBasicBlocks(true);
    }
#endif

    // TODO-Throughput: We re-sort local variables to get the goodness of enregistering recently
    // introduced local variables both by Rationalize and Lower; downside is we need to
    // recompute standard local variable liveness in order to get Linear CodeGen working.
    // For now we'll take the throughput hit of recomputing local liveness but in the long term
    // we're striving to use the unified liveness computation (fgLocalVarLiveness) and stop
    // computing it separately in LSRA.
    if ((comp->lvaCount != 0) && comp->backendRequiresLocalVarLifetimes())
    {
        comp->lvaSortAgain = true;
    }
    comp->EndPhase(PHASE_LOWERING_DECOMP);

    comp->fgLocalVarLiveness();
    // local var liveness can delete code, which may create empty blocks
    if (!comp->opts.MinOpts() && !comp->opts.compDbgCode)
    {
        comp->optLoopsMarked = false;
        bool modified        = comp->fgUpdateFlowGraph();
        if (modified || comp->lvaSortAgain)
        {
            JITDUMP("had to run another liveness pass:\n");
            comp->fgLocalVarLiveness();
        }
    }

#ifdef DEBUG
    JITDUMP("Liveness pass finished after lowering, IR:\n");
    JITDUMP("lvasortagain = %d\n", comp->lvaSortAgain);
    if (VERBOSE)
    {
        comp->fgDispBasicBlocks(true);
    }

    for (BasicBlock* block = comp->fgFirstBB; block; block = block->bbNext)
    {
        assert(LIR::AsRange(block).CheckLIR(comp, true));
    }
#endif
}

#ifdef DEBUG

//------------------------------------------------------------------------
// Lowering::CheckCallArg: check that a call argument is in an expected
//                         form after lowering.
//
// Arguments:
//   arg - the argument to check.
//
void Lowering::CheckCallArg(GenTree* arg)
{
    if (arg->OperIsStore() || arg->IsArgPlaceHolderNode() || arg->IsNothingNode() || arg->OperIsCopyBlkOp())
    {
        return;
    }

    switch (arg->OperGet())
    {
        case GT_FIELD_LIST:
        {
            GenTreeFieldList* list = arg->AsFieldList();
            assert(list->isContained());
            assert(list->IsFieldListHead());

            for (; list != nullptr; list = list->Rest())
            {
                assert(list->Current()->OperIsPutArg());
            }
        }
        break;

        default:
            assert(arg->OperIsPutArg());
            break;
    }
}

//------------------------------------------------------------------------
// Lowering::CheckCall: check that a call is in an expected form after
//                      lowering. Currently this amounts to checking its
//                      arguments, but could be expanded to verify more
//                      properties in the future.
//
// Arguments:
//   call - the call to check.
//
void Lowering::CheckCall(GenTreeCall* call)
{
    if (call->gtCallObjp != nullptr)
    {
        CheckCallArg(call->gtCallObjp);
    }

    for (GenTreeArgList* args = call->gtCallArgs; args != nullptr; args = args->Rest())
    {
        CheckCallArg(args->Current());
    }

    for (GenTreeArgList* args = call->gtCallLateArgs; args != nullptr; args = args->Rest())
    {
        CheckCallArg(args->Current());
    }
}

//------------------------------------------------------------------------
// Lowering::CheckNode: check that an LIR node is in an expected form
//                      after lowering.
//
// Arguments:
//   compiler - the compiler context.
//   node - the node to check.
//
void Lowering::CheckNode(Compiler* compiler, GenTree* node)
{
    switch (node->OperGet())
    {
        case GT_CALL:
            CheckCall(node->AsCall());
            break;

#ifdef FEATURE_SIMD
        case GT_SIMD:
            assert(node->TypeGet() != TYP_SIMD12);
            break;
#ifdef _TARGET_64BIT_
        case GT_LCL_VAR:
        case GT_STORE_LCL_VAR:
        {
            unsigned   lclNum = node->AsLclVarCommon()->GetLclNum();
            LclVarDsc* lclVar = &compiler->lvaTable[lclNum];
            assert(node->TypeGet() != TYP_SIMD12 || compiler->lvaIsFieldOfDependentlyPromotedStruct(lclVar));
        }
        break;
#endif // _TARGET_64BIT_
#endif // SIMD

        default:
            break;
    }
}

//------------------------------------------------------------------------
// Lowering::CheckBlock: check that the contents of an LIR block are in an
//                       expected form after lowering.
//
// Arguments:
//   compiler - the compiler context.
//   block    - the block to check.
//
bool Lowering::CheckBlock(Compiler* compiler, BasicBlock* block)
{
    assert(block->isEmpty() || block->IsLIR());

