1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
|
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
/*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX XX
XX GenTree XX
XX XX
XX This is the node in the semantic tree graph. It represents the operation XX
XX corresponding to the node, and other information during code-gen. XX
XX XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
*/
/*****************************************************************************/
#ifndef _GENTREE_H_
#define _GENTREE_H_
/*****************************************************************************/
#include "vartype.h" // For "var_types"
#include "target.h" // For "regNumber"
#include "ssaconfig.h" // For "SsaConfig::RESERVED_SSA_NUM"
#include "reglist.h"
#include "valuenumtype.h"
#include "jithashtable.h"
#include "nodeinfo.h"
#include "simd.h"
#include "namedintrinsiclist.h"
// Debugging GenTree is much easier if we add a magic virtual function to make the debugger able to figure out what type
// it's got. This is enabled by default in DEBUG. To enable it in RET builds (temporarily!), you need to change the
// build to define DEBUGGABLE_GENTREE=1, as well as pass /OPT:NOICF to the linker (or else all the vtables get merged,
// making the debugging value supplied by them useless). See protojit.nativeproj for a commented example of setting the
// build flags correctly.
#ifndef DEBUGGABLE_GENTREE
#ifdef DEBUG
#define DEBUGGABLE_GENTREE 1
#else // !DEBUG
#define DEBUGGABLE_GENTREE 0
#endif // !DEBUG
#endif // !DEBUGGABLE_GENTREE
// The SpecialCodeKind enum is used to indicate the type of special (unique)
// target block that will be targeted by an instruction.
// These are used by:
// GenTreeBoundsChk nodes (SCK_RNGCHK_FAIL, SCK_ARG_EXCPN, SCK_ARG_RNG_EXCPN)
// - these nodes have a field (gtThrowKind) to indicate which kind
// GenTreeOps nodes, for which codegen will generate the branch
// - it will use the appropriate kind based on the opcode, though it's not
// clear why SCK_OVERFLOW == SCK_ARITH_EXCPN
// SCK_PAUSE_EXEC is not currently used.
//
enum SpecialCodeKind
{
SCK_NONE,
SCK_RNGCHK_FAIL, // target when range check fails
SCK_PAUSE_EXEC, // target to stop (e.g. to allow GC)
SCK_DIV_BY_ZERO, // target for divide by zero (Not used on X86/X64)
SCK_ARITH_EXCPN, // target on arithmetic exception
SCK_OVERFLOW = SCK_ARITH_EXCPN, // target on overflow
SCK_ARG_EXCPN, // target on ArgumentException (currently used only for SIMD intrinsics)
SCK_ARG_RNG_EXCPN, // target on ArgumentOutOfRangeException (currently used only for SIMD intrinsics)
SCK_COUNT
};
/*****************************************************************************/
enum genTreeOps : BYTE
{
#define GTNODE(en, st, cm, ok) GT_##en,
#include "gtlist.h"
GT_COUNT,
#ifdef _TARGET_64BIT_
// GT_CNS_NATIVELONG is the gtOper symbol for GT_CNS_LNG or GT_CNS_INT, depending on the target.
// For the 64-bit targets we will only use GT_CNS_INT as it used to represent all the possible sizes
GT_CNS_NATIVELONG = GT_CNS_INT,
#else
// For the 32-bit targets we use a GT_CNS_LNG to hold a 64-bit integer constant and GT_CNS_INT for all others.
// In the future when we retarget the JIT for x86 we should consider eliminating GT_CNS_LNG
GT_CNS_NATIVELONG = GT_CNS_LNG,
#endif
};
/*****************************************************************************
*
* The following enum defines a set of bit flags that can be used
* to classify expression tree nodes. Note that some operators will
* have more than one bit set, as follows:
*
* GTK_CONST implies GTK_LEAF
* GTK_RELOP implies GTK_BINOP
* GTK_LOGOP implies GTK_BINOP
*/
enum genTreeKinds
{
GTK_SPECIAL = 0x0000, // unclassified operator (special handling reqd)
GTK_CONST = 0x0001, // constant operator
GTK_LEAF = 0x0002, // leaf operator
GTK_UNOP = 0x0004, // unary operator
GTK_BINOP = 0x0008, // binary operator
GTK_RELOP = 0x0010, // comparison operator
GTK_LOGOP = 0x0020, // logical operator
#ifdef LEGACY_BACKEND
GTK_ASGOP = 0x0040, // assignment operator
#endif
GTK_KINDMASK = 0x007F, // operator kind mask
GTK_COMMUTE = 0x0080, // commutative operator
GTK_EXOP = 0x0100, // Indicates that an oper for a node type that extends GenTreeOp (or GenTreeUnOp)
// by adding non-node fields to unary or binary operator.
GTK_LOCAL = 0x0200, // is a local access (load, store, phi)
GTK_NOVALUE = 0x0400, // node does not produce a value
GTK_NOTLIR = 0x0800, // node is not allowed in LIR
GTK_NOCONTAIN = 0x1000, // this node is a value, but may not be contained
/* Define composite value(s) */
GTK_SMPOP = (GTK_UNOP | GTK_BINOP | GTK_RELOP | GTK_LOGOP)
};
/*****************************************************************************/
#define SMALL_TREE_NODES 1
/*****************************************************************************/
enum gtCallTypes : BYTE
{
CT_USER_FUNC, // User function
CT_HELPER, // Jit-helper
CT_INDIRECT, // Indirect call
CT_COUNT // fake entry (must be last)
};
/*****************************************************************************/
struct BasicBlock;
struct InlineCandidateInfo;
typedef unsigned short AssertionIndex;
static const AssertionIndex NO_ASSERTION_INDEX = 0;
//------------------------------------------------------------------------
// GetAssertionIndex: return 1-based AssertionIndex from 0-based int index.
//
// Arguments:
// index - 0-based index
// Return Value:
// 1-based AssertionIndex.
inline AssertionIndex GetAssertionIndex(unsigned index)
{
return (AssertionIndex)(index + 1);
}
class AssertionInfo
{
// true if the assertion holds on the bbNext edge instead of the bbJumpDest edge (for GT_JTRUE nodes)
unsigned short m_isNextEdgeAssertion : 1;
// 1-based index of the assertion
unsigned short m_assertionIndex : 15;
AssertionInfo(bool isNextEdgeAssertion, AssertionIndex assertionIndex)
: m_isNextEdgeAssertion(isNextEdgeAssertion), m_assertionIndex(assertionIndex)
{
assert(m_assertionIndex == assertionIndex);
}
public:
AssertionInfo() : AssertionInfo(false, 0)
{
}
AssertionInfo(AssertionIndex assertionIndex) : AssertionInfo(false, assertionIndex)
{
}
static AssertionInfo ForNextEdge(AssertionIndex assertionIndex)
{
// Ignore the edge information if there's no assertion
bool isNextEdge = (assertionIndex != NO_ASSERTION_INDEX);
return AssertionInfo(isNextEdge, assertionIndex);
}
void Clear()
{
m_isNextEdgeAssertion = 0;
m_assertionIndex = NO_ASSERTION_INDEX;
}
bool HasAssertion() const
{
return m_assertionIndex != NO_ASSERTION_INDEX;
}
AssertionIndex GetAssertionIndex() const
{
return m_assertionIndex;
}
bool IsNextEdgeAssertion() const
{
return m_isNextEdgeAssertion;
}
};
/*****************************************************************************/
// GT_FIELD nodes will be lowered into more "code-gen-able" representations, like
// GT_IND's of addresses, or GT_LCL_FLD nodes. We'd like to preserve the more abstract
// information, and will therefore annotate such lowered nodes with FieldSeq's. A FieldSeq
// represents a (possibly) empty sequence of fields. The fields are in the order
// in which they are dereferenced. The first field may be an object field or a struct field;
// all subsequent fields must be struct fields.
struct FieldSeqNode
{
CORINFO_FIELD_HANDLE m_fieldHnd;
FieldSeqNode* m_next;
FieldSeqNode(CORINFO_FIELD_HANDLE fieldHnd, FieldSeqNode* next) : m_fieldHnd(fieldHnd), m_next(next)
{
}
// returns true when this is the pseudo #FirstElem field sequence
bool IsFirstElemFieldSeq();
// returns true when this is the pseudo #ConstantIndex field sequence
bool IsConstantIndexFieldSeq();
// returns true when this is the the pseudo #FirstElem field sequence or the pseudo #ConstantIndex field sequence
bool IsPseudoField();
// Make sure this provides methods that allow it to be used as a KeyFuncs type in SimplerHash.
static int GetHashCode(FieldSeqNode fsn)
{
return static_cast<int>(reinterpret_cast<intptr_t>(fsn.m_fieldHnd)) ^
static_cast<int>(reinterpret_cast<intptr_t>(fsn.m_next));
}
static bool Equals(FieldSeqNode fsn1, FieldSeqNode fsn2)
{
return fsn1.m_fieldHnd == fsn2.m_fieldHnd && fsn1.m_next == fsn2.m_next;
}
};
// This class canonicalizes field sequences.
class FieldSeqStore
{
typedef JitHashTable<FieldSeqNode, /*KeyFuncs*/ FieldSeqNode, FieldSeqNode*> FieldSeqNodeCanonMap;
CompAllocator* m_alloc;
FieldSeqNodeCanonMap* m_canonMap;
static FieldSeqNode s_notAField; // No value, just exists to provide an address.
// Dummy variables to provide the addresses for the "pseudo field handle" statics below.
static int FirstElemPseudoFieldStruct;
static int ConstantIndexPseudoFieldStruct;
public:
FieldSeqStore(CompAllocator* alloc);
// Returns the (canonical in the store) singleton field sequence for the given handle.
FieldSeqNode* CreateSingleton(CORINFO_FIELD_HANDLE fieldHnd);
// This is a special distinguished FieldSeqNode indicating that a constant does *not*
// represent a valid field sequence. This is "infectious", in the sense that appending it
// (on either side) to any field sequence yields the "NotAField()" sequence.
static FieldSeqNode* NotAField()
{
return &s_notAField;
}
// Returns the (canonical in the store) field sequence representing the concatenation of
// the sequences represented by "a" and "b". Assumes that "a" and "b" are canonical; that is,
// they are the results of CreateSingleton, NotAField, or Append calls. If either of the arguments
// are the "NotAField" value, so is the result.
FieldSeqNode* Append(FieldSeqNode* a, FieldSeqNode* b);
// We have a few "pseudo" field handles:
// This treats the constant offset of the first element of something as if it were a field.
// Works for method table offsets of boxed structs, or first elem offset of arrays/strings.
static CORINFO_FIELD_HANDLE FirstElemPseudoField;
// If there is a constant index, we make a psuedo field to correspond to the constant added to
// offset of the indexed field. This keeps the field sequence structure "normalized", especially in the
// case where the element type is a struct, so we might add a further struct field offset.
static CORINFO_FIELD_HANDLE ConstantIndexPseudoField;
static bool IsPseudoField(CORINFO_FIELD_HANDLE hnd)
{
return hnd == FirstElemPseudoField || hnd == ConstantIndexPseudoField;
}
};
class GenTreeUseEdgeIterator;
class GenTreeOperandIterator;
/*****************************************************************************/
typedef struct GenTree* GenTreePtr;
struct GenTreeArgList;
// Forward declarations of the subtypes
#define GTSTRUCT_0(fn, en) struct GenTree##fn;
#define GTSTRUCT_1(fn, en) struct GenTree##fn;
#define GTSTRUCT_2(fn, en, en2) struct GenTree##fn;
#define GTSTRUCT_3(fn, en, en2, en3) struct GenTree##fn;
#define GTSTRUCT_4(fn, en, en2, en3, en4) struct GenTree##fn;
#define GTSTRUCT_N(fn, ...) struct GenTree##fn;
#include "gtstructs.h"
/*****************************************************************************/
#ifndef _HOST_64BIT_
#include <pshpack4.h>
#endif
struct GenTree
{
// We use GT_STRUCT_0 only for the category of simple ops.
#define GTSTRUCT_0(fn, en) \
GenTree##fn* As##fn() \
{ \
assert(this->OperIsSimple()); \
return reinterpret_cast<GenTree##fn*>(this); \
} \
GenTree##fn& As##fn##Ref() \
{ \
return *As##fn(); \
} \
__declspec(property(get = As##fn##Ref)) GenTree##fn& gt##fn;
#define GTSTRUCT_1(fn, en) \
GenTree##fn* As##fn() \
{ \
assert(this->gtOper == en); \
return reinterpret_cast<GenTree##fn*>(this); \
} \
GenTree##fn& As##fn##Ref() \
{ \
return *As##fn(); \
} \
__declspec(property(get = As##fn##Ref)) GenTree##fn& gt##fn;
#define GTSTRUCT_2(fn, en, en2) \
GenTree##fn* As##fn() \
{ \
assert(this->gtOper == en || this->gtOper == en2); \
return reinterpret_cast<GenTree##fn*>(this); \
} \
GenTree##fn& As##fn##Ref() \
{ \
return *As##fn(); \
} \
__declspec(property(get = As##fn##Ref)) GenTree##fn& gt##fn;
#define GTSTRUCT_3(fn, en, en2, en3) \
GenTree##fn* As##fn() \
{ \
assert(this->gtOper == en || this->gtOper == en2 || this->gtOper == en3); \
return reinterpret_cast<GenTree##fn*>(this); \
} \
GenTree##fn& As##fn##Ref() \
{ \
return *As##fn(); \
} \
__declspec(property(get = As##fn##Ref)) GenTree##fn& gt##fn;
#define GTSTRUCT_4(fn, en, en2, en3, en4) \
GenTree##fn* As##fn() \
{ \
assert(this->gtOper == en || this->gtOper == en2 || this->gtOper == en3 || this->gtOper == en4); \
return reinterpret_cast<GenTree##fn*>(this); \
} \
GenTree##fn& As##fn##Ref() \
{ \
return *As##fn(); \
} \
__declspec(property(get = As##fn##Ref)) GenTree##fn& gt##fn;
#ifdef DEBUG
// VC does not optimize out this loop in retail even though the value it computes is unused
// so we need a separate version for non-debug
#define GTSTRUCT_N(fn, ...) \
GenTree##fn* As##fn() \
{ \
genTreeOps validOps[] = {__VA_ARGS__}; \
bool found = false; \
for (unsigned i = 0; i < ArrLen(validOps); i++) \
{ \
if (this->gtOper == validOps[i]) \
{ \
found = true; \
break; \
} \
} \
assert(found); \
return reinterpret_cast<GenTree##fn*>(this); \
} \
GenTree##fn& As##fn##Ref() \
{ \
return *As##fn(); \
} \
__declspec(property(get = As##fn##Ref)) GenTree##fn& gt##fn;
#else
#define GTSTRUCT_N(fn, ...) \
GenTree##fn* As##fn() \
{ \
return reinterpret_cast<GenTree##fn*>(this); \
} \
GenTree##fn& As##fn##Ref() \
{ \
return *As##fn(); \
} \
__declspec(property(get = As##fn##Ref)) GenTree##fn& gt##fn;
#endif
#include "gtstructs.h"
genTreeOps gtOper; // enum subtype BYTE
var_types gtType; // enum subtype BYTE
genTreeOps OperGet() const
{
return gtOper;
}
var_types TypeGet() const
{
return gtType;
}
#ifdef DEBUG
genTreeOps gtOperSave; // Only used to save gtOper when we destroy a node, to aid debugging.
#endif
#if FEATURE_ANYCSE
#define NO_CSE (0)
#define IS_CSE_INDEX(x) (x != 0)
#define IS_CSE_USE(x) (x > 0)
#define IS_CSE_DEF(x) (x < 0)
#define GET_CSE_INDEX(x) ((x > 0) ? x : -x)
#define TO_CSE_DEF(x) (-x)
signed char gtCSEnum; // 0 or the CSE index (negated if def)
// valid only for CSE expressions
#endif // FEATURE_ANYCSE
unsigned char gtLIRFlags; // Used for nodes that are in LIR. See LIR::Flags in lir.h for the various flags.
#if ASSERTION_PROP
AssertionInfo gtAssertionInfo; // valid only for non-GT_STMT nodes
bool GeneratesAssertion() const
{
return gtAssertionInfo.HasAssertion();
}
void ClearAssertion()
{
gtAssertionInfo.Clear();
}
AssertionInfo GetAssertionInfo() const
{
return gtAssertionInfo;
}
void SetAssertionInfo(AssertionInfo info)
{
gtAssertionInfo = info;
}
#endif
#if FEATURE_STACK_FP_X87
unsigned char gtFPlvl; // x87 stack depth at this node
void gtCopyFPlvl(GenTree* other)
{
gtFPlvl = other->gtFPlvl;
}
void gtSetFPlvl(unsigned level)
{
noway_assert(FitsIn<unsigned char>(level));
gtFPlvl = (unsigned char)level;
}
#else // FEATURE_STACK_FP_X87
void gtCopyFPlvl(GenTree* other)
{
}
void gtSetFPlvl(unsigned level)
{
}
#endif // FEATURE_STACK_FP_X87
//
// Cost metrics on the node. Don't allow direct access to the variable for setting.
//
public:
#ifdef DEBUG
// You are not allowed to read the cost values before they have been set in gtSetEvalOrder().
// Keep track of whether the costs have been initialized, and assert if they are read before being initialized.
// Obviously, this information does need to be initialized when a node is created.
// This is public so the dumpers can see it.
bool gtCostsInitialized;
#endif // DEBUG
#define MAX_COST UCHAR_MAX
#define IND_COST_EX 3 // execution cost for an indirection
__declspec(property(get = GetCostEx)) unsigned char gtCostEx; // estimate of expression execution cost
__declspec(property(get = GetCostSz)) unsigned char gtCostSz; // estimate of expression code size cost
unsigned char GetCostEx() const
{
assert(gtCostsInitialized);
return _gtCostEx;
}
unsigned char GetCostSz() const
{
assert(gtCostsInitialized);
return _gtCostSz;
}
// Set the costs. They are always both set at the same time.
// Don't use the "put" property: force calling this function, to make it more obvious in the few places
// that set the values.
// Note that costs are only set in gtSetEvalOrder() and its callees.
void SetCosts(unsigned costEx, unsigned costSz)
{
assert(costEx != (unsigned)-1); // looks bogus
assert(costSz != (unsigned)-1); // looks bogus
INDEBUG(gtCostsInitialized = true;)
_gtCostEx = (costEx > MAX_COST) ? MAX_COST : (unsigned char)costEx;
_gtCostSz = (costSz > MAX_COST) ? MAX_COST : (unsigned char)costSz;
}
// Opimized copy function, to avoid the SetCosts() function comparisons, and make it more clear that a node copy is
// happening.
void CopyCosts(const GenTree* const tree)
{
INDEBUG(gtCostsInitialized =
tree->gtCostsInitialized;) // If the 'tree' costs aren't initialized, we'll hit an assert below.
_gtCostEx = tree->gtCostEx;
_gtCostSz = tree->gtCostSz;
}
// Same as CopyCosts, but avoids asserts if the costs we are copying have not been initialized.
// This is because the importer, for example, clones nodes, before these costs have been initialized.
// Note that we directly access the 'tree' costs, not going through the accessor functions (either
// directly or through the properties).
void CopyRawCosts(const GenTree* const tree)
{
INDEBUG(gtCostsInitialized = tree->gtCostsInitialized;)
_gtCostEx = tree->_gtCostEx;
_gtCostSz = tree->_gtCostSz;
}
private:
unsigned char _gtCostEx; // estimate of expression execution cost
unsigned char _gtCostSz; // estimate of expression code size cost
//
// Register or register pair number of the node.
//
CLANG_FORMAT_COMMENT_ANCHOR;
#ifdef DEBUG
public:
enum genRegTag
{
GT_REGTAG_NONE, // Nothing has been assigned to _gtRegNum/_gtRegPair
GT_REGTAG_REG, // _gtRegNum has been assigned
#if CPU_LONG_USES_REGPAIR
GT_REGTAG_REGPAIR // _gtRegPair has been assigned
#endif
};
genRegTag GetRegTag() const
{
#if CPU_LONG_USES_REGPAIR
assert(gtRegTag == GT_REGTAG_NONE || gtRegTag == GT_REGTAG_REG || gtRegTag == GT_REGTAG_REGPAIR);
#else
assert(gtRegTag == GT_REGTAG_NONE || gtRegTag == GT_REGTAG_REG);
#endif
return gtRegTag;
}
private:
genRegTag gtRegTag; // What is in _gtRegNum/_gtRegPair?
#endif // DEBUG
private:
union {
// These store the register assigned to the node. If a register is not assigned, _gtRegNum is set to REG_NA
// or _gtRegPair is set to REG_PAIR_NONE, depending on the node type.
// For the LEGACY_BACKEND,these are valid only if GTF_REG_VAL is set in gtFlags.
regNumberSmall _gtRegNum; // which register the value is in
regPairNoSmall _gtRegPair; // which register pair the value is in
};
public:
// The register number is stored in a small format (8 bits), but the getters return and the setters take
// a full-size (unsigned) format, to localize the casts here.
__declspec(property(get = GetRegNum, put = SetRegNum)) regNumber gtRegNum;
bool canBeContained() const;
// for codegen purposes, is this node a subnode of its parent
bool isContained() const;
bool isContainedIndir() const;
bool isIndirAddrMode();
bool isIndir() const;
bool isContainedIntOrIImmed() const
{
return isContained() && IsCnsIntOrI() && !isUsedFromSpillTemp();
}
bool isContainedFltOrDblImmed() const
{
return isContained() && (OperGet() == GT_CNS_DBL);
}
bool isLclField() const
{
return OperGet() == GT_LCL_FLD || OperGet() == GT_STORE_LCL_FLD;
}
bool isUsedFromSpillTemp() const;
// Indicates whether it is a memory op.
