1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
|
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
/*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX XX
XX GSChecks XX
XX XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
*/
#include "jitpch.h"
#ifdef _MSC_VER
#pragma hdrstop
#endif
/*****************************************************************************
* gsGSChecksInitCookie
* Grabs the cookie for detecting overflow of unsafe buffers.
*/
void Compiler::gsGSChecksInitCookie()
{
var_types type = TYP_I_IMPL;
lvaGSSecurityCookie = lvaGrabTemp(false DEBUGARG("GSSecurityCookie"));
// Prevent cookie init/check from being optimized
lvaSetVarAddrExposed(lvaGSSecurityCookie);
lvaTable[lvaGSSecurityCookie].lvType = type;
info.compCompHnd->getGSCookie(&gsGlobalSecurityCookieVal, &gsGlobalSecurityCookieAddr);
}
const unsigned NO_SHADOW_COPY = UINT_MAX;
/*****************************************************************************
* gsCopyShadowParams
* The current function has an unsafe buffer on the stack. Search for vulnerable
* parameters which could be used to modify a code address and take over the process
* in the case of a buffer overrun. Create a safe local copy for each vulnerable parameter,
* which will be allocated bellow the unsafe buffer. Change uses of the param to the
* shadow copy.
*
* A pointer under indirection is considered vulnerable. A malicious user could read from
* protected memory or write to it. If a parameter is assigned/computed into another variable,
* and is a pointer (i.e., under indirection), then we consider the variable to be part of the
* equivalence class with the parameter. All parameters in the equivalence class are shadowed.
*/
void Compiler::gsCopyShadowParams()
{
if (info.compIsVarArgs)
{
return;
}
// Allocate array for shadow param info
gsShadowVarInfo = new (this, CMK_Unknown) ShadowParamVarInfo[lvaCount]();
// Find groups of variables assigned to each other, and also
// tracks variables which are dereferenced and marks them as ptrs.
// Look for assignments to *p, and ptrs passed to functions
if (gsFindVulnerableParams())
{
// Replace vulnerable params by shadow copies.
gsParamsToShadows();
}
}
// This struct tracks how a tree is being used
struct MarkPtrsInfo
{
Compiler* comp;
unsigned lvAssignDef; // Which local variable is the tree being assigned to?
bool isAssignSrc; // Is this the source value for an assignment?
bool isUnderIndir; // Is this a pointer value tree that is being dereferenced?
bool skipNextNode; // Skip a single node during the tree-walk
#ifdef DEBUG
void Print()
{
printf(
"[MarkPtrsInfo] = {comp = %p, lvAssignDef = %d, isAssignSrc = %d, isUnderIndir = %d, skipNextNode = %d}\n",
comp, lvAssignDef, isAssignSrc, isUnderIndir, skipNextNode);
}
#endif
};
/*****************************************************************************
* gsMarkPtrsAndAssignGroups
* Walk a tree looking for assignment groups, variables whose value is used
* in a *p store or use, and variable passed to calls. This info is then used
* to determine parameters which are vulnerable.
* This function carries a state to know if it is under an assign node, call node
* or indirection node. It starts a new tree walk for it's subtrees when the state
* changes.
*/
Compiler::fgWalkResult Compiler::gsMarkPtrsAndAssignGroups(GenTree** pTree, fgWalkData* data)
{
struct MarkPtrsInfo* pState = (MarkPtrsInfo*)data->pCallbackData;
struct MarkPtrsInfo newState = *pState;
Compiler* comp = data->compiler;
GenTree* tree = *pTree;
ShadowParamVarInfo* shadowVarInfo = pState->comp->gsShadowVarInfo;
assert(shadowVarInfo);
bool fIsBlk = false;
unsigned lclNum;
assert(!pState->isAssignSrc || pState->lvAssignDef != (unsigned)-1);
if (pState->skipNextNode)
{
pState->skipNextNode = false;
return WALK_CONTINUE;
}
switch (tree->OperGet())
{
// Indirections - look for *p uses and defs
case GT_IND:
case GT_OBJ:
case GT_ARR_ELEM:
case GT_ARR_INDEX:
case GT_ARR_OFFSET:
case GT_FIELD:
newState.isUnderIndir = true;
{
newState.skipNextNode = true; // Don't have to worry about which kind of node we're dealing with
comp->fgWalkTreePre(&tree, comp->gsMarkPtrsAndAssignGroups, (void*)&newState);
}
return WALK_SKIP_SUBTREES;
// local vars and param uses
case GT_LCL_VAR:
case GT_LCL_FLD:
lclNum = tree->gtLclVarCommon.gtLclNum;
if (pState->isUnderIndir)
{
// The variable is being dereferenced for a read or a write.