    LIR::Range& blockRange = LIR::AsRange(block);
    for (GenTree* node : blockRange)
    {
        CheckNode(compiler, node);
    }

    assert(blockRange.CheckLIR(compiler, true));
    return true;
}
#endif

void Lowering::LowerBlock(BasicBlock* block)
{
    assert(block == comp->compCurBB); // compCurBB must already be set.
    assert(block->isEmpty() || block->IsLIR());

    m_block = block;

    // NOTE: some of the lowering methods insert calls before the node being
    // lowered (See e.g. InsertPInvoke{Method,Call}{Prolog,Epilog}). In
    // general, any code that is inserted before the current node should be
    // "pre-lowered" as they won't be subject to further processing.
    // Lowering::CheckBlock() runs some extra checks on call arguments in
    // order to help catch unlowered nodes.

    GenTree* node = BlockRange().FirstNode();
    while (node != nullptr)
    {
        node = LowerNode(node);
    }

    assert(CheckBlock(comp, block));
}

/** Verifies if both of these trees represent the same indirection.
 * Used by Lower to annotate if CodeGen generate an instruction of the
 * form *addrMode BinOp= expr
 *
 * Preconditions: both trees are children of GT_INDs and their underlying children
 * have the same gtOper.
 *
 * This is a first iteration to actually recognize trees that can be code-generated
 * as a single read-modify-write instruction on AMD64/x86.  For now
 * this method only supports the recognition of simple addressing modes (through GT_LEA)
 * or local var indirections.  Local fields, array access and other more complex nodes are
 * not yet supported.
 *
 * TODO-CQ:  Perform tree recognition by using the Value Numbering Package, that way we can recognize
 * arbitrary complex trees and support much more addressing patterns.
 */
bool Lowering::IndirsAreEquivalent(GenTree* candidate, GenTree* storeInd)
{
    assert(candidate->OperGet() == GT_IND);
    assert(storeInd->OperGet() == GT_STOREIND);

    // We should check the size of the indirections.  If they are
    // different, say because of a cast, then we can't call them equivalent.  Doing so could cause us
    // to drop a cast.
    // Signed-ness difference is okay and expected since a store indirection must always
    // be signed based on the CIL spec, but a load could be unsigned.
    if (genTypeSize(candidate->gtType) != genTypeSize(storeInd->gtType))
    {
        return false;
    }

    GenTree* pTreeA = candidate->gtGetOp1();
    GenTree* pTreeB = storeInd->gtGetOp1();

    // This method will be called by codegen (as well as during lowering).
    // After register allocation, the sources may have been spilled and reloaded
    // to a different register, indicated by an inserted GT_RELOAD node.
    pTreeA = pTreeA->gtSkipReloadOrCopy();
    pTreeB = pTreeB->gtSkipReloadOrCopy();

    genTreeOps oper;

    if (pTreeA->OperGet() != pTreeB->OperGet())
    {
        return false;
    }

    oper = pTreeA->OperGet();
    switch (oper)
    {
        case GT_LCL_VAR:
        case GT_LCL_VAR_ADDR:
        case GT_CLS_VAR_ADDR:
        case GT_CNS_INT:
            return NodesAreEquivalentLeaves(pTreeA, pTreeB);

        case GT_LEA:
        {
            GenTreeAddrMode* gtAddr1 = pTreeA->AsAddrMode();
            GenTreeAddrMode* gtAddr2 = pTreeB->AsAddrMode();
            return NodesAreEquivalentLeaves(gtAddr1->Base(), gtAddr2->Base()) &&
                   NodesAreEquivalentLeaves(gtAddr1->Index(), gtAddr2->Index()) &&
                   (gtAddr1->gtScale == gtAddr2->gtScale) && (gtAddr1->Offset() == gtAddr2->Offset());
        }
        default:
            // We don't handle anything that is not either a constant,
            // a local var or LEA.
            return false;
    }
}

/** Test whether the two given nodes are the same leaves.
 *  Right now, only constant integers and local variables are supported
 */
bool Lowering::NodesAreEquivalentLeaves(GenTree* tree1, GenTree* tree2)
{
    if (tree1 == nullptr && tree2 == nullptr)
    {
        return true;
    }