// Right now it includes Indir and LclField ops.
bool isMemoryOp() const
{
return isIndir() || isLclField();
}
bool isUsedFromMemory() const
{
return ((isContained() && (isMemoryOp() || (OperGet() == GT_LCL_VAR) || (OperGet() == GT_CNS_DBL))) ||
isUsedFromSpillTemp());
}
bool isLclVarUsedFromMemory() const
{
return (OperGet() == GT_LCL_VAR) && (isContained() || isUsedFromSpillTemp());
}
bool isLclFldUsedFromMemory() const
{
return isLclField() && (isContained() || isUsedFromSpillTemp());
}
bool isUsedFromReg() const
{
return !isContained() && !isUsedFromSpillTemp();
}
regNumber GetRegNum() const
{
assert((gtRegTag == GT_REGTAG_REG) || (gtRegTag == GT_REGTAG_NONE)); // TODO-Cleanup: get rid of the NONE case,
// and fix everyplace that reads undefined
// values
regNumber reg = (regNumber)_gtRegNum;
assert((gtRegTag == GT_REGTAG_NONE) || // TODO-Cleanup: get rid of the NONE case, and fix everyplace that reads
// undefined values
(reg >= REG_FIRST && reg <= REG_COUNT));
return reg;
}
void SetRegNum(regNumber reg)
{
assert(reg >= REG_FIRST && reg <= REG_COUNT);
// Make sure the upper bits of _gtRegPair are clear
_gtRegPair = (regPairNoSmall)0;
_gtRegNum = (regNumberSmall)reg;
INDEBUG(gtRegTag = GT_REGTAG_REG;)
assert(_gtRegNum == reg);
}
#if CPU_LONG_USES_REGPAIR
__declspec(property(get = GetRegPair, put = SetRegPair)) regPairNo gtRegPair;
regPairNo GetRegPair() const
{
assert((gtRegTag == GT_REGTAG_REGPAIR) || (gtRegTag == GT_REGTAG_NONE)); // TODO-Cleanup: get rid of the NONE
// case, and fix everyplace that reads
// undefined values
regPairNo regPair = (regPairNo)_gtRegPair;
assert((gtRegTag == GT_REGTAG_NONE) || // TODO-Cleanup: get rid of the NONE case, and fix everyplace that reads
// undefined values
(regPair >= REG_PAIR_FIRST && regPair <= REG_PAIR_LAST) ||
(regPair == REG_PAIR_NONE)); // allow initializing to an undefined value
return regPair;
}
void SetRegPair(regPairNo regPair)
{
assert((regPair >= REG_PAIR_FIRST && regPair <= REG_PAIR_LAST) ||
(regPair == REG_PAIR_NONE)); // allow initializing to an undefined value
_gtRegPair = (regPairNoSmall)regPair;
INDEBUG(gtRegTag = GT_REGTAG_REGPAIR;)
assert(_gtRegPair == regPair);
}
#endif
// Copy the _gtRegNum/_gtRegPair/gtRegTag fields
void CopyReg(GenTreePtr from);
bool gtHasReg() const;
regMaskTP gtGetRegMask() const;
unsigned gtFlags; // see GTF_xxxx below
#if defined(DEBUG)
unsigned gtDebugFlags; // see GTF_DEBUG_xxx below
#endif // defined(DEBUG)
ValueNumPair gtVNPair;
regMaskSmall gtRsvdRegs; // set of fixed trashed registers
#ifndef LEGACY_BACKEND
unsigned AvailableTempRegCount(regMaskTP mask = (regMaskTP)-1) const;
regNumber GetSingleTempReg(regMaskTP mask = (regMaskTP)-1);
regNumber ExtractTempReg(regMaskTP mask = (regMaskTP)-1);
#endif // !LEGACY_BACKEND
#ifdef LEGACY_BACKEND
regMaskSmall gtUsedRegs; // set of used (trashed) registers
#endif // LEGACY_BACKEND
#ifndef LEGACY_BACKEND
TreeNodeInfo gtLsraInfo;
#endif // !LEGACY_BACKEND
void SetVNsFromNode(GenTreePtr tree)
{
gtVNPair = tree->gtVNPair;
}
ValueNum GetVN(ValueNumKind vnk) const
{
if (vnk == VNK_Liberal)
{
return gtVNPair.GetLiberal();
}
else
{
assert(vnk == VNK_Conservative);
return gtVNPair.GetConservative();
}
}
void SetVN(ValueNumKind vnk, ValueNum vn)
{
if (vnk == VNK_Liberal)
{
return gtVNPair.SetLiberal(vn);
}
else
{
assert(vnk == VNK_Conservative);
return gtVNPair.SetConservative(vn);
}
}
void SetVNs(ValueNumPair vnp)
{
gtVNPair = vnp;
}
void ClearVN()
{
gtVNPair = ValueNumPair(); // Initializes both elements to "NoVN".
}
// clang-format off
//---------------------------------------------------------------------
//
// GenTree flags stored in gtFlags.
//
//---------------------------------------------------------------------
//---------------------------------------------------------------------
// The first set of flags can be used with a large set of nodes, and
// thus they must all have distinct values. That is, one can test any
// expression node for one of these flags.
//---------------------------------------------------------------------
#define GTF_ASG 0x00000001 // sub-expression contains an assignment
#define GTF_CALL 0x00000002 // sub-expression contains a func. call
#define GTF_EXCEPT 0x00000004 // sub-expression might throw an exception
#define GTF_GLOB_REF 0x00000008 // sub-expression uses global variable(s)
#define GTF_ORDER_SIDEEFF 0x00000010 // sub-expression has a re-ordering side effect
// If you set these flags, make sure that code:gtExtractSideEffList knows how to find the tree,
// otherwise the C# (run csc /o-) code:
// var v = side_eff_operation
// with no use of v will drop your tree on the floor.
#define GTF_PERSISTENT_SIDE_EFFECTS (GTF_ASG | GTF_CALL)
#define GTF_SIDE_EFFECT (GTF_PERSISTENT_SIDE_EFFECTS | GTF_EXCEPT)
#define GTF_GLOB_EFFECT (GTF_SIDE_EFFECT | GTF_GLOB_REF)
#define GTF_ALL_EFFECT (GTF_GLOB_EFFECT | GTF_ORDER_SIDEEFF)
// The extra flag GTF_IS_IN_CSE is used to tell the consumer of these flags
// that we are calling in the context of performing a CSE, thus we
// should allow the run-once side effects of running a class constructor.
//
// The only requirement of this flag is that it not overlap any of the
// side-effect flags. The actual bit used is otherwise arbitrary.
#define GTF_IS_IN_CSE GTF_BOOLEAN
#define GTF_PERSISTENT_SIDE_EFFECTS_IN_CSE (GTF_ASG | GTF_CALL | GTF_IS_IN_CSE)
// Can any side-effects be observed externally, say by a caller method?
// For assignments, only assignments to global memory can be observed
// externally, whereas simple assignments to local variables can not.
//
// Be careful when using this inside a "try" protected region as the
// order of assignments to local variables would need to be preserved
// wrt side effects if the variables are alive on entry to the
// "catch/finally" region. In such cases, even assignments to locals
// will have to be restricted.
#define GTF_GLOBALLY_VISIBLE_SIDE_EFFECTS(flags) \
(((flags) & (GTF_CALL | GTF_EXCEPT)) || (((flags) & (GTF_ASG | GTF_GLOB_REF)) == (GTF_ASG | GTF_GLOB_REF)))
#define GTF_REVERSE_OPS 0x00000020 // operand op2 should be evaluated before op1 (normally, op1 is evaluated first and op2 is evaluated second)
#ifdef LEGACY_BACKEND
#define GTF_REG_VAL 0x00000040 // operand is sitting in a register (or part of a TYP_LONG operand is sitting in a register)
#else // !LEGACY_BACKEND
#define GTF_CONTAINED 0x00000040 // This node is contained (executed as part of its parent)
#endif // !LEGACY_BACKEND
#define GTF_SPILLED 0x00000080 // the value has been spilled
#ifdef LEGACY_BACKEND
#define GTF_SPILLED_OPER 0x00000100 // op1 has been spilled
#define GTF_SPILLED_OP2 0x00000200 // op2 has been spilled
#define GTF_ZSF_SET 0x00000400 // the zero(ZF) and sign(SF) flags set to the operand
#else // !LEGACY_BACKEND
#define GTF_NOREG_AT_USE 0x00000100 // tree node is in memory at the point of use
#endif // !LEGACY_BACKEND
#define GTF_SET_FLAGS 0x00000800 // Requires that codegen for this node set the flags. Use gtSetFlags() to check this flag.
#define GTF_USE_FLAGS 0x00001000 // Indicates that this node uses the flags bits.
#define GTF_MAKE_CSE 0x00002000 // Hoisted expression: try hard to make this into CSE (see optPerformHoistExpr)
#define GTF_DONT_CSE 0x00004000 // Don't bother CSE'ing this expr
#define GTF_COLON_COND 0x00008000 // This node is conditionally executed (part of ? :)
#define GTF_NODE_MASK (GTF_COLON_COND)
#define GTF_BOOLEAN 0x00040000 // value is known to be 0/1
#if CPU_HAS_BYTE_REGS && defined(LEGACY_BACKEND)
#define GTF_SMALL_OK 0x00080000 // actual small int sufficient
#endif
#define GTF_UNSIGNED 0x00100000 // With GT_CAST: the source operand is an unsigned type
// With operators: the specified node is an unsigned operator
#define GTF_LATE_ARG 0x00200000 // The specified node is evaluated to a temp in the arg list, and this temp is added to gtCallLateArgs.
#define GTF_SPILL 0x00400000 // Needs to be spilled here
#define GTF_COMMON_MASK 0x007FFFFF // mask of all the flags above
#define GTF_REUSE_REG_VAL 0x00800000 // This is set by the register allocator on nodes whose value already exists in the
// register assigned to this node, so the code generator does not have to generate
// code to produce the value. It is currently used only on constant nodes.
// It CANNOT be set on var (GT_LCL*) nodes, or on indir (GT_IND or GT_STOREIND) nodes, since
// it is not needed for lclVars and is highly unlikely to be useful for indir nodes.
//---------------------------------------------------------------------
// The following flags can be used only with a small set of nodes, and
// thus their values need not be distinct (other than within the set
// that goes with a particular node/nodes, of course). That is, one can
// only test for one of these flags if the 'gtOper' value is tested as
// well to make sure it's the right operator for the particular flag.
//---------------------------------------------------------------------
// NB: GTF_VAR_* and GTF_REG_* share the same namespace of flags, because
// GT_LCL_VAR nodes may be changed to GT_REG_VAR nodes without resetting
// the flags. These are also used by GT_LCL_FLD.
#define GTF_VAR_DEF 0x80000000 // GT_LCL_VAR -- this is a definition
#define GTF_VAR_USEASG 0x40000000 // GT_LCL_VAR -- this is a use/def for a x<op>=y
#define GTF_VAR_CAST 0x10000000 // GT_LCL_VAR -- has been explictly cast (variable node may not be type of local)
#define GTF_VAR_ITERATOR 0x08000000 // GT_LCL_VAR -- this is a iterator reference in the loop condition
#define GTF_VAR_CLONED 0x01000000 // GT_LCL_VAR -- this node has been cloned or is a clone
// Relevant for inlining optimizations (see fgInlinePrependStatements)
// TODO-Cleanup: Currently, GTF_REG_BIRTH is used only by stackfp
// We should consider using it more generally for VAR_BIRTH, instead of
// GTF_VAR_DEF && !GTF_VAR_USEASG
#define GTF_REG_BIRTH 0x04000000 // GT_REG_VAR -- enregistered variable born here
#define GTF_VAR_DEATH 0x02000000 // GT_LCL_VAR, GT_REG_VAR -- variable dies here (last use)
#define GTF_VAR_ARR_INDEX 0x00000020 // The variable is part of (the index portion of) an array index expression.
// Shares a value with GTF_REVERSE_OPS, which is meaningless for local var.
#define GTF_LIVENESS_MASK (GTF_VAR_DEF | GTF_VAR_USEASG | GTF_REG_BIRTH | GTF_VAR_DEATH)
#define GTF_CALL_UNMANAGED 0x80000000 // GT_CALL -- direct call to unmanaged code
#define GTF_CALL_INLINE_CANDIDATE 0x40000000 // GT_CALL -- this call has been marked as an inline candidate
#define GTF_CALL_VIRT_KIND_MASK 0x30000000 // GT_CALL -- mask of the below call kinds
#define GTF_CALL_NONVIRT 0x00000000 // GT_CALL -- a non virtual call
#define GTF_CALL_VIRT_STUB 0x10000000 // GT_CALL -- a stub-dispatch virtual call
#define GTF_CALL_VIRT_VTABLE 0x20000000 // GT_CALL -- a vtable-based virtual call
#define GTF_CALL_NULLCHECK 0x08000000 // GT_CALL -- must check instance pointer for null
#define GTF_CALL_POP_ARGS 0x04000000 // GT_CALL -- caller pop arguments?
#define GTF_CALL_HOISTABLE 0x02000000 // GT_CALL -- call is hoistable
#ifdef LEGACY_BACKEND
#ifdef _TARGET_ARM_
// The GTF_CALL_REG_SAVE flag indicates that the call preserves all integer registers. This is used for
// the PollGC helper. However, since the PollGC helper on ARM follows the standard calling convention,
// for that target we don't use this flag.
#define GTF_CALL_REG_SAVE 0x00000000
#else
#define GTF_CALL_REG_SAVE 0x01000000 // GT_CALL -- This call preserves all integer regs
#endif // _TARGET_ARM_
#endif // LEGACY_BACKEND
// For additional flags for GT_CALL node see GTF_CALL_M_*
#define GTF_NOP_DEATH 0x40000000 // GT_NOP -- operand dies here
#define GTF_FLD_NULLCHECK 0x80000000 // GT_FIELD -- need to nullcheck the "this" pointer
#define GTF_FLD_VOLATILE 0x40000000 // GT_FIELD/GT_CLS_VAR -- same as GTF_IND_VOLATILE
#define GTF_FLD_INITCLASS 0x20000000 // GT_FIELD/GT_CLS_VAR -- field access requires preceding class/static init helper
#define GTF_INX_RNGCHK 0x80000000 // GT_INDEX -- the array reference should be range-checked.
#define GTF_INX_REFARR_LAYOUT 0x20000000 // GT_INDEX
#define GTF_INX_STRING_LAYOUT 0x40000000 // GT_INDEX -- this uses the special string array layout
#define GTF_IND_ARR_LEN 0x80000000 // GT_IND -- the indirection represents an array length (of the REF
// contribution to its argument).
#define GTF_IND_VOLATILE 0x40000000 // GT_IND -- the load or store must use volatile sematics (this is a nop on X86)
#define GTF_IND_NONFAULTING 0x20000000 // Operations for which OperIsIndir() is true -- An indir that cannot fault.
// Same as GTF_ARRLEN_NONFAULTING.
#define GTF_IND_TGTANYWHERE 0x10000000 // GT_IND -- the target could be anywhere
#define GTF_IND_TLS_REF 0x08000000 // GT_IND -- the target is accessed via TLS
#define GTF_IND_ASG_LHS 0x04000000 // GT_IND -- this GT_IND node is (the effective val) of the LHS of an
// assignment; don't evaluate it independently.
#define GTF_IND_REQ_ADDR_IN_REG GTF_IND_ASG_LHS // GT_IND -- requires its addr operand to be evaluated
// into a register. This flag is useful in cases where it
// is required to generate register indirect addressing mode.
// One such case is virtual stub calls on xarch. This is only
// valid in the backend, where GTF_IND_ASG_LHS is not necessary
// (all such indirections will be lowered to GT_STOREIND).
#define GTF_IND_UNALIGNED 0x02000000 // GT_IND -- the load or store is unaligned (we assume worst case
// alignment of 1 byte)
#define GTF_IND_INVARIANT 0x01000000 // GT_IND -- the target is invariant (a prejit indirection)
#define GTF_IND_ARR_INDEX 0x00800000 // GT_IND -- the indirection represents an (SZ) array index
#define GTF_IND_FLAGS \
(GTF_IND_VOLATILE | GTF_IND_TGTANYWHERE | GTF_IND_NONFAULTING | GTF_IND_TLS_REF | \
GTF_IND_UNALIGNED | GTF_IND_INVARIANT | GTF_IND_ARR_INDEX)
#define GTF_CLS_VAR_VOLATILE 0x40000000 // GT_FIELD/GT_CLS_VAR -- same as GTF_IND_VOLATILE
#define GTF_CLS_VAR_INITCLASS 0x20000000 // GT_FIELD/GT_CLS_VAR -- same as GTF_FLD_INITCLASS
#define GTF_CLS_VAR_ASG_LHS 0x04000000 // GT_CLS_VAR -- this GT_CLS_VAR node is (the effective val) of the LHS
// of an assignment; don't evaluate it independently.
#define GTF_ADDR_ONSTACK 0x80000000 // GT_ADDR -- this expression is guaranteed to be on the stack
#define GTF_ADDRMODE_NO_CSE 0x80000000 // GT_ADD/GT_MUL/GT_LSH -- Do not CSE this node only, forms complex
// addressing mode
#define GTF_MUL_64RSLT 0x40000000 // GT_MUL -- produce 64-bit result
#ifdef LEGACY_BACKEND
#define GTF_MOD_INT_RESULT 0x80000000 // GT_MOD, -- the real tree represented by this
// GT_UMOD node evaluates to an int even though its type is long.
// The result is placed in the low member of the reg pair.
#endif // LEGACY_BACKEND
#define GTF_RELOP_NAN_UN 0x80000000 // GT_<relop> -- Is branch taken if ops are NaN?
#define GTF_RELOP_JMP_USED 0x40000000 // GT_<relop> -- result of compare used for jump or ?:
#define GTF_RELOP_QMARK 0x20000000 // GT_<relop> -- the node is the condition for ?:
#define GTF_RELOP_ZTT 0x08000000 // GT_<relop> -- Loop test cloned for converting while-loops into do-while
// with explicit "loop test" in the header block.
#define GTF_JCMP_EQ 0x80000000 // GTF_JCMP_EQ -- Branch on equal rather than not equal
#define GTF_JCMP_TST 0x40000000 // GTF_JCMP_TST -- Use bit test instruction rather than compare against zero instruction
#define GTF_RET_MERGED 0x80000000 // GT_RETURN -- This is a return generated during epilog merging.
#define GTF_QMARK_CAST_INSTOF 0x80000000 // GT_QMARK -- Is this a top (not nested) level qmark created for
// castclass or instanceof?
#define GTF_BOX_VALUE 0x80000000 // GT_BOX -- "box" is on a value type
#define GTF_ICON_HDL_MASK 0xF0000000 // Bits used by handle types below
#define GTF_ICON_SCOPE_HDL 0x10000000 // GT_CNS_INT -- constant is a scope handle
#define GTF_ICON_CLASS_HDL 0x20000000 // GT_CNS_INT -- constant is a class handle
#define GTF_ICON_METHOD_HDL 0x30000000 // GT_CNS_INT -- constant is a method handle
#define GTF_ICON_FIELD_HDL 0x40000000 // GT_CNS_INT -- constant is a field handle
#define GTF_ICON_STATIC_HDL 0x50000000 // GT_CNS_INT -- constant is a handle to static data
#define GTF_ICON_STR_HDL 0x60000000 // GT_CNS_INT -- constant is a string handle
#define GTF_ICON_PSTR_HDL 0x70000000 // GT_CNS_INT -- constant is a ptr to a string handle
#define GTF_ICON_PTR_HDL 0x80000000 // GT_CNS_INT -- constant is a ldptr handle
#define GTF_ICON_VARG_HDL 0x90000000 // GT_CNS_INT -- constant is a var arg cookie handle
#define GTF_ICON_PINVKI_HDL 0xA0000000 // GT_CNS_INT -- constant is a pinvoke calli handle
#define GTF_ICON_TOKEN_HDL 0xB0000000 // GT_CNS_INT -- constant is a token handle
#define GTF_ICON_TLS_HDL 0xC0000000 // GT_CNS_INT -- constant is a TLS ref with offset
#define GTF_ICON_FTN_ADDR 0xD0000000 // GT_CNS_INT -- constant is a function address
#define GTF_ICON_CIDMID_HDL 0xE0000000 // GT_CNS_INT -- constant is a class ID or a module ID
#define GTF_ICON_BBC_PTR 0xF0000000 // GT_CNS_INT -- constant is a basic block count pointer
#define GTF_ICON_FIELD_OFF 0x08000000 // GT_CNS_INT -- constant is a field offset
#define GTF_ICON_SIMD_COUNT 0x04000000 // GT_CNS_INT -- constant is Vector<T>.Count
#define GTF_ICON_INITCLASS 0x02000000 // GT_CNS_INT -- Constant is used to access a static that requires preceding
// class/static init helper. In some cases, the constant is
// the address of the static field itself, and in other cases
// there's an extra layer of indirection and it is the address
// of the cell that the runtime will fill in with the address
// of the static field; in both of those cases, the constant
// is what gets flagged.
#define GTF_BLK_VOLATILE GTF_IND_VOLATILE // GT_ASG, GT_STORE_BLK, GT_STORE_OBJ, GT_STORE_DYNBLK -- is a volatile block operation
#define GTF_BLK_UNALIGNED GTF_IND_UNALIGNED // GT_ASG, GT_STORE_BLK, GT_STORE_OBJ, GT_STORE_DYNBLK -- is an unaligned block operation
#define GTF_OVERFLOW 0x10000000 // GT_ADD, GT_SUB, GT_MUL, -- Need overflow check. Use gtOverflow(Ex)() to check this flag.
// GT_ASG_ADD, GT_ASG_SUB,
// GT_CAST
#define GTF_ARR_BOUND_INBND 0x80000000 // GT_ARR_BOUNDS_CHECK -- have proved this check is always in-bounds
#define GTF_ARRLEN_ARR_IDX 0x80000000 // GT_ARR_LENGTH -- Length which feeds into an array index expression
#define GTF_ARRLEN_NONFAULTING 0x20000000 // GT_ARR_LENGTH -- An array length operation that cannot fault. Same as GT_IND_NONFAULTING.
#define GTF_FIELD_LIST_HEAD 0x80000000 // GT_FIELD_LIST -- Indicates that this is the first field in a list of
// struct fields constituting a single call argument.
#define GTF_SIMD12_OP 0x80000000 // GT_SIMD -- Indicates that the operands need to be handled as SIMD12
// even if they have been retyped as SIMD16.
#define GTF_STMT_CMPADD 0x80000000 // GT_STMT -- added by compiler
#define GTF_STMT_HAS_CSE 0x40000000 // GT_STMT -- CSE def or use was subsituted
//---------------------------------------------------------------------
//
// GenTree flags stored in gtDebugFlags.
//
//---------------------------------------------------------------------
#if defined(DEBUG)
#define GTF_DEBUG_NONE 0x00000000 // No debug flags.
#define GTF_DEBUG_NODE_MORPHED 0x00000001 // the node has been morphed (in the global morphing phase)
#define GTF_DEBUG_NODE_SMALL 0x00000002
#define GTF_DEBUG_NODE_LARGE 0x00000004
#define GTF_DEBUG_NODE_CG_PRODUCED 0x00000008 // genProduceReg has been called on this node
#define GTF_DEBUG_NODE_CG_CONSUMED 0x00000010 // genConsumeReg has been called on this node
#define GTF_DEBUG_NODE_MASK 0x0000001F // These flags are all node (rather than operation) properties.
#define GTF_DEBUG_VAR_CSE_REF 0x00800000 // GT_LCL_VAR -- This is a CSE LCL_VAR node
#endif // defined(DEBUG)
//---------------------------------------------------------------------
//
// end of GenTree flags definitions
//
//---------------------------------------------------------------------
// clang-format on
GenTreePtr gtNext;
GenTreePtr gtPrev;
#ifdef DEBUG
unsigned gtTreeID;
unsigned gtSeqNum; // liveness traversal order within the current statement
int gtUseNum; // use-ordered traversal within the function
#endif
static const unsigned short gtOperKindTable[];
static unsigned OperKind(unsigned gtOper)
{
assert(gtOper < GT_COUNT);
return gtOperKindTable[gtOper];
}
unsigned OperKind() const
{
assert(gtOper < GT_COUNT);
return gtOperKindTable[gtOper];
}
static bool IsExOp(unsigned opKind)
{
return (opKind & GTK_EXOP) != 0;
}
// Returns the operKind with the GTK_EX_OP bit removed (the
// kind of operator, unary or binary, that is extended).
static unsigned StripExOp(unsigned opKind)
{
return opKind & ~GTK_EXOP;
}
bool IsValue() const
{
if ((OperKind(gtOper) & GTK_NOVALUE) != 0)
{
return false;
}
if (gtType == TYP_VOID)
{
// These are the only operators which can produce either VOID or non-VOID results.
assert(OperIs(GT_NOP, GT_CALL, GT_LOCKADD, GT_FIELD_LIST, GT_COMMA) || OperIsCompare() || OperIsLong() ||
OperIsSIMD());
return false;
}
if (gtOper == GT_FIELD_LIST)
{
return (gtFlags & GTF_FIELD_LIST_HEAD) != 0;
}
return true;
}
bool IsLIR() const
{
if ((OperKind(gtOper) & GTK_NOTLIR) != 0)
{
return false;
}
switch (gtOper)
{
case GT_NOP:
// NOPs may only be present in LIR if they do not produce a value.
return IsNothingNode();
case GT_LIST:
// LIST nodes may not be present in a block's LIR sequence, but they may
// be present as children of an LIR node.
return (gtNext == nullptr) && (gtPrev == nullptr);
case GT_FIELD_LIST:
// Only the head of the FIELD_LIST is present in the block's LIR sequence.
return (((gtFlags & GTF_FIELD_LIST_HEAD) != 0) || ((gtNext == nullptr) && (gtPrev == nullptr)));
case GT_ADDR:
{
// ADDR ndoes may only be present in LIR if the location they refer to is not a
// local, class variable, or IND node.