comp->lvaTable[lclNum].lvIsPtr = 1;
}
if (pState->isAssignSrc)
{
//
// Add lvAssignDef and lclNum to a common assign group
if (shadowVarInfo[pState->lvAssignDef].assignGroup)
{
if (shadowVarInfo[lclNum].assignGroup)
{
// OR both bit vector
shadowVarInfo[pState->lvAssignDef].assignGroup->bitVectOr(shadowVarInfo[lclNum].assignGroup);
}
else
{
shadowVarInfo[pState->lvAssignDef].assignGroup->bitVectSet(lclNum);
}
// Point both to the same bit vector
shadowVarInfo[lclNum].assignGroup = shadowVarInfo[pState->lvAssignDef].assignGroup;
}
else if (shadowVarInfo[lclNum].assignGroup)
{
shadowVarInfo[lclNum].assignGroup->bitVectSet(pState->lvAssignDef);
// Point both to the same bit vector
shadowVarInfo[pState->lvAssignDef].assignGroup = shadowVarInfo[lclNum].assignGroup;
}
else
{
FixedBitVect* bv = FixedBitVect::bitVectInit(pState->comp->lvaCount, pState->comp);
// (shadowVarInfo[pState->lvAssignDef] == NULL && shadowVarInfo[lclNew] == NULL);
// Neither of them has an assign group yet. Make a new one.
shadowVarInfo[pState->lvAssignDef].assignGroup = bv;
shadowVarInfo[lclNum].assignGroup = bv;
bv->bitVectSet(pState->lvAssignDef);
bv->bitVectSet(lclNum);
}
}
return WALK_CONTINUE;
// Calls - Mark arg variables
case GT_CALL:
newState.isUnderIndir = false;
newState.isAssignSrc = false;
{
if (tree->gtCall.gtCallObjp)
{
newState.isUnderIndir = true;
comp->fgWalkTreePre(&tree->gtCall.gtCallObjp, gsMarkPtrsAndAssignGroups, (void*)&newState);
}
for (GenTreeArgList* args = tree->gtCall.gtCallArgs; args; args = args->Rest())
{
comp->fgWalkTreePre(&args->Current(), gsMarkPtrsAndAssignGroups, (void*)&newState);
}
for (GenTreeArgList* args = tree->gtCall.gtCallLateArgs; args; args = args->Rest())
{
comp->fgWalkTreePre(&args->Current(), gsMarkPtrsAndAssignGroups, (void*)&newState);
}
if (tree->gtCall.gtCallType == CT_INDIRECT)
{
newState.isUnderIndir = true;
// A function pointer is treated like a write-through pointer since
// it controls what code gets executed, and so indirectly can cause
// a write to memory.
comp->fgWalkTreePre(&tree->gtCall.gtCallAddr, gsMarkPtrsAndAssignGroups, (void*)&newState);
}
}
return WALK_SKIP_SUBTREES;
case GT_ADDR:
newState.isUnderIndir = false;
// We'll assume p in "**p = " can be vulnerable because by changing 'p', someone
// could control where **p stores to.
{
comp->fgWalkTreePre(&tree->gtOp.gtOp1, comp->gsMarkPtrsAndAssignGroups, (void*)&newState);
}
return WALK_SKIP_SUBTREES;
default:
// Assignments - track assign groups and *p defs.
if (tree->OperIs(GT_ASG))
{
bool isLocVar;
bool isLocFld;
if (tree->OperIsBlkOp())
{
// Blk assignments are always handled as if they have implicit indirections.