    // both null, they are equivalent, otherwise if either is null not equivalent
    if (tree1 == nullptr || tree2 == nullptr)
    {
        return false;
    }

    tree1 = tree1->gtSkipReloadOrCopy();
    tree2 = tree2->gtSkipReloadOrCopy();

    if (tree1->TypeGet() != tree2->TypeGet())
    {
        return false;
    }

    if (tree1->OperGet() != tree2->OperGet())
    {
        return false;
    }

    if (!tree1->OperIsLeaf() || !tree2->OperIsLeaf())
    {
        return false;
    }

    switch (tree1->OperGet())
    {
        case GT_CNS_INT:
            return tree1->gtIntCon.gtIconVal == tree2->gtIntCon.gtIconVal &&
                   tree1->IsIconHandle() == tree2->IsIconHandle();
        case GT_LCL_VAR:
        case GT_LCL_VAR_ADDR:
            return tree1->gtLclVarCommon.gtLclNum == tree2->gtLclVarCommon.gtLclNum;
        case GT_CLS_VAR_ADDR:
            return tree1->gtClsVar.gtClsVarHnd == tree2->gtClsVar.gtClsVarHnd;
        default:
            return false;
    }
}

/**
 * Get common information required to handle a cast instruction
 */
void Lowering::getCastDescription(GenTree* treeNode, CastInfo* castInfo)
{
    // Intialize castInfo
    memset(castInfo, 0, sizeof(*castInfo));

    GenTree* castOp = treeNode->gtCast.CastOp();

    var_types dstType = treeNode->CastToType();
    var_types srcType = genActualType(castOp->TypeGet());

    castInfo->unsignedDest   = varTypeIsUnsigned(dstType);
    castInfo->unsignedSource = varTypeIsUnsigned(srcType);

    // If necessary, force the srcType to unsigned when the GT_UNSIGNED flag is set.
    if (!castInfo->unsignedSource && (treeNode->gtFlags & GTF_UNSIGNED) != 0)
    {
        srcType                  = genUnsignedType(srcType);
        castInfo->unsignedSource = true;
    }

    if (treeNode->gtOverflow() &&
        (genTypeSize(srcType) >= genTypeSize(dstType) || (srcType == TYP_INT && dstType == TYP_ULONG)))
    {
        castInfo->requiresOverflowCheck = true;
    }

    if (castInfo->requiresOverflowCheck)
    {
        ssize_t typeMin       = 0;
        ssize_t typeMax       = 0;
        ssize_t typeMask      = 0;
        bool    signCheckOnly = false;

        // Do we need to compare the value, or just check masks
        switch (dstType)
        {
            default:
                assert(!"unreachable: getCastDescription");
                break;

            case TYP_BYTE:
                typeMask = ssize_t((int)0xFFFFFF80);
                typeMin  = SCHAR_MIN;
                typeMax  = SCHAR_MAX;
                break;

            case TYP_UBYTE:
                typeMask = ssize_t((int)0xFFFFFF00L);
                break;

            case TYP_SHORT:
                typeMask = ssize_t((int)0xFFFF8000);
                typeMin  = SHRT_MIN;
                typeMax  = SHRT_MAX;
                break;

            case TYP_USHORT:
                typeMask = ssize_t((int)0xFFFF0000L);
                break;

            case TYP_INT:
                if (srcType == TYP_UINT)
                {
                    signCheckOnly = true;
                }
                else
                {
#ifdef _TARGET_64BIT_
                    typeMask = 0xFFFFFFFF80000000LL;
#else
                    typeMask = 0x80000000;
#endif
                    typeMin = INT_MIN;
                    typeMax = INT_MAX;
                }
                break;

            case TYP_UINT:
                if (srcType == TYP_INT)
                {
                    signCheckOnly = true;
                }
                else
                {
#ifdef _TARGET_64BIT_
                    typeMask = 0xFFFFFFFF00000000LL;
#else
                    typeMask = 0x00000000;
#endif
                }
                break;

            case TYP_LONG:
                signCheckOnly = true;
                break;

            case TYP_ULONG:
                signCheckOnly = true;
                break;
        }

        if (signCheckOnly)
        {
            castInfo->signCheckOnly = true;
        }

        castInfo->typeMax  = typeMax;
        castInfo->typeMin  = typeMin;
        castInfo->typeMask = typeMask;
    }
}