GenTree* location = const_cast<GenTree*>(this)->gtGetOp1();
genTreeOps locationOp = location->OperGet();
return !location->IsLocal() && (locationOp != GT_CLS_VAR) && (locationOp != GT_IND);
}
default:
// All other nodes are assumed to be correct.
return true;
}
}
// NOTE: the three UnusedValue helpers immediately below are defined in lir.h.
inline void SetUnusedValue();
inline void ClearUnusedValue();
inline bool IsUnusedValue() const;
bool OperIs(genTreeOps oper) const
{
return OperGet() == oper;
}
template <typename... T>
bool OperIs(genTreeOps oper, T... rest) const
{
return OperIs(oper) || OperIs(rest...);
}
static bool OperIsConst(genTreeOps gtOper)
{
return (OperKind(gtOper) & GTK_CONST) != 0;
}
bool OperIsConst() const
{
return (OperKind(gtOper) & GTK_CONST) != 0;
}
static bool OperIsLeaf(genTreeOps gtOper)
{
return (OperKind(gtOper) & GTK_LEAF) != 0;
}
bool OperIsLeaf() const
{
return (OperKind(gtOper) & GTK_LEAF) != 0;
}
static bool OperIsCompare(genTreeOps gtOper)
{
return (OperKind(gtOper) & GTK_RELOP) != 0;
}
static bool OperIsLocal(genTreeOps gtOper)
{
bool result = (OperKind(gtOper) & GTK_LOCAL) != 0;
assert(result == (gtOper == GT_LCL_VAR || gtOper == GT_PHI_ARG || gtOper == GT_REG_VAR ||
gtOper == GT_LCL_FLD || gtOper == GT_STORE_LCL_VAR || gtOper == GT_STORE_LCL_FLD));
return result;
}
static bool OperIsLocalAddr(genTreeOps gtOper)
{
return (gtOper == GT_LCL_VAR_ADDR || gtOper == GT_LCL_FLD_ADDR);
}
static bool OperIsLocalField(genTreeOps gtOper)
{
return (gtOper == GT_LCL_FLD || gtOper == GT_LCL_FLD_ADDR || gtOper == GT_STORE_LCL_FLD);
}
inline bool OperIsLocalField() const
{
return OperIsLocalField(gtOper);
}
static bool OperIsScalarLocal(genTreeOps gtOper)
{
return (gtOper == GT_LCL_VAR || gtOper == GT_REG_VAR || gtOper == GT_STORE_LCL_VAR);
}
static bool OperIsNonPhiLocal(genTreeOps gtOper)
{
return OperIsLocal(gtOper) && (gtOper != GT_PHI_ARG);
}
static bool OperIsLocalRead(genTreeOps gtOper)
{
return (OperIsLocal(gtOper) && !OperIsLocalStore(gtOper));
}
static bool OperIsLocalStore(genTreeOps gtOper)
{
return (gtOper == GT_STORE_LCL_VAR || gtOper == GT_STORE_LCL_FLD);
}
static bool OperIsAddrMode(genTreeOps gtOper)
{
return (gtOper == GT_LEA);
}
static bool OperIsInitVal(genTreeOps gtOper)
{
return (gtOper == GT_INIT_VAL);
}
bool OperIsInitVal() const
{
return OperIsInitVal(OperGet());
}
bool IsConstInitVal()
{
return (gtOper == GT_CNS_INT) || (OperIsInitVal() && (gtGetOp1()->gtOper == GT_CNS_INT));
}
bool OperIsBlkOp();
bool OperIsCopyBlkOp();
bool OperIsInitBlkOp();
bool OperIsDynBlkOp();
static bool OperIsBlk(genTreeOps gtOper)
{
return ((gtOper == GT_BLK) || (gtOper == GT_OBJ) || (gtOper == GT_DYN_BLK) || (gtOper == GT_STORE_BLK) ||
(gtOper == GT_STORE_OBJ) || (gtOper == GT_STORE_DYN_BLK));
}
bool OperIsBlk() const
{
return OperIsBlk(OperGet());
}
static bool OperIsDynBlk(genTreeOps gtOper)
{
return ((gtOper == GT_DYN_BLK) || (gtOper == GT_STORE_DYN_BLK));
}
bool OperIsDynBlk() const
{
return OperIsDynBlk(OperGet());
}
static bool OperIsStoreBlk(genTreeOps gtOper)
{
return ((gtOper == GT_STORE_BLK) || (gtOper == GT_STORE_OBJ) || (gtOper == GT_STORE_DYN_BLK));
}
bool OperIsStoreBlk() const
{
return OperIsStoreBlk(OperGet());
}
bool OperIsPutArgSplit() const
{
#if !defined(LEGACY_BACKEND) && defined(_TARGET_ARM_)
return gtOper == GT_PUTARG_SPLIT;
#else
return false;
#endif
}
bool OperIsPutArgStk() const
{
return gtOper == GT_PUTARG_STK;
}
bool OperIsPutArgReg() const
{
return gtOper == GT_PUTARG_REG;
}
bool OperIsPutArg() const
{
return OperIsPutArgStk() || OperIsPutArgReg() || OperIsPutArgSplit();
}
bool OperIsMultiRegOp() const
{
#if !defined(LEGACY_BACKEND) && defined(_TARGET_ARM_)
if ((gtOper == GT_MUL_LONG) || (gtOper == GT_PUTARG_REG) || (gtOper == GT_BITCAST))
{
return true;
}
#endif
return false;
}
bool OperIsAddrMode() const
{
return OperIsAddrMode(OperGet());
}
bool OperIsLocal() const
{
return OperIsLocal(OperGet());
}
bool OperIsLocalAddr() const
{
return OperIsLocalAddr(OperGet());
}
bool OperIsScalarLocal() const
{
return OperIsScalarLocal(OperGet());
}
bool OperIsNonPhiLocal() const
{
return OperIsNonPhiLocal(OperGet());
}
bool OperIsLocalStore() const
{
return OperIsLocalStore(OperGet());
}
bool OperIsLocalRead() const
{
return OperIsLocalRead(OperGet());
}
bool OperIsCompare() const
{
return (OperKind(gtOper) & GTK_RELOP) != 0;
}
static bool OperIsLogical(genTreeOps gtOper)
{
return (OperKind(gtOper) & GTK_LOGOP) != 0;
}
bool OperIsLogical() const
{
return (OperKind(gtOper) & GTK_LOGOP) != 0;
}
static bool OperIsShift(genTreeOps gtOper)
{
return (gtOper == GT_LSH) || (gtOper == GT_RSH) || (gtOper == GT_RSZ);
}
bool OperIsShift() const
{
return OperIsShift(OperGet());
}
static bool OperIsRotate(genTreeOps gtOper)
{
return (gtOper == GT_ROL) || (gtOper == GT_ROR);
}
bool OperIsRotate() const
{
return OperIsRotate(OperGet());
}
static bool OperIsShiftOrRotate(genTreeOps gtOper)
{
return OperIsShift(gtOper) || OperIsRotate(gtOper);
}
bool OperIsShiftOrRotate() const
{
return OperIsShiftOrRotate(OperGet());
}
bool OperIsArithmetic() const
{
genTreeOps op = OperGet();
return op == GT_ADD || op == GT_SUB || op == GT_MUL || op == GT_DIV || op == GT_MOD
|| op == GT_UDIV || op == GT_UMOD
|| op == GT_OR || op == GT_XOR || op == GT_AND
|| OperIsShiftOrRotate(op);
}
#ifdef _TARGET_XARCH_
static bool OperIsRMWMemOp(genTreeOps gtOper)
{
// Return if binary op is one of the supported operations for RMW of memory.
return (gtOper == GT_ADD || gtOper == GT_SUB || gtOper == GT_AND || gtOper == GT_OR || gtOper == GT_XOR ||
gtOper == GT_NOT || gtOper == GT_NEG || OperIsShiftOrRotate(gtOper));
}
bool OperIsRMWMemOp() const
{
// Return if binary op is one of the supported operations for RMW of memory.
return OperIsRMWMemOp(gtOper);
}
#endif // _TARGET_XARCH_
static bool OperIsUnary(genTreeOps gtOper)
{
return (OperKind(gtOper) & GTK_UNOP) != 0;
}
bool OperIsUnary() const
{
return OperIsUnary(gtOper);
}
static bool OperIsBinary(genTreeOps gtOper)
{
return (OperKind(gtOper) & GTK_BINOP) != 0;
}
bool OperIsBinary() const
{
return OperIsBinary(gtOper);
}
static bool OperIsSimple(genTreeOps gtOper)
{
return (OperKind(gtOper) & GTK_SMPOP) != 0;
}
static bool OperIsSpecial(genTreeOps gtOper)
{
return ((OperKind(gtOper) & GTK_KINDMASK) == GTK_SPECIAL);
}
bool OperIsSimple() const
{
return OperIsSimple(gtOper);
}
#ifdef FEATURE_SIMD
bool isCommutativeSIMDIntrinsic();
#else // !
bool isCommutativeSIMDIntrinsic()
{
return false;
}
#endif // FEATURE_SIMD
static bool OperIsCommutative(genTreeOps gtOper)
{
return (OperKind(gtOper) & GTK_COMMUTE) != 0;
}
bool OperIsCommutative()
{
return OperIsCommutative(gtOper) || (OperIsSIMD(gtOper) && isCommutativeSIMDIntrinsic());
}
static bool OperIsAssignment(genTreeOps gtOper)
{
#ifdef LEGACY_BACKEND
return (OperKind(gtOper) & GTK_ASGOP) != 0;
#else
return gtOper == GT_ASG;
#endif
}
bool OperIsAssignment() const
{
return OperIsAssignment(gtOper);
}
static bool OperMayOverflow(genTreeOps gtOper)
{
return ((gtOper == GT_ADD) || (gtOper == GT_SUB) || (gtOper == GT_MUL) || (gtOper == GT_CAST)
#ifdef LEGACY_BACKEND
|| (gtOper == GT_ASG_ADD) || (gtOper == GT_ASG_SUB)
#elif !defined(_TARGET_64BIT_)
|| (gtOper == GT_ADD_HI) || (gtOper == GT_SUB_HI)
#endif
);
}
bool OperMayOverflow() const
{
return OperMayOverflow(gtOper);
}
static bool OperIsIndir(genTreeOps gtOper)
{
return gtOper == GT_IND || gtOper == GT_STOREIND || gtOper == GT_NULLCHECK || OperIsBlk(gtOper);
}
static bool OperIsIndirOrArrLength(genTreeOps gtOper)
{
return OperIsIndir(gtOper) || (gtOper == GT_ARR_LENGTH);
}
bool OperIsIndir() const
{
return OperIsIndir(gtOper);
}
bool OperIsIndirOrArrLength() const
{
return OperIsIndirOrArrLength(gtOper);
}
static bool OperIsImplicitIndir(genTreeOps gtOper)
{
switch (gtOper)
{
case GT_LOCKADD:
case GT_XADD:
case GT_XCHG:
case GT_CMPXCHG:
case GT_BLK:
case GT_OBJ:
case GT_DYN_BLK:
case GT_STORE_BLK:
case GT_STORE_OBJ:
case GT_STORE_DYN_BLK:
case GT_BOX:
case GT_ARR_INDEX:
case GT_ARR_ELEM:
case GT_ARR_OFFSET:
return true;
default:
return false;
}
}
bool OperIsImplicitIndir() const
{
return OperIsImplicitIndir(gtOper);
}
bool OperIsStore() const
{
return OperIsStore(gtOper);
}
static bool OperIsStore(genTreeOps gtOper)
{
return (gtOper == GT_STOREIND || gtOper == GT_STORE_LCL_VAR || gtOper == GT_STORE_LCL_FLD ||
gtOper == GT_STORE_BLK || gtOper == GT_STORE_OBJ || gtOper == GT_STORE_DYN_BLK);
}
static bool OperIsAtomicOp(genTreeOps gtOper)
{
return (gtOper == GT_XADD || gtOper == GT_XCHG || gtOper == GT_LOCKADD || gtOper == GT_CMPXCHG);
}
bool OperIsAtomicOp() const
{
return OperIsAtomicOp(gtOper);
}
// This is here for cleaner FEATURE_SIMD #ifdefs.
static bool OperIsSIMD(genTreeOps gtOper)
{
#ifdef FEATURE_SIMD
return gtOper == GT_SIMD;
#else // !FEATURE_SIMD
return false;
#endif // !FEATURE_SIMD
}
bool OperIsSIMD() const
{
return OperIsSIMD(gtOper);
}
// This is here for cleaner GT_LONG #ifdefs.
static bool OperIsLong(genTreeOps gtOper)
{
#if defined(_TARGET_64BIT_) || defined(LEGACY_BACKEND)
return false;
#else
return gtOper == GT_LONG;
#endif
}
bool OperIsLong() const
{
return OperIsLong(gtOper);
}
bool OperIsFieldListHead()
{
return (gtOper == GT_FIELD_LIST) && ((gtFlags & GTF_FIELD_LIST_HEAD) != 0);
}
bool OperIsConditionalJump() const
{
return (gtOper == GT_JTRUE) || (gtOper == GT_JCMP) || (gtOper == GT_JCC);
}
static bool OperIsBoundsCheck(genTreeOps op)
{
if (op == GT_ARR_BOUNDS_CHECK)
{
return true;
}
#ifdef FEATURE_SIMD
if (op == GT_SIMD_CHK)
{
return true;
}
#endif // FEATURE_SIMD
return false;
}
bool OperIsBoundsCheck() const
{
return OperIsBoundsCheck(OperGet());
}
#ifdef LEGACY_BACKEND
// Requires that "op" is an op= operator. Returns
// the corresponding "op".
static genTreeOps OpAsgToOper(genTreeOps op);
#endif
#ifdef DEBUG
bool NullOp1Legal() const
{
assert(OperIsSimple(gtOper));
switch (gtOper)
{
case GT_PHI:
case GT_LEA:
case GT_RETFILT:
case GT_NOP:
return true;
case GT_RETURN:
return gtType == TYP_VOID;
default:
return false;
}
}
bool NullOp2Legal() const
{
assert(OperIsSimple(gtOper) || OperIsBlk(gtOper));
if (!OperIsBinary(gtOper))
{
return true;
}
switch (gtOper)
{
case GT_LIST:
case GT_FIELD_LIST:
case GT_INTRINSIC:
case GT_LEA:
#ifdef FEATURE_SIMD
case GT_SIMD:
#endif // !FEATURE_SIMD
#if FEATURE_HW_INTRINSICS
case GT_HWIntrinsic:
#endif // FEATURE_HW_INTRINSICS
#if !defined(LEGACY_BACKEND) && defined(_TARGET_ARM_)
case GT_PUTARG_REG:
#endif // !defined(LEGACY_BACKEND) && defined(_TARGET_ARM_)
return true;
default:
return false;
}
}
static inline bool RequiresNonNullOp2(genTreeOps oper);
bool IsValidCallArgument();
#endif // DEBUG
inline bool IsFPZero();
inline bool IsIntegralConst(ssize_t constVal);
inline bool IsIntegralConstVector(ssize_t constVal);
inline bool IsBoxedValue();
inline bool IsSIMDEqualityOrInequality() const;
static bool OperIsList(genTreeOps gtOper)
{
return gtOper == GT_LIST;
}
bool OperIsList() const
{
return OperIsList(gtOper);
}
static bool OperIsFieldList(genTreeOps gtOper)
{
return gtOper == GT_FIELD_LIST;
}
bool OperIsFieldList() const
{
return OperIsFieldList(gtOper);
}
static bool OperIsAnyList(genTreeOps gtOper)
{
return OperIsList(gtOper) || OperIsFieldList(gtOper);
}
bool OperIsAnyList() const
{
return OperIsAnyList(gtOper);
}
inline GenTreePtr MoveNext();
inline GenTreePtr Current();
inline GenTreePtr* pCurrent();
inline GenTreePtr gtGetOp1();
// Directly return op2. Asserts the node is binary. Might return nullptr if the binary node allows
// a nullptr op2, such as GT_LIST. This is more efficient than gtGetOp2IfPresent() if you know what
// node type you have.
inline GenTreePtr gtGetOp2();
// The returned pointer might be nullptr if the node is not binary, or if non-null op2 is not required.
inline GenTreePtr gtGetOp2IfPresent();
// Given a tree node, if this is a child of that node, return the pointer to the child node so that it
// can be modified; otherwise, return null.
GenTreePtr* gtGetChildPointer(GenTreePtr parent) const;
// Given a tree node, if this node uses that node, return the use as an out parameter and return true.
// Otherwise, return false.
bool TryGetUse(GenTree* def, GenTree*** use);
private:
bool TryGetUseList(GenTree* def, GenTree*** use);
bool TryGetUseBinOp(GenTree* def, GenTree*** use);
public:
// Get the parent of this node, and optionally capture the pointer to the child so that it can be modified.
GenTreePtr gtGetParent(GenTreePtr** parentChildPtrPtr) const;
void ReplaceOperand(GenTree** useEdge, GenTree* replacement);
inline GenTreePtr gtEffectiveVal(bool commaOnly = false);
// Return the child of this node if it is a GT_RELOAD or GT_COPY; otherwise simply return the node itself
inline GenTree* gtSkipReloadOrCopy();
// Returns true if it is a call node returning its value in more than one register
inline bool IsMultiRegCall() const;
// Returns true if it is a node returning its value in more than one register
inline bool IsMultiRegNode() const;
// Returns true if it is a GT_COPY or GT_RELOAD node
inline bool IsCopyOrReload() const;
// Returns true if it is a GT_COPY or GT_RELOAD of a multi-reg call node
inline bool IsCopyOrReloadOfMultiRegCall() const;
bool OperRequiresAsgFlag();
bool OperMayThrow(Compiler* comp);
unsigned GetScaleIndexMul();
unsigned GetScaleIndexShf();
unsigned GetScaledIndex();
// Returns true if "addr" is a GT_ADD node, at least one of whose arguments is an integer
// (<= 32 bit) constant. If it returns true, it sets "*offset" to (one of the) constant value(s), and
// "*addr" to the other argument.
bool IsAddWithI32Const(GenTreePtr* addr, int* offset);
public:
#if SMALL_TREE_NODES
static unsigned char s_gtNodeSizes[];
#if NODEBASH_STATS || MEASURE_NODE_SIZE || COUNT_AST_OPERS
static unsigned char s_gtTrueSizes[];
#endif
#if COUNT_AST_OPERS
static LONG s_gtNodeCounts[];
#endif
#endif // SMALL_TREE_NODES
static void InitNodeSize();
size_t GetNodeSize() const;
bool IsNodeProperlySized() const;
void ReplaceWith(GenTree* src, Compiler* comp);
static genTreeOps ReverseRelop(genTreeOps relop);
static genTreeOps SwapRelop(genTreeOps relop);
//---------------------------------------------------------------------
static bool Compare(GenTreePtr op1, GenTreePtr op2, bool swapOK = false);
//---------------------------------------------------------------------
#if defined(DEBUG) || NODEBASH_STATS || MEASURE_NODE_SIZE || COUNT_AST_OPERS
static const char* OpName(genTreeOps op);
#endif
#if MEASURE_NODE_SIZE && SMALL_TREE_NODES
static const char* OpStructName(genTreeOps op);
#endif
//---------------------------------------------------------------------
bool IsNothingNode() const;
void gtBashToNOP();
// Value number update action enumeration
enum ValueNumberUpdate
{
CLEAR_VN, // Clear value number
PRESERVE_VN // Preserve value number
};
void SetOper(genTreeOps oper, ValueNumberUpdate vnUpdate = CLEAR_VN); // set gtOper
void SetOperResetFlags(genTreeOps oper); // set gtOper and reset flags
void ChangeOperConst(genTreeOps oper); // ChangeOper(constOper)
// set gtOper and only keep GTF_COMMON_MASK flags
void ChangeOper(genTreeOps oper, ValueNumberUpdate vnUpdate = CLEAR_VN);
void ChangeOperUnchecked(genTreeOps oper);
void SetOperRaw(genTreeOps oper);
void ChangeType(var_types newType)
{
var_types oldType = gtType;
gtType = newType;
GenTree* node = this;
while (node->gtOper == GT_COMMA)
{
node = node->gtGetOp2();
assert(node->gtType == oldType);
node->gtType = newType;
}
}
#if SMALL_TREE_NODES
#if NODEBASH_STATS
static void RecordOperBashing(genTreeOps operOld, genTreeOps operNew);
static void ReportOperBashing(FILE* fp);
#else
static void RecordOperBashing(genTreeOps operOld, genTreeOps operNew)
{ /* do nothing */
}
static void ReportOperBashing(FILE* fp)
{ /* do nothing */
}
#endif
#endif
bool IsLocal() const
{
return OperIsLocal(OperGet());
}
// Returns "true" iff 'this' is a GT_LCL_FLD or GT_STORE_LCL_FLD on which the type
// is not the same size as the type of the GT_LCL_VAR.
bool IsPartialLclFld(Compiler* comp);
// Returns "true" iff "this" defines a local variable. Requires "comp" to be the
// current compilation. If returns "true", sets "*pLclVarTree" to the
// tree for the local that is defined, and, if "pIsEntire" is non-null, sets "*pIsEntire" to
// true or false, depending on whether the assignment writes to the entirety of the local
// variable, or just a portion of it.
bool DefinesLocal(Compiler* comp, GenTreeLclVarCommon** pLclVarTree, bool* pIsEntire = nullptr);
// Returns true if "this" represents the address of a local, or a field of a local. If returns true, sets
// "*pLclVarTree" to the node indicating the local variable. If the address is that of a field of this node,
// sets "*pFldSeq" to the field sequence representing that field, else null.
bool IsLocalAddrExpr(Compiler* comp, GenTreeLclVarCommon** pLclVarTree, FieldSeqNode** pFldSeq);
// Simpler variant of the above which just returns the local node if this is an expression that
// yields an address into a local
GenTreeLclVarCommon* IsLocalAddrExpr();
// Determine if this is a LclVarCommon node and return some additional info about it in the
// two out parameters.
bool IsLocalExpr(Compiler* comp, GenTreeLclVarCommon** pLclVarTree, FieldSeqNode** pFldSeq);
// Determine whether this is an assignment tree of the form X = X (op) Y,
// where Y is an arbitrary tree, and X is a lclVar.
unsigned IsLclVarUpdateTree(GenTree** otherTree, genTreeOps* updateOper);
// If returns "true", "this" may represent the address of a static or instance field
// (or a field of such a field, in the case of an object field of type struct).
// If returns "true", then either "*pObj" is set to the object reference,
// or "*pStatic" is set to the baseAddr or offset to be added to the "*pFldSeq"
// Only one of "*pObj" or "*pStatic" will be set, the other one will be null.
// The boolean return value only indicates that "this" *may* be a field address
// -- the field sequence must also be checked.
// If it is a field address, the field sequence will be a sequence of length >= 1,
// starting with an instance or static field, and optionally continuing with struct fields.
bool IsFieldAddr(Compiler* comp, GenTreePtr* pObj, GenTreePtr* pStatic, FieldSeqNode** pFldSeq);
// Requires "this" to be the address of an array (the child of a GT_IND labeled with GTF_IND_ARR_INDEX).
// Sets "pArr" to the node representing the array (either an array object pointer, or perhaps a byref to the some
// element).
// Sets "*pArrayType" to the class handle for the array type.
// Sets "*inxVN" to the value number inferred for the array index.
// Sets "*pFldSeq" to the sequence, if any, of struct fields used to index into the array element.
void ParseArrayAddress(
Compiler* comp, struct ArrayInfo* arrayInfo, GenTreePtr* pArr, ValueNum* pInxVN, FieldSeqNode** pFldSeq);
// Helper method for the above.
void ParseArrayAddressWork(
Compiler* comp, ssize_t inputMul, GenTreePtr* pArr, ValueNum* pInxVN, ssize_t* pOffset, FieldSeqNode** pFldSeq);
// Requires "this" to be a GT_IND. Requires the outermost caller to set "*pFldSeq" to nullptr.