// TODO-1stClassStructs: improve this.
newState.isUnderIndir = true;
comp->fgWalkTreePre(&tree->gtOp.gtOp1, comp->gsMarkPtrsAndAssignGroups, (void*)&newState);
if (tree->OperIsInitBlkOp())
{
newState.isUnderIndir = false;
}
comp->fgWalkTreePre(&tree->gtOp.gtOp2, comp->gsMarkPtrsAndAssignGroups, (void*)&newState);
}
else
{
// Walk dst side
comp->fgWalkTreePre(&tree->gtOp.gtOp1, comp->gsMarkPtrsAndAssignGroups, (void*)&newState);
// Now handle src side
isLocVar = tree->gtOp.gtOp1->OperGet() == GT_LCL_VAR;
isLocFld = tree->gtOp.gtOp1->OperGet() == GT_LCL_FLD;
if ((isLocVar || isLocFld) && tree->gtOp.gtOp2)
{
lclNum = tree->gtOp.gtOp1->gtLclVarCommon.gtLclNum;
newState.lvAssignDef = lclNum;
newState.isAssignSrc = true;
}
comp->fgWalkTreePre(&tree->gtOp.gtOp2, comp->gsMarkPtrsAndAssignGroups, (void*)&newState);
}
return WALK_SKIP_SUBTREES;
}
}
return WALK_CONTINUE;
}
/*****************************************************************************
* gsFindVulnerableParams
* Walk all the trees looking for ptrs, args, assign groups, *p stores, etc.
* Then use that info to figure out vulnerable pointers.
*
* It returns true if it found atleast one vulnerable pointer parameter that
* needs to be shadow-copied.
*/
bool Compiler::gsFindVulnerableParams()
{
MarkPtrsInfo info;
info.comp = this;
info.lvAssignDef = (unsigned)-1;
info.isUnderIndir = false;
info.isAssignSrc = false;
info.skipNextNode = false;
// Walk all the trees setting lvIsWritePtr, lvIsOutgoingArg, lvIsPtr and assignGroup.
fgWalkAllTreesPre(gsMarkPtrsAndAssignGroups, &info);
// Compute has vulnerable at the end of the loop.
bool hasOneVulnerable = false;
// Initialize propagated[v0...vn] = {0}^n, so we can skip the ones propagated through
// some assign group.
FixedBitVect* propagated = (lvaCount > 0) ? FixedBitVect::bitVectInit(lvaCount, this) : nullptr;
for (UINT lclNum = 0; lclNum < lvaCount; lclNum++)
{
LclVarDsc* varDsc = &lvaTable[lclNum];
ShadowParamVarInfo* shadowInfo = &gsShadowVarInfo[lclNum];
// If there was an indirection or if unsafe buffer, then we'd call it vulnerable.
if (varDsc->lvIsPtr || varDsc->lvIsUnsafeBuffer)
{
hasOneVulnerable = true;
}
// Now, propagate the info through the assign group (an equivalence class of vars transitively assigned.)
if (shadowInfo->assignGroup == nullptr || propagated->bitVectTest(lclNum))
{
continue;
}
// Propagate lvIsPtr, so that:
// 1. Any parameter in the equivalence class can be identified as lvIsPtr and hence shadowed.
// 2. Buffers with pointers are placed at lower memory addresses than buffers without pointers.
UINT isUnderIndir = varDsc->lvIsPtr;
// First pass -- find if any variable is vulnerable.
FixedBitVect* assignGroup = shadowInfo->assignGroup;
for (UINT lclNum = assignGroup->bitVectGetFirst(); lclNum != (unsigned)-1 && !isUnderIndir;
lclNum = assignGroup->bitVectGetNext(lclNum))
{
isUnderIndir |= lvaTable[lclNum].lvIsPtr;
}
// Vulnerable, so propagate to all members of the equivalence class.
if (isUnderIndir)
{
hasOneVulnerable = true;
}
// Nothing to propagate.
else
{
continue;
}
// Second pass -- mark all are vulnerable.
assert(isUnderIndir);
for (UINT lclNum = assignGroup->bitVectGetFirst(); lclNum != (unsigned)-1;
lclNum = assignGroup->bitVectGetNext(lclNum))
{
lvaTable[lclNum].lvIsPtr = TRUE;
propagated->bitVectSet(lclNum);
}
#ifdef DEBUG
if (verbose)
{
printf("Equivalence assign group %s: ", isUnderIndir ? "isPtr " : "");
for (UINT lclNum = assignGroup->bitVectGetFirst(); lclNum != (unsigned)-1;
lclNum = assignGroup->bitVectGetNext(lclNum))
{
gtDispLclVar(lclNum, false);
printf(" ");
}
printf("\n");
}
#endif
}
return hasOneVulnerable;
}
/*****************************************************************************
* gsParamsToShadows
* Copy each vulnerable param ptr or buffer to a local shadow copy and replace
* uses of the param by the shadow copy
*/
void Compiler::gsParamsToShadows()
{
// Cache old count since we'll add new variables, and
// gsShadowVarInfo will not grow to accomodate the new ones.