//------------------------------------------------------------------------
// Containment Analysis
//------------------------------------------------------------------------
void Lowering::ContainCheckNode(GenTree* node)
{
    switch (node->gtOper)
    {
        case GT_STORE_LCL_VAR:
        case GT_STORE_LCL_FLD:
            ContainCheckStoreLoc(node->AsLclVarCommon());
            break;

        case GT_EQ:
        case GT_NE:
        case GT_LT:
        case GT_LE:
        case GT_GE:
        case GT_GT:
        case GT_TEST_EQ:
        case GT_TEST_NE:
        case GT_CMP:
        case GT_JCMP:
            ContainCheckCompare(node->AsOp());
            break;

        case GT_JTRUE:
            ContainCheckJTrue(node->AsOp());
            break;

        case GT_ADD:
        case GT_SUB:
#if !defined(_TARGET_64BIT_)
        case GT_ADD_LO:
        case GT_ADD_HI:
        case GT_SUB_LO:
        case GT_SUB_HI:
#endif
        case GT_AND:
        case GT_OR:
        case GT_XOR:
            ContainCheckBinary(node->AsOp());
            break;

#if defined(_TARGET_X86_)
        case GT_MUL_LONG:
#endif
        case GT_MUL:
        case GT_MULHI:
            ContainCheckMul(node->AsOp());
            break;
        case GT_DIV:
        case GT_MOD:
        case GT_UDIV:
        case GT_UMOD:
            ContainCheckDivOrMod(node->AsOp());
            break;
        case GT_LSH:
        case GT_RSH:
        case GT_RSZ:
        case GT_ROL:
        case GT_ROR:
#ifndef _TARGET_64BIT_
        case GT_LSH_HI:
        case GT_RSH_LO:
#endif
            ContainCheckShiftRotate(node->AsOp());
            break;
        case GT_ARR_OFFSET:
            ContainCheckArrOffset(node->AsArrOffs());
            break;
        case GT_LCLHEAP:
            ContainCheckLclHeap(node->AsOp());
            break;
        case GT_RETURN:
            ContainCheckRet(node->AsOp());
            break;
        case GT_RETURNTRAP:
            ContainCheckReturnTrap(node->AsOp());
            break;
        case GT_STOREIND:
            ContainCheckStoreIndir(node->AsIndir());
        case GT_IND:
            ContainCheckIndir(node->AsIndir());
            break;
        case GT_PUTARG_REG:
        case GT_PUTARG_STK:
#ifdef _TARGET_ARM_
        case GT_PUTARG_SPLIT:
#endif
            // The regNum must have been set by the lowering of the call.
            assert(node->gtRegNum != REG_NA);
            break;
#ifdef _TARGET_XARCH_
        case GT_INTRINSIC:
            ContainCheckIntrinsic(node->AsOp());
            break;
#endif // _TARGET_XARCH_
#ifdef FEATURE_SIMD
        case GT_SIMD:
            ContainCheckSIMD(node->AsSIMD());
            break;
#endif // FEATURE_SIMD
#ifdef FEATURE_HW_INTRINSICS
        case GT_HWIntrinsic:
            ContainCheckHWIntrinsic(node->AsHWIntrinsic());
            break;
#endif // FEATURE_HW_INTRINSICS
        default:
            break;
    }
}

//------------------------------------------------------------------------
// ContainCheckDivOrMod: determine which operands of a div/mod should be contained.
//
// Arguments:
//    node - pointer to the GT_UDIV/GT_UMOD node
//
void Lowering::ContainCheckDivOrMod(GenTreeOp* node)
{
    assert(node->OperIs(GT_DIV, GT_MOD, GT_UDIV, GT_UMOD));

#ifdef _TARGET_XARCH_
    GenTree* dividend = node->gtGetOp1();
    GenTree* divisor  = node->gtGetOp2();

    if (varTypeIsFloating(node->TypeGet()))
    {
        // No implicit conversions at this stage as the expectation is that
        // everything is made explicit by adding casts.
        assert(dividend->TypeGet() == divisor->TypeGet());

        if (IsContainableMemoryOp(divisor) || divisor->IsCnsNonZeroFltOrDbl())
        {
            MakeSrcContained(node, divisor);
        }
        else
        {
            // If there are no containable operands, we can make an operand reg optional.
            // SSE2 allows only divisor to be a memory-op.
            divisor->SetRegOptional();
        }
        return;
    }
    bool divisorCanBeRegOptional = true;
#ifdef _TARGET_X86_
    if (dividend->OperGet() == GT_LONG)
    {
        divisorCanBeRegOptional = false;
        MakeSrcContained(node, dividend);
    }
#endif