// Returns true if it is an array index expression, or access to a (sequence of) struct field(s)
// within a struct array element. If it returns true, sets *arrayInfo to the array information, and sets *pFldSeq
// to the sequence of struct field accesses.
bool ParseArrayElemForm(Compiler* comp, ArrayInfo* arrayInfo, FieldSeqNode** pFldSeq);
// Requires "this" to be the address of a (possible) array element (or struct field within that).
// If it is, sets "*arrayInfo" to the array access info, "*pFldSeq" to the sequence of struct fields
// accessed within the array element, and returns true. If not, returns "false".
bool ParseArrayElemAddrForm(Compiler* comp, ArrayInfo* arrayInfo, FieldSeqNode** pFldSeq);
// Requires "this" to be an int expression. If it is a sequence of one or more integer constants added together,
// returns true and sets "*pFldSeq" to the sequence of fields with which those constants are annotated.
bool ParseOffsetForm(Compiler* comp, FieldSeqNode** pFldSeq);
// Labels "*this" as an array index expression: label all constants and variables that could contribute, as part of
// an affine expression, to the value of the of the index.
void LabelIndex(Compiler* comp, bool isConst = true);
// Assumes that "this" occurs in a context where it is being dereferenced as the LHS of an assignment-like
// statement (assignment, initblk, or copyblk). The "width" should be the number of bytes copied by the
// operation. Returns "true" if "this" is an address of (or within)
// a local variable; sets "*pLclVarTree" to that local variable instance; and, if "pIsEntire" is non-null,
// sets "*pIsEntire" to true if this assignment writes the full width of the local.
bool DefinesLocalAddr(Compiler* comp, unsigned width, GenTreeLclVarCommon** pLclVarTree, bool* pIsEntire);
#ifdef LEGACY_BACKEND
bool IsRegVar() const
{
return OperGet() == GT_REG_VAR ? true : false;
}
bool InReg() const
{
return (gtFlags & GTF_REG_VAL) ? true : false;
}
void SetInReg(bool value = true)
{
if (value == true)
{
gtFlags |= GTF_REG_VAL;
}
else
{
gtFlags &= ~GTF_REG_VAL;
}
}
regNumber GetReg() const
{
return InReg() ? gtRegNum : REG_NA;
}
#else // !LEGACY_BACKEND
// For the non-legacy backend, these are only used for dumping.
// The gtRegNum is only valid in LIR, but the dumping methods are not easily
// modified to check this.
CLANG_FORMAT_COMMENT_ANCHOR;
#ifdef DEBUG
bool InReg() const
{
return (GetRegTag() != GT_REGTAG_NONE) ? true : false;
}
regNumber GetReg() const
{
return (GetRegTag() != GT_REGTAG_NONE) ? gtRegNum : REG_NA;
}
#endif
static bool IsContained(unsigned flags)
{
return ((flags & GTF_CONTAINED) != 0);
}
void SetContained()
{
assert(IsValue());
gtFlags |= GTF_CONTAINED;
}
void ClearContained()
{
assert(IsValue());
gtFlags &= ~GTF_CONTAINED;
ClearRegOptional();
}
#endif // !LEGACY_BACKEND
bool IsRegVarDeath() const
{
assert(OperGet() == GT_REG_VAR);
return (gtFlags & GTF_VAR_DEATH) ? true : false;
}
bool IsRegVarBirth() const
{
assert(OperGet() == GT_REG_VAR);
return (gtFlags & GTF_REG_BIRTH) ? true : false;
}
bool IsReverseOp() const
{
return (gtFlags & GTF_REVERSE_OPS) ? true : false;
}
bool IsUnsigned() const
{
return ((gtFlags & GTF_UNSIGNED) != 0);
}
inline bool IsCnsIntOrI() const;
inline bool IsIntegralConst() const;
inline bool IsIntCnsFitsInI32(); // Constant fits in INT32
inline bool IsCnsFltOrDbl() const;
inline bool IsCnsNonZeroFltOrDbl();
bool IsIconHandle() const
{
assert(gtOper == GT_CNS_INT);
return (gtFlags & GTF_ICON_HDL_MASK) ? true : false;
}
bool IsIconHandle(unsigned handleType) const
{
assert(gtOper == GT_CNS_INT);
assert((handleType & GTF_ICON_HDL_MASK) != 0); // check that handleType is one of the valid GTF_ICON_* values
assert((handleType & ~GTF_ICON_HDL_MASK) == 0);
return (gtFlags & GTF_ICON_HDL_MASK) == handleType;
}
// Return just the part of the flags corresponding to the GTF_ICON_*_HDL flag. For example,
// GTF_ICON_SCOPE_HDL. The tree node must be a const int, but it might not be a handle, in which
// case we'll return zero.
unsigned GetIconHandleFlag() const
{
assert(gtOper == GT_CNS_INT);
return (gtFlags & GTF_ICON_HDL_MASK);
}
// Mark this node as no longer being a handle; clear its GTF_ICON_*_HDL bits.
void ClearIconHandleMask()
{
assert(gtOper == GT_CNS_INT);
gtFlags &= ~GTF_ICON_HDL_MASK;
}
// Return true if the two GT_CNS_INT trees have the same handle flag (GTF_ICON_*_HDL).
static bool SameIconHandleFlag(GenTree* t1, GenTree* t2)
{
return t1->GetIconHandleFlag() == t2->GetIconHandleFlag();
}
bool IsArgPlaceHolderNode() const
{
return OperGet() == GT_ARGPLACE;
}
bool IsCall() const
{
return OperGet() == GT_CALL;
}
bool IsStatement() const
{
return OperGet() == GT_STMT;
}
inline bool IsHelperCall();
bool IsVarAddr() const;
bool gtOverflow() const;
bool gtOverflowEx() const;
bool gtSetFlags() const;
bool gtRequestSetFlags();
#ifdef LEGACY_BACKEND
// Returns true if the codegen of this tree node
// sets ZF and SF flags.
bool gtSetZSFlags() const
{
return (gtFlags & GTF_ZSF_SET) != 0;
}
#endif
#ifdef DEBUG
bool gtIsValid64RsltMul();
static int gtDispFlags(unsigned flags, unsigned debugFlags);
#endif
// cast operations
inline var_types CastFromType();
inline var_types& CastToType();
// Returns true if this gentree node is marked by lowering to indicate
// that codegen can still generate code even if it wasn't allocated a
// register.
bool IsRegOptional() const;
#ifndef LEGACY_BACKEND
void ClearRegOptional()
{
gtLsraInfo.regOptional = false;
}
#endif
// Returns "true" iff "this" is a phi-related node (i.e. a GT_PHI_ARG, GT_PHI, or a PhiDefn).
bool IsPhiNode();
// Returns "true" iff "*this" is an assignment (GT_ASG) tree that defines an SSA name (lcl = phi(...));
bool IsPhiDefn();
// Returns "true" iff "*this" is a statement containing an assignment that defines an SSA name (lcl = phi(...));
bool IsPhiDefnStmt();
// Can't use an assignment operator, because we need the extra "comp" argument
// (to provide the allocator necessary for the VarSet assignment).
// TODO-Cleanup: Not really needed now, w/o liveset on tree nodes
void CopyTo(class Compiler* comp, const GenTree& gt);
// Like the above, excepts assumes copying from small node to small node.
// (Following the code it replaces, it does *not* copy the GenTree fields,
// which CopyTo does.)
void CopyToSmall(const GenTree& gt);
// Because of the fact that we hid the assignment operator of "BitSet" (in DEBUG),
// we can't synthesize an assignment operator.
// TODO-Cleanup: Could change this w/o liveset on tree nodes
// (This is also necessary for the VTable trick.)
GenTree()
{
}
// Returns the number of children of the current node.
unsigned NumChildren();
// Requires "childNum < NumChildren()". Returns the "n"th child of "this."
GenTreePtr GetChild(unsigned childNum);
// Returns an iterator that will produce the use edge to each operand of this node. Differs
// from the sequence of nodes produced by a loop over `GetChild` in its handling of call, phi,
// and block op nodes.
GenTreeUseEdgeIterator UseEdgesBegin();
GenTreeUseEdgeIterator UseEdgesEnd();
IteratorPair<GenTreeUseEdgeIterator> UseEdges();
// Returns an iterator that will produce each operand of this node. Differs from the sequence
// of nodes produced by a loop over `GetChild` in its handling of call, phi, and block op
// nodes.
GenTreeOperandIterator OperandsBegin();
GenTreeOperandIterator OperandsEnd();
// Returns a range that will produce the operands of this node in use order.
IteratorPair<GenTreeOperandIterator> Operands();
enum class VisitResult
{
Abort = false,
Continue = true
};
// Visits each operand of this node. The operand must be either a lambda, function, or functor with the signature
// `GenTree::VisitResult VisitorFunction(GenTree* operand)`. Here is a simple example:
//
// unsigned operandCount = 0;
// node->VisitOperands([&](GenTree* operand) -> GenTree::VisitResult)
// {
// operandCount++;
// return GenTree::VisitResult::Continue;
// });
//
// This function is generally more efficient that the operand iterator and should be preferred over that API for
// hot code, as it affords better opportunities for inlining and acheives shorter dynamic path lengths when
// deciding how operands need to be accessed.
//
// Note that this function does not respect `GTF_REVERSE_OPS` and `gtEvalSizeFirst`. This is always safe in LIR,
// but may be dangerous in HIR if for some reason you need to visit operands in the order in which they will
// execute.
template <typename TVisitor>
void VisitOperands(TVisitor visitor);
private:
template <typename TVisitor>
VisitResult VisitListOperands(TVisitor visitor);
template <typename TVisitor>
void VisitBinOpOperands(TVisitor visitor);
public:
bool Precedes(GenTree* other);
// The maximum possible # of children of any node.
static const int MAX_CHILDREN = 6;
bool IsReuseRegVal() const
{
// This can be extended to non-constant nodes, but not to local or indir nodes.
if (OperIsConst() && ((gtFlags & GTF_REUSE_REG_VAL) != 0))
{
return true;
}
return false;
}
void SetReuseRegVal()
{
assert(OperIsConst());
gtFlags |= GTF_REUSE_REG_VAL;
}
void ResetReuseRegVal()
{
assert(OperIsConst());
gtFlags &= ~GTF_REUSE_REG_VAL;
}
void SetIndirExceptionFlags(Compiler* comp)
{
assert(OperIsIndirOrArrLength());
gtFlags |= OperMayThrow(comp) ? GTF_EXCEPT : GTF_IND_NONFAULTING;
}
#if MEASURE_NODE_SIZE
static void DumpNodeSizes(FILE* fp);
#endif
#ifdef DEBUG
private:
GenTree& operator=(const GenTree& gt)
{
assert(!"Don't copy");
return *this;
}
#endif // DEBUG
#if DEBUGGABLE_GENTREE
// In DEBUG builds, add a dummy virtual method, to give the debugger run-time type information.
virtual void DummyVirt()
{
}
typedef void* VtablePtr;
VtablePtr GetVtableForOper(genTreeOps oper);
void SetVtableForOper(genTreeOps oper);
static VtablePtr s_vtablesForOpers[GT_COUNT];
static VtablePtr s_vtableForOp;
#endif // DEBUGGABLE_GENTREE
public:
inline void* operator new(size_t sz, class Compiler*, genTreeOps oper);
inline GenTree(genTreeOps oper, var_types type DEBUGARG(bool largeNode = false));
};
//------------------------------------------------------------------------
// GenTreeUseEdgeIterator: an iterator that will produce each use edge of a GenTree node in the order in which
// they are used.
//
// The use edges of a node may not correspond exactly to the nodes on the other ends of its use edges: in
// particular, GT_LIST nodes are expanded into their component parts. This differs from the behavior of
// GenTree::GetChildPointer(), which does not expand lists.
//
// Operand iteration is common enough in the back end of the compiler that the implementation of this type has
// traded some simplicity for speed:
// - As much work as is reasonable is done in the constructor rather than during operand iteration
// - Node-specific functionality is handled by a small class of "advance" functions called by operator++
// rather than making operator++ itself handle all nodes
// - Some specialization has been performed for specific node types/shapes (e.g. the advance function for
// binary nodes is specialized based on whether or not the node has the GTF_REVERSE_OPS flag set)
//
// Valid values of this type may be obtained by calling `GenTree::UseEdgesBegin` and `GenTree::UseEdgesEnd`.
//
class GenTreeUseEdgeIterator final
{
friend class GenTreeOperandIterator;
friend GenTreeUseEdgeIterator GenTree::UseEdgesBegin();
friend GenTreeUseEdgeIterator GenTree::UseEdgesEnd();
enum
{
CALL_INSTANCE = 0,
CALL_ARGS = 1,
CALL_LATE_ARGS = 2,
CALL_CONTROL_EXPR = 3,
CALL_COOKIE = 4,
CALL_ADDRESS = 5,
CALL_TERMINAL = 6,
};
typedef void (GenTreeUseEdgeIterator::*AdvanceFn)();
AdvanceFn m_advance;
GenTree* m_node;
GenTree** m_edge;
GenTree* m_argList;
int m_state;
GenTreeUseEdgeIterator(GenTree* node);
// Advance functions for special nodes
void AdvanceCmpXchg();
void AdvanceBoundsChk();
void AdvanceArrElem();
void AdvanceArrOffset();
void AdvanceDynBlk();
void AdvanceStoreDynBlk();
template <bool ReverseOperands>
void AdvanceBinOp();
void SetEntryStateForBinOp();
// An advance function for list-like nodes (Phi, SIMDIntrinsicInitN, FieldList)
void AdvanceList();
void SetEntryStateForList(GenTree* list);
// The advance function for call nodes
template <int state>
void AdvanceCall();
void Terminate();
public:
GenTreeUseEdgeIterator();
inline GenTree** operator*()
{
assert(m_state != -1);
return m_edge;
}
inline GenTree** operator->()
{
assert(m_state != -1);
return m_edge;
}
inline bool operator==(const GenTreeUseEdgeIterator& other) const
{
if (m_state == -1 || other.m_state == -1)
{
return m_state == other.m_state;
}
return (m_node == other.m_node) && (m_edge == other.m_edge) && (m_argList == other.m_argList) &&
(m_state == other.m_state);
}
inline bool operator!=(const GenTreeUseEdgeIterator& other) const
{
return !(operator==(other));
}
GenTreeUseEdgeIterator& operator++();
};
//------------------------------------------------------------------------
// GenTreeOperandIterator: an iterator that will produce each operand of a
// GenTree node in the order in which they are
// used. This uses `GenTreeUseEdgeIterator` under
// the covers and comes with the same caveats
// w.r.t. `GetChild`.
//
// Note: valid values of this type may be obtained by calling
// `GenTree::OperandsBegin` and `GenTree::OperandsEnd`.
class GenTreeOperandIterator final
{
friend GenTreeOperandIterator GenTree::OperandsBegin();
friend GenTreeOperandIterator GenTree::OperandsEnd();
GenTreeUseEdgeIterator m_useEdges;
GenTreeOperandIterator(GenTree* node) : m_useEdges(node)
{
}
public:
GenTreeOperandIterator() : m_useEdges()
{
}
inline GenTree* operator*()
{
return *(*m_useEdges);
}
inline GenTree* operator->()
{
return *(*m_useEdges);
}
inline bool operator==(const GenTreeOperandIterator& other) const
{
return m_useEdges == other.m_useEdges;
}
inline bool operator!=(const GenTreeOperandIterator& other) const
{
return !(operator==(other));
}
inline GenTreeOperandIterator& operator++()
{
++m_useEdges;
return *this;
}
};
/*****************************************************************************/
// In the current design, we never instantiate GenTreeUnOp: it exists only to be
// used as a base class. For unary operators, we instantiate GenTreeOp, with a NULL second
// argument. We check that this is true dynamically. We could tighten this and get static
// checking, but that would entail accessing the first child of a unary operator via something
// like gtUnOp.gtOp1 instead of gtOp.gtOp1.
struct GenTreeUnOp : public GenTree
{
GenTreePtr gtOp1;
protected:
GenTreeUnOp(genTreeOps oper, var_types type DEBUGARG(bool largeNode = false))
: GenTree(oper, type DEBUGARG(largeNode)), gtOp1(nullptr)
{
}
GenTreeUnOp(genTreeOps oper, var_types type, GenTreePtr op1 DEBUGARG(bool largeNode = false))
: GenTree(oper, type DEBUGARG(largeNode)), gtOp1(op1)
{
assert(op1 != nullptr || NullOp1Legal());
if (op1 != nullptr)
{ // Propagate effects flags from child.
gtFlags |= op1->gtFlags & GTF_ALL_EFFECT;
}
}
#if DEBUGGABLE_GENTREE
GenTreeUnOp() : GenTree(), gtOp1(nullptr)
{
}
#endif
};
struct GenTreeOp : public GenTreeUnOp
{
GenTreePtr gtOp2;
GenTreeOp(genTreeOps oper, var_types type, GenTreePtr op1, GenTreePtr op2 DEBUGARG(bool largeNode = false))
: GenTreeUnOp(oper, type, op1 DEBUGARG(largeNode)), gtOp2(op2)
{
// comparisons are always integral types
assert(!GenTree::OperIsCompare(oper) || varTypeIsIntegral(type));
// Binary operators, with a few exceptions, require a non-nullptr
// second argument.
assert(op2 != nullptr || NullOp2Legal());
// Unary operators, on the other hand, require a null second argument.
assert(!OperIsUnary(oper) || op2 == nullptr);
// Propagate effects flags from child. (UnOp handled this for first child.)
if (op2 != nullptr)
{
gtFlags |= op2->gtFlags & GTF_ALL_EFFECT;
}
}
// A small set of types are unary operators with optional arguments. We use
// this constructor to build those.
GenTreeOp(genTreeOps oper, var_types type DEBUGARG(bool largeNode = false))
: GenTreeUnOp(oper, type DEBUGARG(largeNode)), gtOp2(nullptr)
{
// Unary operators with optional arguments:
assert(oper == GT_NOP || oper == GT_RETURN || oper == GT_RETFILT || OperIsBlk(oper));
}
#if DEBUGGABLE_GENTREE
GenTreeOp() : GenTreeUnOp(), gtOp2(nullptr)
{
}
#endif
};
struct GenTreeVal : public GenTree
{
size_t gtVal1;
GenTreeVal(genTreeOps oper, var_types type, ssize_t val) : GenTree(oper, type), gtVal1(val)
{
}
#if DEBUGGABLE_GENTREE
GenTreeVal() : GenTree()
{
}
#endif
};
struct GenTreeIntConCommon : public GenTree
{
inline INT64 LngValue();
inline void SetLngValue(INT64 val);
inline ssize_t IconValue();
inline void SetIconValue(ssize_t val);
inline INT64 IntegralValue();
GenTreeIntConCommon(genTreeOps oper, var_types type DEBUGARG(bool largeNode = false))
: GenTree(oper, type DEBUGARG(largeNode))
{
}
bool FitsInI8() // IconValue() fits into 8-bit signed storage
{
return FitsInI8(IconValue());
}
static bool FitsInI8(ssize_t val) // Constant fits into 8-bit signed storage
{
return (int8_t)val == val;
}
bool FitsInI32() // IconValue() fits into 32-bit signed storage
{
return FitsInI32(IconValue());
}
static bool FitsInI32(ssize_t val) // Constant fits into 32-bit signed storage
{
#ifdef _TARGET_64BIT_
return (int32_t)val == val;
#else
return true;
#endif
}
bool ImmedValNeedsReloc(Compiler* comp);
bool ImmedValCanBeFolded(Compiler* comp, genTreeOps op);
#ifdef _TARGET_XARCH_
bool FitsInAddrBase(Compiler* comp);
bool AddrNeedsReloc(Compiler* comp);
#endif
#if DEBUGGABLE_GENTREE
GenTreeIntConCommon() : GenTree()
{
}
#endif
};
// node representing a read from a physical register
struct GenTreePhysReg : public GenTree
{
// physregs need a field beyond gtRegNum because
// gtRegNum indicates the destination (and can be changed)
// whereas reg indicates the source
regNumber gtSrcReg;
GenTreePhysReg(regNumber r, var_types type = TYP_I_IMPL) : GenTree(GT_PHYSREG, type), gtSrcReg(r)
{
}
#if DEBUGGABLE_GENTREE
GenTreePhysReg() : GenTree()
{
}
#endif
};
#ifndef LEGACY_BACKEND
// gtJumpTable - Switch Jump Table
//
// This node stores a DWORD constant that represents the
// absolute address of a jump table for switches. The code
// generator uses this table to code the destination for every case
// in an array of addresses which starting position is stored in
// this constant.
struct GenTreeJumpTable : public GenTreeIntConCommon
{
ssize_t gtJumpTableAddr;
GenTreeJumpTable(var_types type DEBUGARG(bool largeNode = false))
: GenTreeIntConCommon(GT_JMPTABLE, type DEBUGARG(largeNode))
{
}
#if DEBUGGABLE_GENTREE
GenTreeJumpTable() : GenTreeIntConCommon()
{
}
#endif // DEBUG
};
#endif // !LEGACY_BACKEND
/* gtIntCon -- integer constant (GT_CNS_INT) */
struct GenTreeIntCon : public GenTreeIntConCommon
{
/*
* This is the GT_CNS_INT struct definition.
* It's used to hold for both int constants and pointer handle constants.
* For the 64-bit targets we will only use GT_CNS_INT as it used to represent all the possible sizes
* For the 32-bit targets we use a GT_CNS_LNG to hold a 64-bit integer constant and GT_CNS_INT for all others.
* In the future when we retarget the JIT for x86 we should consider eliminating GT_CNS_LNG
*/
ssize_t gtIconVal; // Must overlap and have the same offset with the gtIconVal field in GenTreeLngCon below.
/* The InitializeArray intrinsic needs to go back to the newarray statement
to find the class handle of the array so that we can get its size. However,
in ngen mode, the handle in that statement does not correspond to the compile
time handle (rather it lets you get a handle at run-time). In that case, we also
need to store a compile time handle, which goes in this gtCompileTimeHandle field.
*/
ssize_t gtCompileTimeHandle;
// TODO-Cleanup: It's not clear what characterizes the cases where the field
// above is used. It may be that its uses and those of the "gtFieldSeq" field below
// are mutually exclusive, and they could be put in a union. Or else we should separate
// this type into three subtypes.
// If this constant represents the offset of one or more fields, "gtFieldSeq" represents that
// sequence of fields.
FieldSeqNode* gtFieldSeq;
GenTreeIntCon(var_types type, ssize_t value DEBUGARG(bool largeNode = false))
: GenTreeIntConCommon(GT_CNS_INT, type DEBUGARG(largeNode))
, gtIconVal(value)
, gtCompileTimeHandle(0)
, gtFieldSeq(FieldSeqStore::NotAField())
{
}
GenTreeIntCon(var_types type, ssize_t value, FieldSeqNode* fields DEBUGARG(bool largeNode = false))
: GenTreeIntConCommon(GT_CNS_INT, type DEBUGARG(largeNode))
, gtIconVal(value)
, gtCompileTimeHandle(0)
, gtFieldSeq(fields)
{
assert(fields != nullptr);
}
void FixupInitBlkValue(var_types asgType);
#ifdef _TARGET_64BIT_
void TruncateOrSignExtend32()
{
if (gtFlags & GTF_UNSIGNED)
{
gtIconVal = UINT32(gtIconVal);
}
else
{
gtIconVal = INT32(gtIconVal);
}
}
#endif // _TARGET_64BIT_
#if DEBUGGABLE_GENTREE
GenTreeIntCon() : GenTreeIntConCommon()
{
}
#endif
};
/* gtLngCon -- long constant (GT_CNS_LNG) */
struct GenTreeLngCon : public GenTreeIntConCommon
{
INT64 gtLconVal; // Must overlap and have the same offset with the gtIconVal field in GenTreeIntCon above.