UINT lvaOldCount = lvaCount;
// Create shadow copy for each param candidate
for (UINT lclNum = 0; lclNum < lvaOldCount; lclNum++)
{
LclVarDsc* varDsc = &lvaTable[lclNum];
gsShadowVarInfo[lclNum].shadowCopy = NO_SHADOW_COPY;
// Only care about params whose values are on the stack
if (!ShadowParamVarInfo::mayNeedShadowCopy(varDsc))
{
continue;
}
if (!varDsc->lvIsPtr && !varDsc->lvIsUnsafeBuffer)
{
continue;
}
int shadowVar = lvaGrabTemp(false DEBUGARG("shadowVar"));
// reload varDsc as lvaGrabTemp may realloc the lvaTable[]
varDsc = &lvaTable[lclNum];
// Copy some info
var_types type = varTypeIsSmall(varDsc->TypeGet()) ? TYP_INT : varDsc->TypeGet();
lvaTable[shadowVar].lvType = type;
#ifdef FEATURE_SIMD
lvaTable[shadowVar].lvSIMDType = varDsc->lvSIMDType;
lvaTable[shadowVar].lvUsedInSIMDIntrinsic = varDsc->lvUsedInSIMDIntrinsic;
if (varDsc->lvSIMDType)
{
lvaTable[shadowVar].lvExactSize = varDsc->lvExactSize;
lvaTable[shadowVar].lvBaseType = varDsc->lvBaseType;
}
#endif
lvaTable[shadowVar].lvRegStruct = varDsc->lvRegStruct;
lvaTable[shadowVar].lvAddrExposed = varDsc->lvAddrExposed;
lvaTable[shadowVar].lvDoNotEnregister = varDsc->lvDoNotEnregister;
#ifdef DEBUG
lvaTable[shadowVar].lvVMNeedsStackAddr = varDsc->lvVMNeedsStackAddr;
lvaTable[shadowVar].lvLiveInOutOfHndlr = varDsc->lvLiveInOutOfHndlr;
lvaTable[shadowVar].lvLclFieldExpr = varDsc->lvLclFieldExpr;
lvaTable[shadowVar].lvLiveAcrossUCall = varDsc->lvLiveAcrossUCall;
#endif
lvaTable[shadowVar].lvVerTypeInfo = varDsc->lvVerTypeInfo;
lvaTable[shadowVar].lvGcLayout = varDsc->lvGcLayout;
lvaTable[shadowVar].lvIsUnsafeBuffer = varDsc->lvIsUnsafeBuffer;
lvaTable[shadowVar].lvIsPtr = varDsc->lvIsPtr;
#ifdef DEBUG
if (verbose)
{
printf("Var V%02u is shadow param candidate. Shadow copy is V%02u.\n", lclNum, shadowVar);
}
#endif
gsShadowVarInfo[lclNum].shadowCopy = shadowVar;
}
// Replace param uses with shadow copy
fgWalkAllTreesPre(gsReplaceShadowParams, (void*)this);
// Now insert code to copy the params to their shadow copy.
for (UINT lclNum = 0; lclNum < lvaOldCount; lclNum++)
{
LclVarDsc* varDsc = &lvaTable[lclNum];
unsigned shadowVar = gsShadowVarInfo[lclNum].shadowCopy;
if (shadowVar == NO_SHADOW_COPY)
{
continue;
}
var_types type = lvaTable[shadowVar].TypeGet();
GenTree* src = gtNewLclvNode(lclNum, varDsc->TypeGet());
GenTree* dst = gtNewLclvNode(shadowVar, type);
src->gtFlags |= GTF_DONT_CSE;
dst->gtFlags |= GTF_DONT_CSE;
GenTree* opAssign = nullptr;
if (type == TYP_STRUCT)
{
CORINFO_CLASS_HANDLE clsHnd = varDsc->lvVerTypeInfo.GetClassHandle();
// We don't need unsafe value cls check here since we are copying the params and this flag
// would have been set on the original param before reaching here.