    // divisor can be an r/m, but the memory indirection must be of the same size as the divide
    if (IsContainableMemoryOp(divisor) && (divisor->TypeGet() == node->TypeGet()))
    {
        MakeSrcContained(node, divisor);
    }
    else if (divisorCanBeRegOptional)
    {
        // If there are no containable operands, we can make an operand reg optional.
        // Div instruction allows only divisor to be a memory op.
        divisor->SetRegOptional();
    }
#endif // _TARGET_XARCH_
}

//------------------------------------------------------------------------
// ContainCheckReturnTrap: determine whether the source of a RETURNTRAP should be contained.
//
// Arguments:
//    node - pointer to the GT_RETURNTRAP node
//
void Lowering::ContainCheckReturnTrap(GenTreeOp* node)
{
#ifdef _TARGET_XARCH_
    assert(node->OperIs(GT_RETURNTRAP));
    // This just turns into a compare of its child with an int + a conditional call
    if (node->gtOp1->isIndir())
    {
        MakeSrcContained(node, node->gtOp1);
    }
#endif // _TARGET_XARCH_
}

//------------------------------------------------------------------------
// ContainCheckArrOffset: determine whether the source of an ARR_OFFSET should be contained.
//
// Arguments:
//    node - pointer to the GT_ARR_OFFSET node
//
void Lowering::ContainCheckArrOffset(GenTreeArrOffs* node)
{
    assert(node->OperIs(GT_ARR_OFFSET));
    // we don't want to generate code for this
    if (node->gtOffset->IsIntegralConst(0))
    {
        MakeSrcContained(node, node->gtArrOffs.gtOffset);
    }
}

//------------------------------------------------------------------------
// ContainCheckLclHeap: determine whether the source of a GT_LCLHEAP node should be contained.
//
// Arguments:
//    node - pointer to the node
//
void Lowering::ContainCheckLclHeap(GenTreeOp* node)
{
    assert(node->OperIs(GT_LCLHEAP));
    GenTree* size = node->gtOp.gtOp1;
    if (size->IsCnsIntOrI())
    {
        MakeSrcContained(node, size);
    }
}

//------------------------------------------------------------------------
// ContainCheckRet: determine whether the source of a node should be contained.
//
// Arguments:
//    node - pointer to the node
//
void Lowering::ContainCheckRet(GenTreeOp* ret)
{
    assert(ret->OperIs(GT_RETURN));

#if !defined(_TARGET_64BIT_)
    if (ret->TypeGet() == TYP_LONG)
    {
        GenTree* op1 = ret->gtGetOp1();
        noway_assert(op1->OperGet() == GT_LONG);
        MakeSrcContained(ret, op1);
    }
#endif // !defined(_TARGET_64BIT_)
#if FEATURE_MULTIREG_RET
    if (varTypeIsStruct(ret))
    {
        GenTree* op1 = ret->gtGetOp1();
        // op1 must be either a lclvar or a multi-reg returning call
        if (op1->OperGet() == GT_LCL_VAR)
        {
            GenTreeLclVarCommon* lclVarCommon = op1->AsLclVarCommon();
            LclVarDsc*           varDsc       = &(comp->lvaTable[lclVarCommon->gtLclNum]);
            assert(varDsc->lvIsMultiRegRet);

            // Mark var as contained if not enregistrable.
            if (!varTypeIsEnregisterableStruct(op1))
            {
                MakeSrcContained(ret, op1);
            }
        }
    }
#endif // FEATURE_MULTIREG_RET
}

//------------------------------------------------------------------------
// ContainCheckJTrue: determine whether the source of a JTRUE should be contained.
//
// Arguments:
//    node - pointer to the node
//
void Lowering::ContainCheckJTrue(GenTreeOp* node)
{
    // The compare does not need to be generated into a register.
    GenTree* cmp = node->gtGetOp1();
    cmp->gtType  = TYP_VOID;
    cmp->gtFlags |= GTF_SET_FLAGS;
}