INT32 LoVal()
{
return (INT32)(gtLconVal & 0xffffffff);
}
INT32 HiVal()
{
return (INT32)(gtLconVal >> 32);
}
GenTreeLngCon(INT64 val) : GenTreeIntConCommon(GT_CNS_NATIVELONG, TYP_LONG)
{
SetLngValue(val);
}
#if DEBUGGABLE_GENTREE
GenTreeLngCon() : GenTreeIntConCommon()
{
}
#endif
};
inline INT64 GenTreeIntConCommon::LngValue()
{
#ifndef _TARGET_64BIT_
assert(gtOper == GT_CNS_LNG);
return AsLngCon()->gtLconVal;
#else
return IconValue();
#endif
}
inline void GenTreeIntConCommon::SetLngValue(INT64 val)
{
#ifndef _TARGET_64BIT_
assert(gtOper == GT_CNS_LNG);
AsLngCon()->gtLconVal = val;
#else
// Compile time asserts that these two fields overlap and have the same offsets: gtIconVal and gtLconVal
C_ASSERT(offsetof(GenTreeLngCon, gtLconVal) == offsetof(GenTreeIntCon, gtIconVal));
C_ASSERT(sizeof(AsLngCon()->gtLconVal) == sizeof(AsIntCon()->gtIconVal));
SetIconValue(ssize_t(val));
#endif
}
inline ssize_t GenTreeIntConCommon::IconValue()
{
assert(gtOper == GT_CNS_INT); // We should never see a GT_CNS_LNG for a 64-bit target!
return AsIntCon()->gtIconVal;
}
inline void GenTreeIntConCommon::SetIconValue(ssize_t val)
{
assert(gtOper == GT_CNS_INT); // We should never see a GT_CNS_LNG for a 64-bit target!
AsIntCon()->gtIconVal = val;
}
inline INT64 GenTreeIntConCommon::IntegralValue()
{
#ifdef _TARGET_64BIT_
return LngValue();
#else
return gtOper == GT_CNS_LNG ? LngValue() : (INT64)IconValue();
#endif // _TARGET_64BIT_
}
/* gtDblCon -- double constant (GT_CNS_DBL) */
struct GenTreeDblCon : public GenTree
{
double gtDconVal;
bool isBitwiseEqual(GenTreeDblCon* other)
{
unsigned __int64 bits = *(unsigned __int64*)(>DconVal);
unsigned __int64 otherBits = *(unsigned __int64*)(&(other->gtDconVal));
return (bits == otherBits);
}
GenTreeDblCon(double val) : GenTree(GT_CNS_DBL, TYP_DOUBLE), gtDconVal(val)
{
}
#if DEBUGGABLE_GENTREE
GenTreeDblCon() : GenTree()
{
}
#endif
};
/* gtStrCon -- string constant (GT_CNS_STR) */
struct GenTreeStrCon : public GenTree
{
unsigned gtSconCPX;
CORINFO_MODULE_HANDLE gtScpHnd;
// Because this node can come from an inlined method we need to
// have the scope handle, since it will become a helper call.
GenTreeStrCon(unsigned sconCPX, CORINFO_MODULE_HANDLE mod DEBUGARG(bool largeNode = false))
: GenTree(GT_CNS_STR, TYP_REF DEBUGARG(largeNode)), gtSconCPX(sconCPX), gtScpHnd(mod)
{
}
#if DEBUGGABLE_GENTREE
GenTreeStrCon() : GenTree()
{
}
#endif
};
// Common supertype of LCL_VAR, LCL_FLD, REG_VAR, PHI_ARG
// This inherits from UnOp because lclvar stores are Unops
struct GenTreeLclVarCommon : public GenTreeUnOp
{
private:
unsigned _gtLclNum; // The local number. An index into the Compiler::lvaTable array.
unsigned _gtSsaNum; // The SSA number.
public:
GenTreeLclVarCommon(genTreeOps oper, var_types type, unsigned lclNum DEBUGARG(bool largeNode = false))
: GenTreeUnOp(oper, type DEBUGARG(largeNode))
{
SetLclNum(lclNum);
}
unsigned GetLclNum() const
{
return _gtLclNum;
}
__declspec(property(get = GetLclNum)) unsigned gtLclNum;
void SetLclNum(unsigned lclNum)
{
_gtLclNum = lclNum;
_gtSsaNum = SsaConfig::RESERVED_SSA_NUM;
}
unsigned GetSsaNum() const
{
return _gtSsaNum;
}
__declspec(property(get = GetSsaNum)) unsigned gtSsaNum;
void SetSsaNum(unsigned ssaNum)
{
_gtSsaNum = ssaNum;
}
bool HasSsaName()
{
return (gtSsaNum != SsaConfig::RESERVED_SSA_NUM);
}
#if DEBUGGABLE_GENTREE
GenTreeLclVarCommon() : GenTreeUnOp()
{
}
#endif
};
// gtLclVar -- load/store/addr of local variable
struct GenTreeLclVar : public GenTreeLclVarCommon
{
IL_OFFSET gtLclILoffs; // instr offset of ref (only for debug info)
GenTreeLclVar(var_types type, unsigned lclNum, IL_OFFSET ilOffs DEBUGARG(bool largeNode = false))
: GenTreeLclVarCommon(GT_LCL_VAR, type, lclNum DEBUGARG(largeNode)), gtLclILoffs(ilOffs)
{
}
GenTreeLclVar(genTreeOps oper, var_types type, unsigned lclNum, IL_OFFSET ilOffs DEBUGARG(bool largeNode = false))
: GenTreeLclVarCommon(oper, type, lclNum DEBUGARG(largeNode)), gtLclILoffs(ilOffs)
{
assert(OperIsLocal(oper) || OperIsLocalAddr(oper));
}
#if DEBUGGABLE_GENTREE
GenTreeLclVar() : GenTreeLclVarCommon()
{
}
#endif
};
// gtLclFld -- load/store/addr of local variable field
struct GenTreeLclFld : public GenTreeLclVarCommon
{
unsigned gtLclOffs; // offset into the variable to access
FieldSeqNode* gtFieldSeq; // This LclFld node represents some sequences of accesses.
// old/FE style constructor where load/store/addr share same opcode
GenTreeLclFld(var_types type, unsigned lclNum, unsigned lclOffs)
: GenTreeLclVarCommon(GT_LCL_FLD, type, lclNum), gtLclOffs(lclOffs), gtFieldSeq(nullptr)
{
assert(sizeof(*this) <= s_gtNodeSizes[GT_LCL_FLD]);
}
GenTreeLclFld(genTreeOps oper, var_types type, unsigned lclNum, unsigned lclOffs)
: GenTreeLclVarCommon(oper, type, lclNum), gtLclOffs(lclOffs), gtFieldSeq(nullptr)
{
assert(sizeof(*this) <= s_gtNodeSizes[GT_LCL_FLD]);
}
#if DEBUGGABLE_GENTREE
GenTreeLclFld() : GenTreeLclVarCommon()
{
}
#endif
};
struct GenTreeRegVar : public GenTreeLclVarCommon
{
// TODO-Cleanup: Note that the base class GenTree already has a gtRegNum field.
// It's not clear exactly why a GT_REG_VAR has a separate field. When
// GT_REG_VAR is created, the two are identical. It appears that they may
// or may not remain so. In particular, there is a comment in stackfp.cpp
// that states:
//
// There used to be an assertion: assert(src->gtRegNum == src->gtRegVar.gtRegNum, ...)
// here, but there's actually no reason to assume that. AFAICT, for FP vars under stack FP,
// src->gtRegVar.gtRegNum is the allocated stack pseudo-register, but src->gtRegNum is the
// FP stack position into which that is loaded to represent a particular use of the variable.
//
// It might be the case that only for stackfp do they ever differ.
//
// The following might be possible: the GT_REG_VAR node has a last use prior to a complex
// subtree being evaluated. It could then be spilled from the register. Later,
// it could be unspilled into a different register, which would be recorded at
// the unspill time in the GenTree::gtRegNum, whereas GenTreeRegVar::gtRegNum
// is left alone. It's not clear why that is useful.
//
// Assuming there is a particular use, like stack fp, that requires it, maybe we
// can get rid of GT_REG_VAR and just leave it as GT_LCL_VAR, using the base class gtRegNum field.
// If we need it for stackfp, we could add a GenTreeStackFPRegVar type, which carries both the
// pieces of information, in a clearer and more specific way (in particular, with
// a different member name).
//
private:
regNumberSmall _gtRegNum;
public:
GenTreeRegVar(var_types type, unsigned lclNum, regNumber regNum) : GenTreeLclVarCommon(GT_REG_VAR, type, lclNum)
{
gtRegNum = regNum;
}
// The register number is stored in a small format (8 bits), but the getters return and the setters take
// a full-size (unsigned) format, to localize the casts here.
__declspec(property(get = GetRegNum, put = SetRegNum)) regNumber gtRegNum;
regNumber GetRegNum() const
{
return (regNumber)_gtRegNum;
}
void SetRegNum(regNumber reg)
{
_gtRegNum = (regNumberSmall)reg;
assert(_gtRegNum == reg);
}
#if DEBUGGABLE_GENTREE
GenTreeRegVar() : GenTreeLclVarCommon()
{
}
#endif
};
/* gtCast -- conversion to a different type (GT_CAST) */
struct GenTreeCast : public GenTreeOp
{
GenTreePtr& CastOp()
{
return gtOp1;
}
var_types gtCastType;
GenTreeCast(var_types type, GenTreePtr op, var_types castType DEBUGARG(bool largeNode = false))
: GenTreeOp(GT_CAST, type, op, nullptr DEBUGARG(largeNode)), gtCastType(castType)
{
}
#if DEBUGGABLE_GENTREE
GenTreeCast() : GenTreeOp()
{
}
#endif
};
// GT_BOX nodes are place markers for boxed values. The "real" tree
// for most purposes is in gtBoxOp.
struct GenTreeBox : public GenTreeUnOp
{
// An expanded helper call to implement the "box" if we don't get
// rid of it any other way. Must be in same position as op1.
GenTreePtr& BoxOp()
{
return gtOp1;
}
// This is the statement that contains the assignment tree when the node is an inlined GT_BOX on a value
// type
GenTreePtr gtAsgStmtWhenInlinedBoxValue;
// And this is the statement that copies from the value being boxed to the box payload
GenTreePtr gtCopyStmtWhenInlinedBoxValue;
GenTreeBox(var_types type,
GenTreePtr boxOp,
GenTreePtr asgStmtWhenInlinedBoxValue,
GenTreePtr copyStmtWhenInlinedBoxValue)
: GenTreeUnOp(GT_BOX, type, boxOp)
, gtAsgStmtWhenInlinedBoxValue(asgStmtWhenInlinedBoxValue)
, gtCopyStmtWhenInlinedBoxValue(copyStmtWhenInlinedBoxValue)
{
}
#if DEBUGGABLE_GENTREE
GenTreeBox() : GenTreeUnOp()
{
}
#endif
};
/* gtField -- data member ref (GT_FIELD) */
struct GenTreeField : public GenTree
{
GenTreePtr gtFldObj;
CORINFO_FIELD_HANDLE gtFldHnd;
DWORD gtFldOffset;
bool gtFldMayOverlap;
#ifdef FEATURE_READYTORUN_COMPILER
CORINFO_CONST_LOOKUP gtFieldLookup;
#endif
GenTreeField(var_types type) : GenTree(GT_FIELD, type)
{
gtFldMayOverlap = false;
}
#if DEBUGGABLE_GENTREE
GenTreeField() : GenTree()
{
}
#endif
};
// Represents the Argument list of a call node, as a Lisp-style linked list.
// (Originally I had hoped that this could have *only* the m_arg/m_rest fields, but it turns out
// that enough of the GenTree mechanism is used that it makes sense just to make it a subtype. But
// note that in many ways, this is *not* a "real" node of the tree, but rather a mechanism for
// giving call nodes a flexible number of children. GenTreeArgListNodes never evaluate to registers,
// for example.)
// Note that while this extends GenTreeOp, it is *not* an EXOP. We don't add any new fields, and one
// is free to allocate a GenTreeOp of type GT_LIST. If you use this type, you get the convenient Current/Rest
// method names for the arguments.
struct GenTreeArgList : public GenTreeOp
{
GenTreePtr& Current()
{
return gtOp1;
}
GenTreeArgList*& Rest()
{
assert(gtOp2 == nullptr || gtOp2->OperIsAnyList());
return *reinterpret_cast<GenTreeArgList**>(>Op2);
}
#if DEBUGGABLE_GENTREE
GenTreeArgList() : GenTreeOp()
{
}
#endif
GenTreeArgList(GenTreePtr arg) : GenTreeArgList(arg, nullptr)
{
}
GenTreeArgList(GenTreePtr arg, GenTreeArgList* rest) : GenTreeArgList(GT_LIST, arg, rest)
{
}
GenTreeArgList(genTreeOps oper, GenTreePtr arg, GenTreeArgList* rest) : GenTreeOp(oper, TYP_VOID, arg, rest)
{
assert(OperIsAnyList(oper));
assert((arg != nullptr) && arg->IsValidCallArgument());
gtFlags |= arg->gtFlags & GTF_ALL_EFFECT;
if (rest != nullptr)
{
gtFlags |= rest->gtFlags & GTF_ALL_EFFECT;
}
}
};
// Represents a list of fields constituting a struct, when it is passed as an argument.
// The first field of the struct is marked with the GTF_FIELD_LIST_HEAD flag, and
// in LIR form it is the only member of the list that is threaded into the execution
// order.
// It differs from the GenTreeArgList in a couple of ways:
// - The entire list represents a single argument.
// - It contains additional fields to provide the offset and type of the field.
//
struct GenTreeFieldList : public GenTreeArgList
{
unsigned gtFieldOffset;
var_types gtFieldType;
bool IsFieldListHead() const
{
return (gtFlags & GTF_FIELD_LIST_HEAD) != 0;
}
#if DEBUGGABLE_GENTREE
GenTreeFieldList() : GenTreeArgList()
{
}
#endif
GenTreeFieldList*& Rest()
{
assert(gtOp2 == nullptr || gtOp2->OperGet() == GT_FIELD_LIST);
return *reinterpret_cast<GenTreeFieldList**>(>Op2);
}
GenTreeFieldList(GenTreePtr arg, unsigned fieldOffset, var_types fieldType, GenTreeFieldList* prevList)
: GenTreeArgList(GT_FIELD_LIST, arg, nullptr)
{
// While GT_FIELD_LIST can be in a GT_LIST, GT_FIELD_LISTs cannot be nested or have GT_LISTs.
assert(!arg->OperIsAnyList());
gtFieldOffset = fieldOffset;
gtFieldType = fieldType;
gtType = fieldType;
if (prevList == nullptr)
{
gtFlags |= GTF_FIELD_LIST_HEAD;
}
else
{
prevList->gtOp2 = this;
}
#ifndef LEGACY_BACKEND
// A GT_FIELD_LIST is always contained. Note that this should only matter for the head node, but
// the list may be reordered.
gtFlags |= GTF_CONTAINED;
#endif
}
};
// There was quite a bit of confusion in the code base about which of gtOp1 and gtOp2 was the
// 'then' and 'else' clause of a colon node. Adding these accessors, while not enforcing anything,
// at least *allows* the programmer to be obviously correct.
// However, these conventions seem backward.
// TODO-Cleanup: If we could get these accessors used everywhere, then we could switch them.
struct GenTreeColon : public GenTreeOp
{
GenTreePtr& ThenNode()
{
return gtOp2;
}
GenTreePtr& ElseNode()
{
return gtOp1;
}
#if DEBUGGABLE_GENTREE
GenTreeColon() : GenTreeOp()
{
}
#endif
GenTreeColon(var_types typ, GenTreePtr thenNode, GenTreePtr elseNode) : GenTreeOp(GT_COLON, typ, elseNode, thenNode)
{
}
};
// gtCall -- method call (GT_CALL)
typedef class fgArgInfo* fgArgInfoPtr;
enum class InlineObservation;
// Return type descriptor of a GT_CALL node.
// x64 Unix, Arm64, Arm32 and x86 allow a value to be returned in multiple
// registers. For such calls this struct provides the following info
// on their return type
// - type of value returned in each return register
// - ABI return register numbers in which the value is returned
// - count of return registers in which the value is returned
//
// TODO-ARM: Update this to meet the needs of Arm64 and Arm32
//
// TODO-AllArch: Right now it is used for describing multi-reg returned types.
// Eventually we would want to use it for describing even single-reg
// returned types (e.g. structs returned in single register x64/arm).
// This would allow us not to lie or normalize single struct return
// values in importer/morph.
struct ReturnTypeDesc
{
private:
var_types m_regType[MAX_RET_REG_COUNT];
#ifdef DEBUG
bool m_inited;
#endif
public:
ReturnTypeDesc()
{
Reset();
}
// Initialize the Return Type Descriptor for a method that returns a struct type
void InitializeStructReturnType(Compiler* comp, CORINFO_CLASS_HANDLE retClsHnd);
// Initialize the Return Type Descriptor for a method that returns a TYP_LONG
// Only needed for X86
void InitializeLongReturnType(Compiler* comp);
// Reset type descriptor to defaults
void Reset()
{
for (unsigned i = 0; i < MAX_RET_REG_COUNT; ++i)
{
m_regType[i] = TYP_UNKNOWN;
}
#ifdef DEBUG
m_inited = false;
#endif
}
#ifdef DEBUG
// NOTE: we only use this function when writing out IR dumps. These dumps may take place before the ReturnTypeDesc
// has been initialized.
unsigned TryGetReturnRegCount() const
{
return m_inited ? GetReturnRegCount() : 0;
}
#endif // DEBUG
//--------------------------------------------------------------------------------------------
// GetReturnRegCount: Get the count of return registers in which the return value is returned.
//
// Arguments:
// None
//
// Return Value:
// Count of return registers.
// Returns 0 if the return type is not returned in registers.
unsigned GetReturnRegCount() const
{
assert(m_inited);
int regCount = 0;
for (unsigned i = 0; i < MAX_RET_REG_COUNT; ++i)
{
if (m_regType[i] == TYP_UNKNOWN)
{
break;
}
// otherwise
regCount++;
}
#ifdef DEBUG
// Any remaining elements in m_regTypes[] should also be TYP_UNKNOWN
for (unsigned i = regCount + 1; i < MAX_RET_REG_COUNT; ++i)
{
assert(m_regType[i] == TYP_UNKNOWN);
}
#endif
return regCount;
}
//-----------------------------------------------------------------------
// IsMultiRegRetType: check whether the type is returned in multiple
// return registers.
//
// Arguments:
// None
//
// Return Value:
// Returns true if the type is returned in multiple return registers.
// False otherwise.
// Note that we only have to examine the first two values to determine this
//
bool IsMultiRegRetType() const
{
if (MAX_RET_REG_COUNT < 2)
{
return false;
}
else
{
return ((m_regType[0] != TYP_UNKNOWN) && (m_regType[1] != TYP_UNKNOWN));
}
}
//--------------------------------------------------------------------------
// GetReturnRegType: Get var_type of the return register specified by index.
//
// Arguments:
// index - Index of the return register.
// First return register will have an index 0 and so on.
//
// Return Value:
// var_type of the return register specified by its index.
// asserts if the index does not have a valid register return type.
var_types GetReturnRegType(unsigned index)
{
var_types result = m_regType[index];
assert(result != TYP_UNKNOWN);
return result;
}
// Get ith ABI return register
regNumber GetABIReturnReg(unsigned idx);
// Get reg mask of ABI return registers
regMaskTP GetABIReturnRegs();
};
struct GenTreeCall final : public GenTree
{
GenTreePtr gtCallObjp; // The instance argument ('this' pointer)
GenTreeArgList* gtCallArgs; // The list of arguments in original evaluation order
GenTreeArgList* gtCallLateArgs; // On x86: The register arguments in an optimal order
// On ARM/x64: - also includes any outgoing arg space arguments
// - that were evaluated into a temp LclVar
fgArgInfoPtr fgArgInfo;
#if !FEATURE_FIXED_OUT_ARGS
int regArgListCount;
regList regArgList;
#endif
// TODO-Throughput: Revisit this (this used to be only defined if
// FEATURE_FIXED_OUT_ARGS was enabled, so this makes GenTreeCall 4 bytes bigger on x86).
CORINFO_SIG_INFO* callSig; // Used by tail calls and to register callsites with the EE
#ifdef LEGACY_BACKEND
regMaskTP gtCallRegUsedMask; // mask of registers used to pass parameters
#endif // LEGACY_BACKEND
#if FEATURE_MULTIREG_RET
// State required to support multi-reg returning call nodes.
// For now it is enabled only for x64 unix.
//
// TODO-AllArch: enable for all call nodes to unify single-reg and multi-reg returns.
ReturnTypeDesc gtReturnTypeDesc;
// gtRegNum would always be the first return reg.
// The following array holds the other reg numbers of multi-reg return.
regNumberSmall gtOtherRegs[MAX_RET_REG_COUNT - 1];
// GTF_SPILL or GTF_SPILLED flag on a multi-reg call node indicates that one or
// more of its result regs are in that state. The spill flag of each of the
// return register is stored here. We only need 2 bits per returned register,
// so this is treated as a 2-bit array. No architecture needs more than 8 bits.
static const unsigned PACKED_GTF_SPILL = 1;
static const unsigned PACKED_GTF_SPILLED = 2;
unsigned char gtSpillFlags;
#endif // FEATURE_MULTIREG_RET
//-----------------------------------------------------------------------
// GetReturnTypeDesc: get the type descriptor of return value of the call
//
// Arguments:
// None
//
// Returns
// Type descriptor of the value returned by call
//
// Note:
// Right now implemented only for x64 unix and yet to be
// implemented for other multi-reg target arch (Arm64/Arm32/x86).
//
// TODO-AllArch: enable for all call nodes to unify single-reg and multi-reg returns.
ReturnTypeDesc* GetReturnTypeDesc()
{
#if FEATURE_MULTIREG_RET
return >ReturnTypeDesc;
#else
return nullptr;
#endif
}
//---------------------------------------------------------------------------
// GetRegNumByIdx: get ith return register allocated to this call node.
//
// Arguments:
// idx - index of the return register
//
// Return Value:
// Return regNumber of ith return register of call node.
// Returns REG_NA if there is no valid return register for the given index.
//
regNumber GetRegNumByIdx(unsigned idx) const
{
assert(idx < MAX_RET_REG_COUNT);
if (idx == 0)
{
return gtRegNum;
}
#if FEATURE_MULTIREG_RET
return (regNumber)gtOtherRegs[idx - 1];
#else
return REG_NA;
#endif
}
//----------------------------------------------------------------------
// SetRegNumByIdx: set ith return register of this call node
//
// Arguments:
// reg - reg number
// idx - index of the return register
//
// Return Value:
// None
//
void SetRegNumByIdx(regNumber reg, unsigned idx)
{
assert(idx < MAX_RET_REG_COUNT);
if (idx == 0)
{
gtRegNum = reg;
}
#if FEATURE_MULTIREG_RET
else
{
gtOtherRegs[idx - 1] = (regNumberSmall)reg;
assert(gtOtherRegs[idx - 1] == reg);
}
#else
unreached();
#endif
}
//----------------------------------------------------------------------------
// ClearOtherRegs: clear multi-reg state to indicate no regs are allocated
//
// Arguments:
// None
//
// Return Value:
// None
//
void ClearOtherRegs()
{
#if FEATURE_MULTIREG_RET
for (unsigned i = 0; i < MAX_RET_REG_COUNT - 1; ++i)
{
gtOtherRegs[i] = REG_NA;
}
#endif
}
//----------------------------------------------------------------------------
// CopyOtherRegs: copy multi-reg state from the given call node to this node
//
// Arguments:
// fromCall - GenTreeCall node from which to copy multi-reg state
//
// Return Value:
// None
//
void CopyOtherRegs(GenTreeCall* fromCall)
{
#if FEATURE_MULTIREG_RET
for (unsigned i = 0; i < MAX_RET_REG_COUNT - 1; ++i)
{
this->gtOtherRegs[i] = fromCall->gtOtherRegs[i];
}
#endif
}
// Get reg mask of all the valid registers of gtOtherRegs array
regMaskTP GetOtherRegMask() const;
//----------------------------------------------------------------------
// GetRegSpillFlagByIdx: get spill flag associated with the return register
// specified by its index.