lvaSetStruct(shadowVar, clsHnd, false);
src = gtNewOperNode(GT_ADDR, TYP_BYREF, src);
dst = gtNewOperNode(GT_ADDR, TYP_BYREF, dst);
opAssign = gtNewCpObjNode(dst, src, clsHnd, false);
lvaTable[shadowVar].lvIsMultiRegArg = lvaTable[lclNum].lvIsMultiRegArg;
lvaTable[shadowVar].lvIsMultiRegRet = lvaTable[lclNum].lvIsMultiRegRet;
}
else
{
opAssign = gtNewAssignNode(dst, src);
}
fgEnsureFirstBBisScratch();
(void)fgInsertStmtAtBeg(fgFirstBB, fgMorphTree(opAssign));
}
// If the method has "Jmp CalleeMethod", then we need to copy shadow params back to original
// params before "jmp" to CalleeMethod.
if (compJmpOpUsed)
{
// There could be more than one basic block ending with a "Jmp" type tail call.
// We would have to insert assignments in all such blocks, just before GT_JMP stmnt.
for (BasicBlock* block = fgFirstBB; block; block = block->bbNext)
{
if (block->bbJumpKind != BBJ_RETURN)
{
continue;
}
if ((block->bbFlags & BBF_HAS_JMP) == 0)
{
continue;
}
for (UINT lclNum = 0; lclNum < info.compArgsCount; lclNum++)
{
LclVarDsc* varDsc = &lvaTable[lclNum];
unsigned shadowVar = gsShadowVarInfo[lclNum].shadowCopy;
if (shadowVar == NO_SHADOW_COPY)
{
continue;
}
GenTree* src = gtNewLclvNode(shadowVar, lvaTable[shadowVar].TypeGet());
GenTree* dst = gtNewLclvNode(lclNum, varDsc->TypeGet());
src->gtFlags |= GTF_DONT_CSE;
dst->gtFlags |= GTF_DONT_CSE;
GenTree* opAssign = nullptr;
if (varDsc->TypeGet() == TYP_STRUCT)
{
CORINFO_CLASS_HANDLE clsHnd = varDsc->lvVerTypeInfo.GetClassHandle();
src = gtNewOperNode(GT_ADDR, TYP_BYREF, src);
dst = gtNewOperNode(GT_ADDR, TYP_BYREF, dst);
opAssign = gtNewCpObjNode(dst, src, clsHnd, false);
}
else
{
opAssign = gtNewAssignNode(dst, src);
}
(void)fgInsertStmtNearEnd(block, fgMorphTree(opAssign));
}
}
}
}
/*****************************************************************************
* gsReplaceShadowParams (tree-walk call-back)
* Replace all vulnerable param uses by it's shadow copy.
*/
Compiler::fgWalkResult Compiler::gsReplaceShadowParams(GenTree** pTree, fgWalkData* data)
{
Compiler* comp = data->compiler;
GenTree* tree = *pTree;
GenTree* asg = nullptr;
if (tree->gtOper == GT_ASG)
{
asg = tree; // "asg" is the assignment tree.
tree = tree->gtOp.gtOp1; // "tree" is the local var tree at the left-hand size of the assignment.
}
if (tree->gtOper == GT_LCL_VAR || tree->gtOper == GT_LCL_FLD)
{
UINT paramNum = tree->gtLclVarCommon.gtLclNum;
if (!ShadowParamVarInfo::mayNeedShadowCopy(&comp->lvaTable[paramNum]) ||
comp->gsShadowVarInfo[paramNum].shadowCopy == NO_SHADOW_COPY)
{
return WALK_CONTINUE;
}
tree->gtLclVarCommon.SetLclNum(comp->gsShadowVarInfo[paramNum].shadowCopy);
// In gsParamsToShadows(), we create a shadow var of TYP_INT for every small type param.
// Make sure we update the type of the local var tree as well.
if (varTypeIsSmall(comp->lvaTable[paramNum].TypeGet()))
{
tree->gtType = TYP_INT;
if (asg)
{
// If this is an assignment tree, propagate the type to it as well.
asg->gtType = TYP_INT;
}
}
}
return WALK_CONTINUE;
}
|