//
// Arguments:
// idx - Position or index of the return register
//
// Return Value:
// Returns GTF_* flags associated with the register. Only GTF_SPILL and GTF_SPILLED are considered.
//
unsigned GetRegSpillFlagByIdx(unsigned idx) const
{
static_assert_no_msg(MAX_RET_REG_COUNT * 2 <= sizeof(unsigned char) * BITS_PER_BYTE);
assert(idx < MAX_RET_REG_COUNT);
#if FEATURE_MULTIREG_RET
unsigned bits = gtSpillFlags >> (idx * 2); // It doesn't matter that we possibly leave other high bits here.
unsigned spillFlags = 0;
if (bits & PACKED_GTF_SPILL)
{
spillFlags |= GTF_SPILL;
}
if (bits & PACKED_GTF_SPILLED)
{
spillFlags |= GTF_SPILLED;
}
return spillFlags;
#else
assert(!"unreached");
return 0;
#endif
}
//----------------------------------------------------------------------
// SetRegSpillFlagByIdx: set spill flags for the return register
// specified by its index.
//
// Arguments:
// flags - GTF_* flags. Only GTF_SPILL and GTF_SPILLED are allowed.
// idx - Position or index of the return register
//
// Return Value:
// None
//
void SetRegSpillFlagByIdx(unsigned flags, unsigned idx)
{
static_assert_no_msg(MAX_RET_REG_COUNT * 2 <= sizeof(unsigned char) * BITS_PER_BYTE);
assert(idx < MAX_RET_REG_COUNT);
#if FEATURE_MULTIREG_RET
unsigned bits = 0;
if (flags & GTF_SPILL)
{
bits |= PACKED_GTF_SPILL;
}
if (flags & GTF_SPILLED)
{
bits |= PACKED_GTF_SPILLED;
}
const unsigned char packedFlags = PACKED_GTF_SPILL | PACKED_GTF_SPILLED;
// Clear anything that was already there by masking out the bits before 'or'ing in what we want there.
gtSpillFlags = (unsigned char)((gtSpillFlags & ~(packedFlags << (idx * 2))) | (bits << (idx * 2)));
#else
unreached();
#endif
}
//-------------------------------------------------------------------
// clearOtherRegFlags: clear GTF_* flags associated with gtOtherRegs
//
// Arguments:
// None
//
// Return Value:
// None
void ClearOtherRegFlags()
{
#if FEATURE_MULTIREG_RET
gtSpillFlags = 0;
#endif
}
//-------------------------------------------------------------------------
// CopyOtherRegFlags: copy GTF_* flags associated with gtOtherRegs from
// the given call node.
//
// Arguments:
// fromCall - GenTreeCall node from which to copy
//
// Return Value:
// None
//
void CopyOtherRegFlags(GenTreeCall* fromCall)
{
#if FEATURE_MULTIREG_RET
this->gtSpillFlags = fromCall->gtSpillFlags;
#endif
}
// clang-format off
#define GTF_CALL_M_EXPLICIT_TAILCALL 0x00000001 // GT_CALL -- the call is "tail" prefixed and
// importer has performed tail call checks
#define GTF_CALL_M_TAILCALL 0x00000002 // GT_CALL -- the call is a tailcall
#define GTF_CALL_M_VARARGS 0x00000004 // GT_CALL -- the call uses varargs ABI
#define GTF_CALL_M_RETBUFFARG 0x00000008 // GT_CALL -- first parameter is the return buffer argument
#define GTF_CALL_M_DELEGATE_INV 0x00000010 // GT_CALL -- call to Delegate.Invoke
#define GTF_CALL_M_NOGCCHECK 0x00000020 // GT_CALL -- not a call for computing full interruptability
#define GTF_CALL_M_SPECIAL_INTRINSIC 0x00000040 // GT_CALL -- function that could be optimized as an intrinsic
// in special cases. Used to optimize fast way out in morphing
#define GTF_CALL_M_UNMGD_THISCALL 0x00000080 // GT_CALL -- "this" pointer (first argument)
// should be enregistered (only for GTF_CALL_UNMANAGED)
#define GTF_CALL_M_VIRTSTUB_REL_INDIRECT 0x00000080 // the virtstub is indirected through
// a relative address (only for GTF_CALL_VIRT_STUB)
#define GTF_CALL_M_NONVIRT_SAME_THIS 0x00000080 // GT_CALL -- callee "this" pointer is
// equal to caller this pointer (only for GTF_CALL_NONVIRT)
#define GTF_CALL_M_FRAME_VAR_DEATH 0x00000100 // GT_CALL -- the compLvFrameListRoot variable dies here (last use)
#ifndef LEGACY_BACKEND
#define GTF_CALL_M_TAILCALL_VIA_HELPER 0x00000200 // GT_CALL -- call is a tail call dispatched via tail call JIT helper.
#endif
#if FEATURE_TAILCALL_OPT
#define GTF_CALL_M_IMPLICIT_TAILCALL 0x00000400 // GT_CALL -- call is an opportunistic
// tail call and importer has performed tail call checks
#define GTF_CALL_M_TAILCALL_TO_LOOP 0x00000800 // GT_CALL -- call is a fast recursive tail call
// that can be converted into a loop
#endif
#define GTF_CALL_M_PINVOKE 0x00001000 // GT_CALL -- call is a pinvoke. This mirrors VM flag CORINFO_FLG_PINVOKE.
// A call marked as Pinvoke is not necessarily a GT_CALL_UNMANAGED. For e.g.
// an IL Stub dynamically generated for a PInvoke declaration is flagged as
// a Pinvoke but not as an unmanaged call. See impCheckForPInvokeCall() to
// know when these flags are set.
#define GTF_CALL_M_R2R_REL_INDIRECT 0x00002000 // GT_CALL -- ready to run call is indirected through a relative address
#define GTF_CALL_M_DOES_NOT_RETURN 0x00004000 // GT_CALL -- call does not return
#define GTF_CALL_M_SECURE_DELEGATE_INV 0x00008000 // GT_CALL -- call is in secure delegate
#define GTF_CALL_M_FAT_POINTER_CHECK 0x00010000 // GT_CALL -- CoreRT managed calli needs transformation, that checks
// special bit in calli address. If it is set, then it is necessary
// to restore real function address and load hidden argument
// as the first argument for calli. It is CoreRT replacement for instantiating
// stubs, because executable code cannot be generated at runtime.
#define GTF_CALL_M_HELPER_SPECIAL_DCE 0x00020000 // GT_CALL -- this helper call can be removed if it is part of a comma and
// the comma result is unused.
// clang-format on
bool IsUnmanaged() const
{
return (gtFlags & GTF_CALL_UNMANAGED) != 0;
}
bool NeedsNullCheck() const
{
return (gtFlags & GTF_CALL_NULLCHECK) != 0;
}
bool CallerPop() const
{
return (gtFlags & GTF_CALL_POP_ARGS) != 0;
}
bool IsVirtual() const
{
return (gtFlags & GTF_CALL_VIRT_KIND_MASK) != GTF_CALL_NONVIRT;
}
bool IsVirtualStub() const
{
return (gtFlags & GTF_CALL_VIRT_KIND_MASK) == GTF_CALL_VIRT_STUB;
}
bool IsVirtualVtable() const
{
return (gtFlags & GTF_CALL_VIRT_KIND_MASK) == GTF_CALL_VIRT_VTABLE;
}
bool IsInlineCandidate() const
{
return (gtFlags & GTF_CALL_INLINE_CANDIDATE) != 0;
}
#ifndef LEGACY_BACKEND
bool HasNonStandardAddedArgs(Compiler* compiler) const;
int GetNonStandardAddedArgCount(Compiler* compiler) const;
#endif // !LEGACY_BACKEND
// Returns true if this call uses a retBuf argument and its calling convention
bool HasRetBufArg() const
{
return (gtCallMoreFlags & GTF_CALL_M_RETBUFFARG) != 0;
}
//-------------------------------------------------------------------------
// TreatAsHasRetBufArg:
//
// Arguments:
// compiler, the compiler instance so that we can call eeGetHelperNum
//
// Return Value:
// Returns true if we treat the call as if it has a retBuf argument
// This method may actually have a retBuf argument
// or it could be a JIT helper that we are still transforming during
// the importer phase.
//
// Notes:
// On ARM64 marking the method with the GTF_CALL_M_RETBUFFARG flag
// will make HasRetBufArg() return true, but will also force the
// use of register x8 to pass the RetBuf argument.
//
bool TreatAsHasRetBufArg(Compiler* compiler) const;
//-----------------------------------------------------------------------------------------
// HasMultiRegRetVal: whether the call node returns its value in multiple return registers.
//
// Arguments:
// None
//
// Return Value:
// True if the call is returning a multi-reg return value. False otherwise.
//
// Note:
// This is implemented only for x64 Unix and yet to be implemented for
// other multi-reg return target arch (arm64/arm32/x86).
//
bool HasMultiRegRetVal() const
{
#if defined(_TARGET_X86_) && !defined(LEGACY_BACKEND)
// LEGACY_BACKEND does not use multi reg returns for calls with long return types
return varTypeIsLong(gtType);
#elif FEATURE_MULTIREG_RET && (defined(_TARGET_ARM_) && !defined(LEGACY_BACKEND))
// LEGACY_BACKEND does not use multi reg returns for calls with long return types
return varTypeIsLong(gtType) || (varTypeIsStruct(gtType) && !HasRetBufArg());
#elif FEATURE_MULTIREG_RET
return varTypeIsStruct(gtType) && !HasRetBufArg();
#else
return false;
#endif
}
// Returns true if VM has flagged this method as CORINFO_FLG_PINVOKE.
bool IsPInvoke() const
{
return (gtCallMoreFlags & GTF_CALL_M_PINVOKE) != 0;
}
// Note that the distinction of whether tail prefixed or an implicit tail call
// is maintained on a call node till fgMorphCall() after which it will be
// either a tail call (i.e. IsTailCall() is true) or a non-tail call.
bool IsTailPrefixedCall() const
{
return (gtCallMoreFlags & GTF_CALL_M_EXPLICIT_TAILCALL) != 0;
}
// This method returning "true" implies that tail call flowgraph morhphing has
// performed final checks and committed to making a tail call.
bool IsTailCall() const
{
return (gtCallMoreFlags & GTF_CALL_M_TAILCALL) != 0;
}
// This method returning "true" implies that importer has performed tail call checks
// and providing a hint that this can be converted to a tail call.
bool CanTailCall() const
{
return IsTailPrefixedCall() || IsImplicitTailCall();
}
#ifndef LEGACY_BACKEND
bool IsTailCallViaHelper() const
{
return IsTailCall() && (gtCallMoreFlags & GTF_CALL_M_TAILCALL_VIA_HELPER);
}
#else // LEGACY_BACKEND
bool IsTailCallViaHelper() const
{
return true;
}
#endif // LEGACY_BACKEND
#if FEATURE_FASTTAILCALL
bool IsFastTailCall() const
{
return IsTailCall() && !(gtCallMoreFlags & GTF_CALL_M_TAILCALL_VIA_HELPER);
}
#else // !FEATURE_FASTTAILCALL
bool IsFastTailCall() const
{
return false;
}
#endif // !FEATURE_FASTTAILCALL
#if FEATURE_TAILCALL_OPT
// Returns true if this is marked for opportunistic tail calling.
// That is, can be tail called though not explicitly prefixed with "tail" prefix.
bool IsImplicitTailCall() const
{
return (gtCallMoreFlags & GTF_CALL_M_IMPLICIT_TAILCALL) != 0;
}
bool IsTailCallConvertibleToLoop() const
{
return (gtCallMoreFlags & GTF_CALL_M_TAILCALL_TO_LOOP) != 0;
}
#else // !FEATURE_TAILCALL_OPT
bool IsImplicitTailCall() const
{
return false;
}
bool IsTailCallConvertibleToLoop() const
{
return false;
}
#endif // !FEATURE_TAILCALL_OPT
bool IsSameThis() const
{
return (gtCallMoreFlags & GTF_CALL_M_NONVIRT_SAME_THIS) != 0;
}
bool IsDelegateInvoke() const
{
return (gtCallMoreFlags & GTF_CALL_M_DELEGATE_INV) != 0;
}
bool IsVirtualStubRelativeIndir() const
{
return (gtCallMoreFlags & GTF_CALL_M_VIRTSTUB_REL_INDIRECT) != 0;
}
#ifdef FEATURE_READYTORUN_COMPILER
bool IsR2RRelativeIndir() const
{
return (gtCallMoreFlags & GTF_CALL_M_R2R_REL_INDIRECT) != 0;
}
void setEntryPoint(CORINFO_CONST_LOOKUP entryPoint)
{
gtEntryPoint = entryPoint;
if (gtEntryPoint.accessType == IAT_PVALUE)
{
gtCallMoreFlags |= GTF_CALL_M_R2R_REL_INDIRECT;
}
}
#endif // FEATURE_READYTORUN_COMPILER
bool IsVarargs() const
{
return (gtCallMoreFlags & GTF_CALL_M_VARARGS) != 0;
}
bool IsNoReturn() const
{
return (gtCallMoreFlags & GTF_CALL_M_DOES_NOT_RETURN) != 0;
}
bool IsFatPointerCandidate() const
{
return (gtCallMoreFlags & GTF_CALL_M_FAT_POINTER_CHECK) != 0;
}
bool IsPure(Compiler* compiler) const;
bool HasSideEffects(Compiler* compiler, bool ignoreExceptions = false, bool ignoreCctors = false) const;
void ClearFatPointerCandidate()
{
gtCallMoreFlags &= ~GTF_CALL_M_FAT_POINTER_CHECK;
}
void SetFatPointerCandidate()
{
gtCallMoreFlags |= GTF_CALL_M_FAT_POINTER_CHECK;
}
unsigned gtCallMoreFlags; // in addition to gtFlags
unsigned char gtCallType : 3; // value from the gtCallTypes enumeration
unsigned char gtReturnType : 5; // exact return type
CORINFO_CLASS_HANDLE gtRetClsHnd; // The return type handle of the call if it is a struct; always available
union {
// only used for CALLI unmanaged calls (CT_INDIRECT)
GenTreePtr gtCallCookie;
// gtInlineCandidateInfo is only used when inlining methods
InlineCandidateInfo* gtInlineCandidateInfo;
void* gtStubCallStubAddr; // GTF_CALL_VIRT_STUB - these are never inlined
CORINFO_GENERIC_HANDLE compileTimeHelperArgumentHandle; // Used to track type handle argument of dynamic helpers
void* gtDirectCallAddress; // Used to pass direct call address between lower and codegen
};
// expression evaluated after args are placed which determines the control target
GenTree* gtControlExpr;
union {
CORINFO_METHOD_HANDLE gtCallMethHnd; // CT_USER_FUNC
GenTreePtr gtCallAddr; // CT_INDIRECT
};
#ifdef FEATURE_READYTORUN_COMPILER
// Call target lookup info for method call from a Ready To Run module
CORINFO_CONST_LOOKUP gtEntryPoint;
#endif
#if defined(DEBUG) || defined(INLINE_DATA)
// For non-inline candidates, track the first observation
// that blocks candidacy.
InlineObservation gtInlineObservation;
// IL offset of the call wrt its parent method.
IL_OFFSET gtRawILOffset;
#endif // defined(DEBUG) || defined(INLINE_DATA)
bool IsHelperCall() const
{
return gtCallType == CT_HELPER;
}
bool IsHelperCall(CORINFO_METHOD_HANDLE callMethHnd) const
{
return IsHelperCall() && (callMethHnd == gtCallMethHnd);
}
bool IsHelperCall(Compiler* compiler, unsigned helper) const;
void ReplaceCallOperand(GenTree** operandUseEdge, GenTree* replacement);
bool AreArgsComplete() const;
GenTreeCall(var_types type) : GenTree(GT_CALL, type)
{
fgArgInfo = nullptr;
}
#if DEBUGGABLE_GENTREE
GenTreeCall() : GenTree()
{
}
#endif
};
struct GenTreeCmpXchg : public GenTree
{
GenTreePtr gtOpLocation;
GenTreePtr gtOpValue;
GenTreePtr gtOpComparand;
GenTreeCmpXchg(var_types type, GenTreePtr loc, GenTreePtr val, GenTreePtr comparand)
: GenTree(GT_CMPXCHG, type), gtOpLocation(loc), gtOpValue(val), gtOpComparand(comparand)
{
// There's no reason to do a compare-exchange on a local location, so we'll assume that all of these
// have global effects.
gtFlags |= (GTF_GLOB_REF | GTF_ASG);
}
#if DEBUGGABLE_GENTREE
GenTreeCmpXchg() : GenTree()
{
}
#endif
};
#if !defined(LEGACY_BACKEND) && defined(_TARGET_ARM_)
struct GenTreeMultiRegOp : public GenTreeOp
{
regNumber gtOtherReg;
// GTF_SPILL or GTF_SPILLED flag on a multi-reg node indicates that one or
// more of its result regs are in that state. The spill flag of each of the
// return register is stored here. We only need 2 bits per returned register,
// so this is treated as a 2-bit array. No architecture needs more than 8 bits.
static const unsigned PACKED_GTF_SPILL = 1;
static const unsigned PACKED_GTF_SPILLED = 2;
unsigned char gtSpillFlags;
GenTreeMultiRegOp(genTreeOps oper, var_types type, GenTreePtr op1, GenTreePtr op2)
: GenTreeOp(oper, type, op1, op2), gtOtherReg(REG_NA)
{
ClearOtherRegFlags();
}
unsigned GetRegCount() const
{
if (gtRegNum == REG_NA || gtRegNum == REG_STK)
{
return 0;
}
return (gtOtherReg == REG_NA || gtOtherReg == REG_STK) ? 1 : 2;
}
//---------------------------------------------------------------------------
// GetRegNumByIdx: get ith register allocated to this struct argument.
//
// Arguments:
// idx - index of the register
//
// Return Value:
// Return regNumber of ith register of this register argument
//
regNumber GetRegNumByIdx(unsigned idx) const
{
assert(idx < 2);
if (idx == 0)
{
return gtRegNum;
}
return gtOtherReg;
}
//----------------------------------------------------------------------
// GetRegSpillFlagByIdx: get spill flag associated with the register
// specified by its index.
//
// Arguments:
// idx - Position or index of the register
//
// Return Value:
// Returns GTF_* flags associated with the register. Only GTF_SPILL and GTF_SPILLED are considered.
//
unsigned GetRegSpillFlagByIdx(unsigned idx) const
{
assert(idx < MAX_REG_ARG);
unsigned bits = gtSpillFlags >> (idx * 2); // It doesn't matter that we possibly leave other high bits here.
unsigned spillFlags = 0;
if (bits & PACKED_GTF_SPILL)
{
spillFlags |= GTF_SPILL;
}
if (bits & PACKED_GTF_SPILLED)
{
spillFlags |= GTF_SPILLED;
}
return spillFlags;
}
//----------------------------------------------------------------------
// SetRegSpillFlagByIdx: set spill flags for the register
// specified by its index.
//
// Arguments:
// flags - GTF_* flags. Only GTF_SPILL and GTF_SPILLED are allowed.
// idx - Position or index of the register
//
// Return Value:
// None
//
void SetRegSpillFlagByIdx(unsigned flags, unsigned idx)
{
assert(idx < MAX_REG_ARG);
unsigned bits = 0;
if (flags & GTF_SPILL)
{
bits |= PACKED_GTF_SPILL;
}
if (flags & GTF_SPILLED)
{
bits |= PACKED_GTF_SPILLED;
}
const unsigned char packedFlags = PACKED_GTF_SPILL | PACKED_GTF_SPILLED;
// Clear anything that was already there by masking out the bits before 'or'ing in what we want there.
gtSpillFlags = (unsigned char)((gtSpillFlags & ~(packedFlags << (idx * 2))) | (bits << (idx * 2)));
}
//--------------------------------------------------------------------------
// GetRegType: Get var_type of the register specified by index.
//
// Arguments:
// index - Index of the register.
// First register will have an index 0 and so on.
//
// Return Value:
// var_type of the register specified by its index.
var_types GetRegType(unsigned index)
{
assert(index < 2);
// The type of register is usually the same as GenTree type
// since most of time GenTreeMultiRegOp uses only a single reg (when gtOtherReg is REG_NA).
// The special case is when we have TYP_LONG here, which was `TYP_DOUBLE` originally
// (copied to int regs for argument push on armel). Then we need to separate them into int for each index.
var_types result = TypeGet();
if (result == TYP_LONG)
{
assert(gtOtherReg != REG_NA);
result = TYP_INT;
}
return result;
}
//-------------------------------------------------------------------
// clearOtherRegFlags: clear GTF_* flags associated with gtOtherRegs
//
// Arguments:
// None
//
// Return Value:
// None
//
void ClearOtherRegFlags()
{
gtSpillFlags = 0;
}
#if DEBUGGABLE_GENTREE
GenTreeMultiRegOp() : GenTreeOp()
{
}
#endif
};
#endif
struct GenTreeFptrVal : public GenTree
{
CORINFO_METHOD_HANDLE gtFptrMethod;
#ifdef FEATURE_READYTORUN_COMPILER
CORINFO_CONST_LOOKUP gtEntryPoint;
#endif
GenTreeFptrVal(var_types type, CORINFO_METHOD_HANDLE meth) : GenTree(GT_FTN_ADDR, type), gtFptrMethod(meth)
{
}
#if DEBUGGABLE_GENTREE
GenTreeFptrVal() : GenTree()
{
}
#endif
};
/* gtQmark */
struct GenTreeQmark : public GenTreeOp
{
#ifdef LEGACY_BACKEND
// Livesets on entry to then and else subtrees
VARSET_TP gtThenLiveSet;
VARSET_TP gtElseLiveSet;
#endif
// The "Compiler*" argument is not a DEBUGARG here because we use it to keep track of the set of
// (possible) QMark nodes.
GenTreeQmark(var_types type, GenTreePtr cond, GenTreePtr colonOp, class Compiler* comp);
#if DEBUGGABLE_GENTREE
GenTreeQmark() : GenTreeOp(GT_QMARK, TYP_INT, nullptr, nullptr)
{
}
#endif
};
/* gtIntrinsic -- intrinsic (possibly-binary op [NULL op2 is allowed] with an additional field) */
struct GenTreeIntrinsic : public GenTreeOp
{
CorInfoIntrinsics gtIntrinsicId;
CORINFO_METHOD_HANDLE gtMethodHandle; // Method handle of the method which is treated as an intrinsic.
#ifdef FEATURE_READYTORUN_COMPILER
// Call target lookup info for method call from a Ready To Run module
CORINFO_CONST_LOOKUP gtEntryPoint;
#endif
GenTreeIntrinsic(var_types type, GenTreePtr op1, CorInfoIntrinsics intrinsicId, CORINFO_METHOD_HANDLE methodHandle)
: GenTreeOp(GT_INTRINSIC, type, op1, nullptr), gtIntrinsicId(intrinsicId), gtMethodHandle(methodHandle)
{
}
GenTreeIntrinsic(var_types type,
GenTreePtr op1,
GenTreePtr op2,
CorInfoIntrinsics intrinsicId,
CORINFO_METHOD_HANDLE methodHandle)
: GenTreeOp(GT_INTRINSIC, type, op1, op2), gtIntrinsicId(intrinsicId), gtMethodHandle(methodHandle)
{
}
#if DEBUGGABLE_GENTREE
GenTreeIntrinsic() : GenTreeOp()
{
}
#endif
};
struct GenTreeJitIntrinsic : public GenTreeOp
{
var_types gtSIMDBaseType; // SIMD vector base type
unsigned gtSIMDSize; // SIMD vector size in bytes, use 0 for scalar intrinsics
GenTreeJitIntrinsic(
genTreeOps oper, var_types type, GenTreePtr op1, GenTreePtr op2, var_types baseType, unsigned size)
: GenTreeOp(oper, type, op1, op2), gtSIMDBaseType(baseType), gtSIMDSize(size)
{
}
bool isSIMD()
{
return gtSIMDSize != 0;
}
#if DEBUGGABLE_GENTREE
GenTreeJitIntrinsic() : GenTreeOp()
{
}
#endif
};
#ifdef FEATURE_SIMD
/* gtSIMD -- SIMD intrinsic (possibly-binary op [NULL op2 is allowed] with additional fields) */
struct GenTreeSIMD : public GenTreeJitIntrinsic
{
SIMDIntrinsicID gtSIMDIntrinsicID; // operation Id
GenTreeSIMD(var_types type, GenTreePtr op1, SIMDIntrinsicID simdIntrinsicID, var_types baseType, unsigned size)
: GenTreeJitIntrinsic(GT_SIMD, type, op1, nullptr, baseType, size), gtSIMDIntrinsicID(simdIntrinsicID)
{
}
GenTreeSIMD(var_types type,
GenTreePtr op1,
GenTreePtr op2,
SIMDIntrinsicID simdIntrinsicID,
var_types baseType,
unsigned size)
: GenTreeJitIntrinsic(GT_SIMD, type, op1, op2, baseType, size), gtSIMDIntrinsicID(simdIntrinsicID)
{
}
#if DEBUGGABLE_GENTREE
GenTreeSIMD() : GenTreeJitIntrinsic()
{
}
#endif
};
#endif // FEATURE_SIMD
#if FEATURE_HW_INTRINSICS
struct GenTreeHWIntrinsic : public GenTreeJitIntrinsic
{
NamedIntrinsic gtHWIntrinsicId;
GenTreeHWIntrinsic(var_types type, GenTree* op1, NamedIntrinsic hwIntrinsicID, var_types baseType, unsigned size)
: GenTreeJitIntrinsic(GT_HWIntrinsic, type, op1, nullptr, baseType, size), gtHWIntrinsicId(hwIntrinsicID)
{
}
GenTreeHWIntrinsic(
var_types type, GenTree* op1, GenTree* op2, NamedIntrinsic hwIntrinsicID, var_types baseType, unsigned size)
: GenTreeJitIntrinsic(GT_HWIntrinsic, type, op1, op2, baseType, size), gtHWIntrinsicId(hwIntrinsicID)
{
}
#if DEBUGGABLE_GENTREE
GenTreeHWIntrinsic() : GenTreeJitIntrinsic()
{
}
#endif
};
#endif // FEATURE_HW_INTRINSICS
/* gtIndex -- array access */
struct GenTreeIndex : public GenTreeOp
{
GenTreePtr& Arr()
{
return gtOp1;
}
GenTreePtr& Index()
{
return gtOp2;
}
unsigned gtIndElemSize; // size of elements in the array
CORINFO_CLASS_HANDLE gtStructElemClass; // If the element type is a struct, this is the struct type.
GenTreeIndex(var_types type, GenTreePtr arr, GenTreePtr ind, unsigned indElemSize)
: GenTreeOp(GT_INDEX, type, arr, ind)
, gtIndElemSize(indElemSize)
, gtStructElemClass(nullptr) // We always initialize this after construction.
{
#ifdef DEBUG
if (JitConfig.JitSkipArrayBoundCheck() == 1)
{
// Skip bounds check
}
else
#endif
{
// Do bounds check
gtFlags |= GTF_INX_RNGCHK;
}
if (type == TYP_REF)
{
gtFlags |= GTF_INX_REFARR_LAYOUT;
}
gtFlags |= GTF_EXCEPT | GTF_GLOB_REF;
}
#if DEBUGGABLE_GENTREE
GenTreeIndex() : GenTreeOp()
{
}
#endif
};
// gtIndexAddr: given an array object and an index, checks that the index is within the bounds of the array if
// necessary and produces the address of the value at that index of the array.
struct GenTreeIndexAddr : public GenTreeOp
{
GenTree*& Arr()
{
return gtOp1;
}
GenTree*& Index()
{
return gtOp2;
}
CORINFO_CLASS_HANDLE gtStructElemClass; // If the element type is a struct, this is the struct type.
GenTree* gtIndRngFailBB; // Label to jump to for array-index-out-of-range
unsigned gtStkDepth; // Stack depth at which the jump occurs (required for fgSetRngChkTarget)
var_types gtElemType; // The element type of the array.
unsigned gtElemSize; // size of elements in the array
unsigned gtLenOffset; // The offset from the array's base address to its length.
unsigned gtElemOffset; // The offset from the array's base address to its first element.
GenTreeIndexAddr(GenTree* arr,
GenTree* ind,
var_types elemType,
CORINFO_CLASS_HANDLE structElemClass,
unsigned elemSize,
unsigned lenOffset,
unsigned elemOffset)
: GenTreeOp(GT_INDEX_ADDR, TYP_BYREF, arr, ind)
, gtStructElemClass(structElemClass)
, gtIndRngFailBB(nullptr)
, gtStkDepth(0)
, gtElemType(elemType)
, gtElemSize(elemSize)
, gtLenOffset(lenOffset)
, gtElemOffset(elemOffset)
{
#ifdef DEBUG
if (JitConfig.JitSkipArrayBoundCheck() == 1)
{
// Skip bounds check
}
else
#endif
{
// Do bounds check
gtFlags |= GTF_INX_RNGCHK;
}
// REVERSE_OPS is set because we must evaluate the index before the array address.
gtFlags |= GTF_EXCEPT | GTF_GLOB_REF | GTF_REVERSE_OPS;
}
#if DEBUGGABLE_GENTREE
GenTreeIndexAddr() : GenTreeOp()
{
}
#endif
};
/* gtArrLen -- array length (GT_ARR_LENGTH)
GT_ARR_LENGTH is used for "arr.length" */
struct GenTreeArrLen : public GenTreeUnOp
{
GenTreePtr& ArrRef()
{
return gtOp1;
} // the array address node
private:
int gtArrLenOffset; // constant to add to "gtArrRef" to get the address of the array length.
public:
inline int ArrLenOffset()
{
return gtArrLenOffset;
}
GenTreeArrLen(var_types type, GenTreePtr arrRef, int lenOffset)
: GenTreeUnOp(GT_ARR_LENGTH, type, arrRef), gtArrLenOffset(lenOffset)
{
}
#if DEBUGGABLE_GENTREE
GenTreeArrLen() : GenTreeUnOp()
{
}
#endif
};
// This takes:
// - a comparison value (generally an array length),
// - an index value, and
// - the label to jump to if the index is out of range.
// - the "kind" of the throw block to branch to on failure
// It generates no result.
struct GenTreeBoundsChk : public GenTree
{
GenTreePtr gtIndex; // The index expression.
GenTreePtr gtArrLen; // An expression for the length of the array being indexed.
GenTreePtr gtIndRngFailBB; // Label to jump to for array-index-out-of-range
SpecialCodeKind gtThrowKind; // Kind of throw block to branch to on failure
/* Only out-of-ranges at same stack depth can jump to the same label (finding return address is easier)
For delayed calling of fgSetRngChkTarget() so that the
optimizer has a chance of eliminating some of the rng checks */
unsigned gtStkDepth;
GenTreeBoundsChk(genTreeOps oper, var_types type, GenTreePtr index, GenTreePtr arrLen, SpecialCodeKind kind)
: GenTree(oper, type)
, gtIndex(index)
, gtArrLen(arrLen)
, gtIndRngFailBB(nullptr)
, gtThrowKind(kind)
, gtStkDepth(0)
{
// Effects flags propagate upwards.
gtFlags |= (arrLen->gtFlags & GTF_ALL_EFFECT);
gtFlags |= GTF_EXCEPT;
}
#if DEBUGGABLE_GENTREE
GenTreeBoundsChk() : GenTree()
{
}
#endif
// If the gtArrLen is really an array length, returns array reference, else "NULL".
GenTreePtr GetArray()
{
if (gtArrLen->OperGet() == GT_ARR_LENGTH)
{
return gtArrLen->gtArrLen.ArrRef();
}
else
{
return nullptr;
}
}
};
// gtArrElem -- general array element (GT_ARR_ELEM), for non "SZ_ARRAYS"
// -- multidimensional arrays, or 1-d arrays with non-zero lower bounds.
struct GenTreeArrElem : public GenTree
{
GenTreePtr gtArrObj;
#define GT_ARR_MAX_RANK 3
GenTreePtr gtArrInds[GT_ARR_MAX_RANK]; // Indices
unsigned char gtArrRank; // Rank of the array
unsigned char gtArrElemSize; // !!! Caution, this is an "unsigned char", it is used only
// on the optimization path of array intrisics.
// It stores the size of array elements WHEN it can fit
// into an "unsigned char".
// This has caused VSW 571394.
var_types gtArrElemType; // The array element type
// Requires that "inds" is a pointer to an array of "rank" GenTreePtrs for the indices.
GenTreeArrElem(var_types type,
GenTreePtr arr,
unsigned char rank,
unsigned char elemSize,
var_types elemType,
GenTreePtr* inds)
: GenTree(GT_ARR_ELEM, type), gtArrObj(arr), gtArrRank(rank), gtArrElemSize(elemSize), gtArrElemType(elemType)
{
for (unsigned char i = 0; i < rank; i++)
{
gtArrInds[i] = inds[i];
}
gtFlags |= GTF_EXCEPT;
}
#if DEBUGGABLE_GENTREE
GenTreeArrElem() : GenTree()
{
}
#endif
};
//--------------------------------------------
//
// GenTreeArrIndex (gtArrIndex): Expression to bounds-check the index for one dimension of a
// multi-dimensional or non-zero-based array., and compute the effective index
// (i.e. subtracting the lower bound).
//
// Notes:
// This node is similar in some ways to GenTreeBoundsChk, which ONLY performs the check.
// The reason that this node incorporates the check into the effective index computation is
// to avoid duplicating the codegen, as the effective index is required to compute the
// offset anyway.
// TODO-CQ: Enable optimization of the lower bound and length by replacing this:
// /--* <arrObj>
// +--* <index0>
// +--* ArrIndex[i, ]
// with something like:
// /--* <arrObj>
// /--* ArrLowerBound[i, ]
// | /--* <arrObj>
// +--* ArrLen[i, ] (either generalize GT_ARR_LENGTH or add a new node)
// +--* <index0>
// +--* ArrIndex[i, ]
// Which could, for example, be optimized to the following when known to be within bounds:
// /--* TempForLowerBoundDim0
// +--* <index0>
// +--* - (GT_SUB)
//
struct GenTreeArrIndex : public GenTreeOp
{
// The array object - may be any expression producing an Array reference, but is likely to be a lclVar.
GenTreePtr& ArrObj()
{
return gtOp1;
}
// The index expression - may be any integral expression.
GenTreePtr& IndexExpr()
{
return gtOp2;
}
unsigned char gtCurrDim; // The current dimension
unsigned char gtArrRank; // Rank of the array
var_types gtArrElemType; // The array element type
GenTreeArrIndex(var_types type,
GenTreePtr arrObj,
GenTreePtr indexExpr,
unsigned char currDim,
unsigned char arrRank,
var_types elemType)
: GenTreeOp(GT_ARR_INDEX, type, arrObj, indexExpr)
, gtCurrDim(currDim)
, gtArrRank(arrRank)
, gtArrElemType(elemType)
{
gtFlags |= GTF_EXCEPT;
}
#if DEBUGGABLE_GENTREE
protected:
friend GenTree;
// Used only for GenTree::GetVtableForOper()
GenTreeArrIndex() : GenTreeOp()
{
}
#endif
};
//--------------------------------------------
//
// GenTreeArrOffset (gtArrOffset): Expression to compute the accumulated offset for the address
// of an element of a multi-dimensional or non-zero-based array.
//
// Notes:
// The result of this expression is (gtOffset * dimSize) + gtIndex
// where dimSize is the length/stride/size of the dimension, and is obtained from gtArrObj.
// This node is generated in conjunction with the GenTreeArrIndex node, which computes the
// effective index for a single dimension. The sub-trees can be separately optimized, e.g.
// within a loop body where the expression for the 0th dimension may be invariant.
//
// Here is an example of how the tree might look for a two-dimension array reference:
// /--* const 0
// | /--* <arrObj>
// | +--* <index0>
// +--* ArrIndex[i, ]
// +--* <arrObj>
// /--| arrOffs[i, ]
// | +--* <arrObj>
// | +--* <index1>
// +--* ArrIndex[*,j]
// +--* <arrObj>
// /--| arrOffs[*,j]
// TODO-CQ: see comment on GenTreeArrIndex for how its representation may change. When that
// is done, we will also want to replace the <arrObj> argument to arrOffs with the
// ArrLen as for GenTreeArrIndex.
//
struct GenTreeArrOffs : public GenTree
{
GenTreePtr gtOffset; // The accumulated offset for lower dimensions - must be TYP_I_IMPL, and
// will either be a CSE temp, the constant 0, or another GenTreeArrOffs node.
GenTreePtr gtIndex; // The effective index for the current dimension - must be non-negative
// and can be any expression (though it is likely to be either a GenTreeArrIndex,
// node, a lclVar, or a constant).
GenTreePtr gtArrObj; // The array object - may be any expression producing an Array reference,
// but is likely to be a lclVar.
unsigned char gtCurrDim; // The current dimension
unsigned char gtArrRank; // Rank of the array
var_types gtArrElemType; // The array element type
GenTreeArrOffs(var_types type,
GenTreePtr offset,
GenTreePtr index,
GenTreePtr arrObj,
unsigned char currDim,
unsigned char rank,
var_types elemType)
: GenTree(GT_ARR_OFFSET, type)
, gtOffset(offset)
, gtIndex(index)
, gtArrObj(arrObj)
, gtCurrDim(currDim)
, gtArrRank(rank)
, gtArrElemType(elemType)
{
assert(index->gtFlags & GTF_EXCEPT);
gtFlags |= GTF_EXCEPT;
}
#if DEBUGGABLE_GENTREE
GenTreeArrOffs() : GenTree()
{
}
#endif
};
/* gtAddrMode -- Target-specific canonicalized addressing expression (GT_LEA) */
struct GenTreeAddrMode : public GenTreeOp
{
// Address is Base + Index*Scale + Offset.
// These are the legal patterns:
//
// Base // Base != nullptr && Index == nullptr && Scale == 0 && Offset == 0
// Base + Index*Scale // Base != nullptr && Index != nullptr && Scale != 0 && Offset == 0
// Base + Offset // Base != nullptr && Index == nullptr && Scale == 0 && Offset != 0
// Base + Index*Scale + Offset // Base != nullptr && Index != nullptr && Scale != 0 && Offset != 0
// Index*Scale // Base == nullptr && Index != nullptr && Scale > 1 && Offset == 0
// Index*Scale + Offset // Base == nullptr && Index != nullptr && Scale > 1 && Offset != 0
// Offset // Base == nullptr && Index == nullptr && Scale == 0 && Offset != 0
//
// So, for example:
// 1. Base + Index is legal with Scale==1
// 2. If Index is null, Scale should be zero (or unintialized / unused)
// 3. If Scale==1, then we should have "Base" instead of "Index*Scale", and "Base + Offset" instead of
// "Index*Scale + Offset".
// First operand is base address/pointer
bool HasBase() const
{
return gtOp1 != nullptr;
}
GenTreePtr& Base()
{
return gtOp1;
}
// Second operand is scaled index value
bool HasIndex() const
{
return gtOp2 != nullptr;
}
GenTreePtr& Index()
{
return gtOp2;
}
int Offset()
{
return static_cast<int>(gtOffset);
}
unsigned gtScale; // The scale factor
#ifndef LEGACY_BACKEND
private:
#endif
// TODO-Cleanup: gtOffset should be changed to 'int' to match the getter function and avoid accidental
// zero extension to 64 bit. However, this is used by legacy code and initialized, via the offset
// parameter of the constructor, by Lowering::TryCreateAddrMode & CodeGenInterface::genCreateAddrMode.
// The later computes the offset as 'ssize_t' but returns it as 'unsigned'. We should change
// genCreateAddrMode to return 'int' or 'ssize_t' and then update this as well.
unsigned gtOffset; // The offset to add
public:
GenTreeAddrMode(var_types type, GenTreePtr base, GenTreePtr index, unsigned scale, unsigned offset)
: GenTreeOp(GT_LEA, type, base, index)
{
assert(base != nullptr || index != nullptr);
gtScale = scale;
gtOffset = offset;
}
#if DEBUGGABLE_GENTREE
protected:
friend GenTree;
// Used only for GenTree::GetVtableForOper()
GenTreeAddrMode() : GenTreeOp()
{
}
#endif
};
// Indir is just an op, no additional data, but some additional abstractions
struct GenTreeIndir : public GenTreeOp
{
// The address for the indirection.
// Since GenTreeDynBlk derives from this, but is an "EXOP" (i.e. it has extra fields),
// we can't access Op1 and Op2 in the normal manner if we may have a DynBlk.
GenTreePtr& Addr()
{
return gtOp1;
}
// these methods provide an interface to the indirection node which
bool HasBase();
bool HasIndex();
GenTree* Base();
GenTree* Index();
unsigned Scale();
ssize_t Offset();
GenTreeIndir(genTreeOps oper, var_types type, GenTree* addr, GenTree* data) : GenTreeOp(oper, type, addr, data)
{
}
#if DEBUGGABLE_GENTREE
protected:
friend GenTree;
// Used only for GenTree::GetVtableForOper()
GenTreeIndir() : GenTreeOp()
{
}
#endif
};
// gtBlk -- 'block' (GT_BLK, GT_STORE_BLK).
//
// This is the base type for all of the nodes that represent block or struct
// values.
// Since it can be a store, it includes gtBlkOpKind to specify the type of
// code generation that will be used for the block operation.
struct GenTreeBlk : public GenTreeIndir
{
public:
// The data to be stored (null for GT_BLK)
GenTree*& Data()
{
return gtOp2;
}
void SetData(GenTree* dataNode)
{
gtOp2 = dataNode;
}
// The size of the buffer to be copied.
unsigned Size() const
{
return gtBlkSize;
}
unsigned gtBlkSize;
// Return true iff the object being copied contains one or more GC pointers.
bool HasGCPtr();
// True if this BlkOpNode is a volatile memory operation.
bool IsVolatile() const
{
return (gtFlags & GTF_BLK_VOLATILE) != 0;
}
// True if this BlkOpNode is an unaligned memory operation.
bool IsUnaligned() const
{
return (gtFlags & GTF_BLK_UNALIGNED) != 0;
}
// Instruction selection: during codegen time, what code sequence we will be using
// to encode this operation.
enum
{
BlkOpKindInvalid,
BlkOpKindHelper,
BlkOpKindRepInstr,
BlkOpKindUnroll,
} gtBlkOpKind;
bool gtBlkOpGcUnsafe;
GenTreeBlk(genTreeOps oper, var_types type, GenTreePtr addr, unsigned size)
: GenTreeIndir(oper, type, addr, nullptr)
, gtBlkSize(size)
, gtBlkOpKind(BlkOpKindInvalid)
, gtBlkOpGcUnsafe(false)
{
assert(OperIsBlk(oper));
gtFlags |= (addr->gtFlags & GTF_ALL_EFFECT);
}
GenTreeBlk(genTreeOps oper, var_types type, GenTreePtr addr, GenTreePtr data, unsigned size)
: GenTreeIndir(oper, type, addr, data), gtBlkSize(size), gtBlkOpKind(BlkOpKindInvalid), gtBlkOpGcUnsafe(false)
{
assert(OperIsBlk(oper));
gtFlags |= (addr->gtFlags & GTF_ALL_EFFECT);
gtFlags |= (data->gtFlags & GTF_ALL_EFFECT);
}
#if DEBUGGABLE_GENTREE
protected:
friend GenTree;
GenTreeBlk() : GenTreeIndir()
{
}
#endif // DEBUGGABLE_GENTREE
};
// gtObj -- 'object' (GT_OBJ).
//
// This node is used for block values that may have GC pointers.
struct GenTreeObj : public GenTreeBlk
{
CORINFO_CLASS_HANDLE gtClass; // the class of the object
// If non-null, this array represents the gc-layout of the class.
// This may be simply copied when cloning this node, because it is not changed once computed.
BYTE* gtGcPtrs;
// If non-zero, this is the number of slots in the class layout that
// contain gc-pointers.
__declspec(property(get = GetGcPtrCount)) unsigned gtGcPtrCount;
unsigned GetGcPtrCount() const
{
assert(_gtGcPtrCount != UINT32_MAX);
return _gtGcPtrCount;
}
unsigned _gtGcPtrCount;
// If non-zero, the number of pointer-sized slots that constitutes the class token.
unsigned gtSlots;
bool IsGCInfoInitialized()
{
return (_gtGcPtrCount != UINT32_MAX);
}
void SetGCInfo(BYTE* gcPtrs, unsigned gcPtrCount, unsigned slots)
{
gtGcPtrs = gcPtrs;
_gtGcPtrCount = gcPtrCount;
gtSlots = slots;
if (gtGcPtrCount != 0)
{
// We assume that we cannot have a struct with GC pointers that is not a multiple
// of the register size.
// The EE currently does not allow this, but it could change.
// Let's assert it just to be safe.
noway_assert(roundUp(gtBlkSize, REGSIZE_BYTES) == gtBlkSize);
}
else
{
genTreeOps newOper = GT_BLK;
if (gtOper == GT_STORE_OBJ)
{
newOper = GT_STORE_BLK;
}
else
{
assert(gtOper == GT_OBJ);
}
SetOper(newOper);
}
}
void CopyGCInfo(GenTreeObj* srcObj)
{
if (srcObj->IsGCInfoInitialized())
{
gtGcPtrs = srcObj->gtGcPtrs;
_gtGcPtrCount = srcObj->gtGcPtrCount;
gtSlots = srcObj->gtSlots;
}
}
GenTreeObj(var_types type, GenTreePtr addr, CORINFO_CLASS_HANDLE cls, unsigned size)
: GenTreeBlk(GT_OBJ, type, addr, size), gtClass(cls)
{
// By default, an OBJ is assumed to be a global reference.
gtFlags |= GTF_GLOB_REF;
noway_assert(cls != NO_CLASS_HANDLE);
_gtGcPtrCount = UINT32_MAX;
}
GenTreeObj(var_types type, GenTreePtr addr, GenTreePtr data, CORINFO_CLASS_HANDLE cls, unsigned size)
: GenTreeBlk(GT_STORE_OBJ, type, addr, data, size), gtClass(cls)
{
// By default, an OBJ is assumed to be a global reference.
gtFlags |= GTF_GLOB_REF;
noway_assert(cls != NO_CLASS_HANDLE);
_gtGcPtrCount = UINT32_MAX;
}
#if DEBUGGABLE_GENTREE
GenTreeObj() : GenTreeBlk()
{
}
#endif
};
// gtDynBlk -- 'dynamic block' (GT_DYN_BLK).
//
// This node is used for block values that have a dynamic size.
// Note that such a value can never have GC pointers.
struct GenTreeDynBlk : public GenTreeBlk
{
public:
GenTreePtr gtDynamicSize;
bool gtEvalSizeFirst;
GenTreeDynBlk(GenTreePtr addr, GenTreePtr dynamicSize)
: GenTreeBlk(GT_DYN_BLK, TYP_STRUCT, addr, 0), gtDynamicSize(dynamicSize), gtEvalSizeFirst(false)
{
// Conservatively the 'addr' could be null or point into the global heap.
gtFlags |= GTF_EXCEPT | GTF_GLOB_REF;
gtFlags |= (dynamicSize->gtFlags & GTF_ALL_EFFECT);
}
#if DEBUGGABLE_GENTREE
protected:
friend GenTree;
GenTreeDynBlk() : GenTreeBlk()
{
}
#endif // DEBUGGABLE_GENTREE
};
// Read-modify-write status of a RMW memory op rooted at a storeInd
enum RMWStatus
{
STOREIND_RMW_STATUS_UNKNOWN, // RMW status of storeInd unknown
// Default status unless modified by IsRMWMemOpRootedAtStoreInd()
// One of these denote storeind is a RMW memory operation.
STOREIND_RMW_DST_IS_OP1, // StoreInd is known to be a RMW memory op and dst candidate is op1
STOREIND_RMW_DST_IS_OP2, // StoreInd is known to be a RMW memory op and dst candidate is op2
// One of these denote the reason for storeind is marked as non-RMW operation
STOREIND_RMW_UNSUPPORTED_ADDR, // Addr mode is not yet supported for RMW memory
STOREIND_RMW_UNSUPPORTED_OPER, // Operation is not supported for RMW memory
STOREIND_RMW_UNSUPPORTED_TYPE, // Type is not supported for RMW memory
STOREIND_RMW_INDIR_UNEQUAL // Indir to read value is not equivalent to indir that writes the value
};
// StoreInd is just a BinOp, with additional RMW status
struct GenTreeStoreInd : public GenTreeIndir
{
#if !CPU_LOAD_STORE_ARCH
// The below flag is set and used during lowering
RMWStatus gtRMWStatus;
bool IsRMWStatusUnknown()
{
return gtRMWStatus == STOREIND_RMW_STATUS_UNKNOWN;
}
bool IsNonRMWMemoryOp()
{
return gtRMWStatus == STOREIND_RMW_UNSUPPORTED_ADDR || gtRMWStatus == STOREIND_RMW_UNSUPPORTED_OPER ||
gtRMWStatus == STOREIND_RMW_UNSUPPORTED_TYPE || gtRMWStatus == STOREIND_RMW_INDIR_UNEQUAL;
}
bool IsRMWMemoryOp()
{
return gtRMWStatus == STOREIND_RMW_DST_IS_OP1 || gtRMWStatus == STOREIND_RMW_DST_IS_OP2;
}
bool IsRMWDstOp1()
{
return gtRMWStatus == STOREIND_RMW_DST_IS_OP1;
}
bool IsRMWDstOp2()
{
return gtRMWStatus == STOREIND_RMW_DST_IS_OP2;
}
#endif //! CPU_LOAD_STORE_ARCH
RMWStatus GetRMWStatus()
{
#if !CPU_LOAD_STORE_ARCH
return gtRMWStatus;
#else
return STOREIND_RMW_STATUS_UNKNOWN;
#endif
}
void SetRMWStatusDefault()
{
#if !CPU_LOAD_STORE_ARCH
gtRMWStatus = STOREIND_RMW_STATUS_UNKNOWN;
#endif
}
void SetRMWStatus(RMWStatus status)
{
#if !CPU_LOAD_STORE_ARCH
gtRMWStatus = status;
#endif
}
GenTreePtr& Data()
{
return gtOp2;
}
GenTreeStoreInd(var_types type, GenTree* destPtr, GenTree* data) : GenTreeIndir(GT_STOREIND, type, destPtr, data)
{
SetRMWStatusDefault();
}
#if DEBUGGABLE_GENTREE
protected:
friend GenTree;
// Used only for GenTree::GetVtableForOper()
GenTreeStoreInd() : GenTreeIndir()
{
SetRMWStatusDefault();
}
#endif
};
/* gtRetExp -- Place holder for the return expression from an inline candidate (GT_RET_EXPR) */
struct GenTreeRetExpr : public GenTree
{
GenTree* gtInlineCandidate;
CORINFO_CLASS_HANDLE gtRetClsHnd;
GenTreeRetExpr(var_types type) : GenTree(GT_RET_EXPR, type)
{
}
#if DEBUGGABLE_GENTREE
GenTreeRetExpr() : GenTree()
{
}
#endif
};
/* gtStmt -- 'statement expr' (GT_STMT) */
class InlineContext;
struct GenTreeStmt : public GenTree
{
GenTreePtr gtStmtExpr; // root of the expression tree
GenTreePtr gtStmtList; // first node (for forward walks)
InlineContext* gtInlineContext; // The inline context for this statement.
IL_OFFSETX gtStmtILoffsx; // instr offset (if available)
#ifdef DEBUG
IL_OFFSET gtStmtLastILoffs; // instr offset at end of stmt
#endif
__declspec(property(get = getNextStmt)) GenTreeStmt* gtNextStmt;
__declspec(property(get = getPrevStmt)) GenTreeStmt* gtPrevStmt;
GenTreeStmt* getNextStmt()
{
if (gtNext == nullptr)
{
return nullptr;
}
else
{
return gtNext->AsStmt();
}
}
GenTreeStmt* getPrevStmt()
{
if (gtPrev == nullptr)
{
return nullptr;
}
else
{
return gtPrev->AsStmt();
}
}
GenTreeStmt(GenTreePtr expr, IL_OFFSETX offset)
: GenTree(GT_STMT, TYP_VOID)
, gtStmtExpr(expr)
, gtStmtList(nullptr)
, gtInlineContext(nullptr)
, gtStmtILoffsx(offset)
#ifdef DEBUG
, gtStmtLastILoffs(BAD_IL_OFFSET)
#endif
{
// Statements can't have statements as part of their expression tree.
assert(expr->gtOper != GT_STMT);
// Set the statement to have the same costs as the top node of the tree.
// This is used long before costs have been assigned, so we need to copy
// the raw costs.
CopyRawCosts(expr);
}
#if DEBUGGABLE_GENTREE
GenTreeStmt() : GenTree(GT_STMT, TYP_VOID)
{
}
#endif
};
/* NOTE: Any tree nodes that are larger than 8 bytes (two ints or
pointers) must be flagged as 'large' in GenTree::InitNodeSize().
*/
/* gtClsVar -- 'static data member' (GT_CLS_VAR) */
struct GenTreeClsVar : public GenTree
{
CORINFO_FIELD_HANDLE gtClsVarHnd;
FieldSeqNode* gtFieldSeq;
GenTreeClsVar(var_types type, CORINFO_FIELD_HANDLE clsVarHnd, FieldSeqNode* fldSeq)
: GenTree(GT_CLS_VAR, type), gtClsVarHnd(clsVarHnd), gtFieldSeq(fldSeq)
{
gtFlags |= GTF_GLOB_REF;
}
#if DEBUGGABLE_GENTREE
GenTreeClsVar() : GenTree()
{
}
#endif
};
/* gtArgPlace -- 'register argument placeholder' (GT_ARGPLACE) */
struct GenTreeArgPlace : public GenTree
{
CORINFO_CLASS_HANDLE gtArgPlaceClsHnd; // Needed when we have a TYP_STRUCT argument
GenTreeArgPlace(var_types type, CORINFO_CLASS_HANDLE clsHnd) : GenTree(GT_ARGPLACE, type), gtArgPlaceClsHnd(clsHnd)
{
}
#if DEBUGGABLE_GENTREE
GenTreeArgPlace() : GenTree()
{
}
#endif
};
/* gtLabel -- code label target (GT_LABEL) */
struct GenTreeLabel : public GenTree
{
BasicBlock* gtLabBB;
GenTreeLabel(BasicBlock* bb) : GenTree(GT_LABEL, TYP_VOID), gtLabBB(bb)
{
}
#if DEBUGGABLE_GENTREE
GenTreeLabel() : GenTree()
{
}
#endif
};
/* gtPhiArg -- phi node rhs argument, var = phi(phiarg, phiarg, phiarg...); GT_PHI_ARG */
struct GenTreePhiArg : public GenTreeLclVarCommon
{
BasicBlock* gtPredBB;
GenTreePhiArg(var_types type, unsigned lclNum, unsigned snum, BasicBlock* block)
: GenTreeLclVarCommon(GT_PHI_ARG, type, lclNum), gtPredBB(block)
{
SetSsaNum(snum);
}
#if DEBUGGABLE_GENTREE
GenTreePhiArg() : GenTreeLclVarCommon()
{
}
#endif
};
/* gtPutArgStk -- Argument passed on stack (GT_PUTARG_STK) */
struct GenTreePutArgStk : public GenTreeUnOp
{
unsigned gtSlotNum; // Slot number of the argument to be passed on stack
#if defined(UNIX_X86_ABI)
unsigned gtPadAlign; // Number of padding slots for stack alignment
#endif
// Don't let clang-format mess with the GenTreePutArgStk constructor.
// clang-format off
GenTreePutArgStk(genTreeOps oper,
var_types type,
GenTreePtr op1,
unsigned slotNum
PUT_STRUCT_ARG_STK_ONLY_ARG(unsigned numSlots),
bool putInIncomingArgArea = false,
GenTreeCall* callNode = nullptr)
: GenTreeUnOp(oper, type, op1 DEBUGARG(/*largeNode*/ false))
, gtSlotNum(slotNum)
#if defined(UNIX_X86_ABI)
, gtPadAlign(0)
#endif
#if FEATURE_FASTTAILCALL
, gtPutInIncomingArgArea(putInIncomingArgArea)
#endif // FEATURE_FASTTAILCALL
#ifdef FEATURE_PUT_STRUCT_ARG_STK
, gtPutArgStkKind(Kind::Invalid)
, gtNumSlots(numSlots)
, gtNumberReferenceSlots(0)
, gtGcPtrs(nullptr)
#endif // FEATURE_PUT_STRUCT_ARG_STK
#if defined(DEBUG) || defined(UNIX_X86_ABI)
, gtCall(callNode)
#endif
{
}
// clang-format on
#if FEATURE_FASTTAILCALL
bool gtPutInIncomingArgArea; // Whether this arg needs to be placed in incoming arg area.
// By default this is false and will be placed in out-going arg area.
// Fast tail calls set this to true.
// In future if we need to add more such bool fields consider bit fields.
bool putInIncomingArgArea() const
{
return gtPutInIncomingArgArea;
}
#else // !FEATURE_FASTTAILCALL
bool putInIncomingArgArea() const
{
return false;
}
#endif // !FEATURE_FASTTAILCALL
unsigned getArgOffset()
{
return gtSlotNum * TARGET_POINTER_SIZE;
}
#if defined(UNIX_X86_ABI)
unsigned getArgPadding()
{
return gtPadAlign;
}
void setArgPadding(unsigned padAlign)
{
gtPadAlign = padAlign;
}
#endif
#ifdef FEATURE_PUT_STRUCT_ARG_STK
unsigned getArgSize()
{
return gtNumSlots * TARGET_POINTER_SIZE;
}
// Return true if this is a PutArgStk of a SIMD12 struct.
// This is needed because such values are re-typed to SIMD16, and the type of PutArgStk is VOID.
unsigned isSIMD12()
{
return (varTypeIsSIMD(gtOp1) && (gtNumSlots == 3));
}
//------------------------------------------------------------------------
// setGcPointers: Sets the number of references and the layout of the struct object returned by the VM.
//
// Arguments:
// numPointers - Number of pointer references.
// pointers - layout of the struct (with pointers marked.)
//
// Return Value:
// None
//
// Notes:
// This data is used in the codegen for GT_PUTARG_STK to decide how to copy the struct to the stack by value.
// If no pointer references are used, block copying instructions are used.
// Otherwise the pointer reference slots are copied atomically in a way that gcinfo is emitted.
// Any non pointer references between the pointer reference slots are copied in block fashion.
//
void setGcPointers(unsigned numPointers, BYTE* pointers)
{
gtNumberReferenceSlots = numPointers;
gtGcPtrs = pointers;
}
// Instruction selection: during codegen time, what code sequence we will be using
// to encode this operation.
// TODO-Throughput: The following information should be obtained from the child
// block node.
enum class Kind : __int8{
Invalid, RepInstr, Unroll, Push, PushAllSlots,
};
Kind gtPutArgStkKind;
bool isPushKind()
{
return (gtPutArgStkKind == Kind::Push) || (gtPutArgStkKind == Kind::PushAllSlots);
}
unsigned gtNumSlots; // Number of slots for the argument to be passed on stack
unsigned gtNumberReferenceSlots; // Number of reference slots.
BYTE* gtGcPtrs; // gcPointers
#elif !defined(LEGACY_BACKEND)
unsigned getArgSize();
#endif // !LEGACY_BACKEND
#if defined(DEBUG) || defined(UNIX_X86_ABI)
GenTreeCall* gtCall; // the call node to which this argument belongs
#endif
#if DEBUGGABLE_GENTREE
GenTreePutArgStk() : GenTreeUnOp()
{
}
#endif
};
#if !defined(LEGACY_BACKEND) && defined(_TARGET_ARM_)
// Represent the struct argument: split value in register(s) and stack
struct GenTreePutArgSplit : public GenTreePutArgStk
{
unsigned gtNumRegs;
GenTreePutArgSplit(GenTreePtr op1,
unsigned slotNum PUT_STRUCT_ARG_STK_ONLY_ARG(unsigned numSlots),
unsigned numRegs,
bool putIncomingArgArea = false,
GenTreeCall* callNode = nullptr)
: GenTreePutArgStk(GT_PUTARG_SPLIT,
TYP_STRUCT,
op1,
slotNum PUT_STRUCT_ARG_STK_ONLY_ARG(numSlots),
putIncomingArgArea,
callNode)
, gtNumRegs(numRegs)
{
ClearOtherRegs();
ClearOtherRegFlags();
}
// Type required to support multi-reg struct arg.
var_types m_regType[MAX_REG_ARG];
// First reg of struct is always given by gtRegNum.
// gtOtherRegs holds the other reg numbers of struct.
regNumberSmall gtOtherRegs[MAX_REG_ARG - 1];
// GTF_SPILL or GTF_SPILLED flag on a multi-reg struct node indicates that one or
// more of its result regs are in that state. The spill flag of each of the
// return register is stored here. We only need 2 bits per register,
// so this is treated as a 2-bit array.
static const unsigned PACKED_GTF_SPILL = 1;
static const unsigned PACKED_GTF_SPILLED = 2;
unsigned char gtSpillFlags;
//---------------------------------------------------------------------------
// GetRegNumByIdx: get ith register allocated to this struct argument.
//
// Arguments:
// idx - index of the struct
//
// Return Value:
// Return regNumber of ith register of this struct argument
//
regNumber GetRegNumByIdx(unsigned idx) const
{
assert(idx < MAX_REG_ARG);
if (idx == 0)
{
return gtRegNum;
}
return (regNumber)gtOtherRegs[idx - 1];
}
//----------------------------------------------------------------------
// SetRegNumByIdx: set ith register of this struct argument
//
// Arguments:
// reg - reg number
// idx - index of the struct
//
// Return Value:
// None
//
void SetRegNumByIdx(regNumber reg, unsigned idx)
{
assert(idx < MAX_REG_ARG);
if (idx == 0)
{
gtRegNum = reg;
}
else
{
gtOtherRegs[idx - 1] = (regNumberSmall)reg;
assert(gtOtherRegs[idx - 1] == reg);
}
}
//----------------------------------------------------------------------------
// ClearOtherRegs: clear multi-reg state to indicate no regs are allocated
//
// Arguments:
// None
//
// Return Value:
// None
//
void ClearOtherRegs()
{
for (unsigned i = 0; i < MAX_REG_ARG - 1; ++i)
{
gtOtherRegs[i] = REG_NA;
}
}
//----------------------------------------------------------------------
// GetRegSpillFlagByIdx: get spill flag associated with the register
// specified by its index.
//
// Arguments:
// idx - Position or index of the register
//
// Return Value:
// Returns GTF_* flags associated with the register. Only GTF_SPILL and GTF_SPILLED are considered.
//
unsigned GetRegSpillFlagByIdx(unsigned idx) const
{
assert(idx < MAX_REG_ARG);
unsigned bits = gtSpillFlags >> (idx * 2); // It doesn't matter that we possibly leave other high bits here.
unsigned spillFlags = 0;
if (bits & PACKED_GTF_SPILL)
{
spillFlags |= GTF_SPILL;
}
if (bits & PACKED_GTF_SPILLED)
{
spillFlags |= GTF_SPILLED;
}
return spillFlags;
}
//----------------------------------------------------------------------
// SetRegSpillFlagByIdx: set spill flags for the register
// specified by its index.
//
// Arguments:
// flags - GTF_* flags. Only GTF_SPILL and GTF_SPILLED are allowed.
// idx - Position or index of the register
//
// Return Value:
// None
//
void SetRegSpillFlagByIdx(unsigned flags, unsigned idx)
{
assert(idx < MAX_REG_ARG);
unsigned bits = 0;
if (flags & GTF_SPILL)
{
bits |= PACKED_GTF_SPILL;
}
if (flags & GTF_SPILLED)
{
bits |= PACKED_GTF_SPILLED;
}
const unsigned char packedFlags = PACKED_GTF_SPILL | PACKED_GTF_SPILLED;
// Clear anything that was already there by masking out the bits before 'or'ing in what we want there.
gtSpillFlags = (unsigned char)((gtSpillFlags & ~(packedFlags << (idx * 2))) | (bits << (idx * 2)));
}
//--------------------------------------------------------------------------
// GetRegType: Get var_type of the register specified by index.
//
// Arguments:
// index - Index of the register.
// First register will have an index 0 and so on.
//
// Return Value:
// var_type of the register specified by its index.
var_types GetRegType(unsigned index)
{
assert(index < gtNumRegs);
var_types result = m_regType[index];
return result;
}
//-------------------------------------------------------------------
// clearOtherRegFlags: clear GTF_* flags associated with gtOtherRegs
//
// Arguments:
// None
//
// Return Value:
// None
//
void ClearOtherRegFlags()
{
gtSpillFlags = 0;
}
#ifdef FEATURE_PUT_STRUCT_ARG_STK
unsigned getArgSize()
{
return (gtNumSlots + gtNumRegs) * TARGET_POINTER_SIZE;
}
#endif // FEATURE_PUT_STRUCT_ARG_STK
#if DEBUGGABLE_GENTREE
GenTreePutArgSplit() : GenTreePutArgStk()
{
}
#endif
};
#endif // !LEGACY_BACKEND && _TARGET_ARM_
// Represents GT_COPY or GT_RELOAD node
struct GenTreeCopyOrReload : public GenTreeUnOp
{
#if FEATURE_MULTIREG_RET
// State required to support copy/reload of a multi-reg call node.
// First register is is always given by gtRegNum.
//
regNumberSmall gtOtherRegs[MAX_RET_REG_COUNT - 1];
#endif
//----------------------------------------------------------
// ClearOtherRegs: set gtOtherRegs to REG_NA.
//
// Arguments:
// None
//
// Return Value:
// None
//
void ClearOtherRegs()
{
#if FEATURE_MULTIREG_RET
for (unsigned i = 0; i < MAX_RET_REG_COUNT - 1; ++i)
{
gtOtherRegs[i] = REG_NA;
}
#endif
}
//-----------------------------------------------------------
// GetRegNumByIdx: Get regNumber of ith position.
//
// Arguments:
// idx - register position.
//
// Return Value:
// Returns regNumber assigned to ith position.
//
regNumber GetRegNumByIdx(unsigned idx) const
{
assert(idx < MAX_RET_REG_COUNT);
if (idx == 0)
{
return gtRegNum;
}
#if FEATURE_MULTIREG_RET
return (regNumber)gtOtherRegs[idx - 1];
#else
return REG_NA;
#endif
}
//-----------------------------------------------------------
// SetRegNumByIdx: Set the regNumber for ith position.
//
// Arguments:
// reg - reg number
// idx - register position.
//
// Return Value:
// None.
//
void SetRegNumByIdx(regNumber reg, unsigned idx)
{
assert(idx < MAX_RET_REG_COUNT);
if (idx == 0)
{
gtRegNum = reg;
}
#if FEATURE_MULTIREG_RET
else
{
gtOtherRegs[idx - 1] = (regNumberSmall)reg;
assert(gtOtherRegs[idx - 1] == reg);
}
#else
else
{
unreached();
}
#endif
}
//----------------------------------------------------------------------------
// CopyOtherRegs: copy multi-reg state from the given copy/reload node to this
// node.
//
// Arguments:
// from - GenTree node from which to copy multi-reg state
//
// Return Value:
// None
//
// TODO-ARM: Implement this routine for Arm64 and Arm32
// TODO-X86: Implement this routine for x86
void CopyOtherRegs(GenTreeCopyOrReload* from)
{
assert(OperGet() == from->OperGet());
#ifdef FEATURE_UNIX_AMD64_STRUCT_PASSING
for (unsigned i = 0; i < MAX_RET_REG_COUNT - 1; ++i)
{
gtOtherRegs[i] = from->gtOtherRegs[i];
}
#endif
}
GenTreeCopyOrReload(genTreeOps oper, var_types type, GenTree* op1) : GenTreeUnOp(oper, type, op1)
{
gtRegNum = REG_NA;
ClearOtherRegs();
}
#if DEBUGGABLE_GENTREE
GenTreeCopyOrReload() : GenTreeUnOp()
{
}
#endif
};
// Represents GT_ALLOCOBJ node
struct GenTreeAllocObj final : public GenTreeUnOp
{
unsigned int gtNewHelper; // Value returned by ICorJitInfo::getNewHelper
CORINFO_CLASS_HANDLE gtAllocObjClsHnd;
GenTreeAllocObj(var_types type, unsigned int helper, CORINFO_CLASS_HANDLE clsHnd, GenTreePtr op)
: GenTreeUnOp(GT_ALLOCOBJ, type, op DEBUGARG(/*largeNode*/ TRUE))
, // This node in most cases will be changed to a call node
gtNewHelper(helper)
, gtAllocObjClsHnd(clsHnd)
{
}
#if DEBUGGABLE_GENTREE
GenTreeAllocObj() : GenTreeUnOp()
{
}
#endif
};
// Represents GT_RUNTIMELOOKUP node
struct GenTreeRuntimeLookup final : public GenTreeUnOp
{
CORINFO_GENERIC_HANDLE gtHnd;
CorInfoGenericHandleType gtHndType;
GenTreeRuntimeLookup(CORINFO_GENERIC_HANDLE hnd, CorInfoGenericHandleType hndTyp, GenTree* tree)
: GenTreeUnOp(GT_RUNTIMELOOKUP, tree->gtType, tree DEBUGARG(/*largeNode*/ FALSE)), gtHnd(hnd), gtHndType(hndTyp)
{
assert(hnd != nullptr);
}
#if DEBUGGABLE_GENTREE
GenTreeRuntimeLookup() : GenTreeUnOp()
{
}
#endif
// Return reference to the actual tree that does the lookup
GenTree*& Lookup()
{
return gtOp1;
}
bool IsClassHandle() const
{
return gtHndType == CORINFO_HANDLETYPE_CLASS;
}
bool IsMethodHandle() const
{
return gtHndType == CORINFO_HANDLETYPE_METHOD;
}
bool IsFieldHandle() const
{
return gtHndType == CORINFO_HANDLETYPE_FIELD;
}
// Note these operations describe the handle that is input to the
// lookup, not the handle produced by the lookup.
CORINFO_CLASS_HANDLE GetClassHandle() const
{
assert(IsClassHandle());
return (CORINFO_CLASS_HANDLE)gtHnd;
}
CORINFO_METHOD_HANDLE GetMethodHandle() const
{
assert(IsMethodHandle());
return (CORINFO_METHOD_HANDLE)gtHnd;
}
CORINFO_FIELD_HANDLE GetFieldHandle() const
{
assert(IsMethodHandle());
return (CORINFO_FIELD_HANDLE)gtHnd;
}
};
// Represents a GT_JCC or GT_SETCC node.
struct GenTreeCC final : public GenTree
{
genTreeOps gtCondition; // any relop
GenTreeCC(genTreeOps oper, genTreeOps condition, var_types type = TYP_VOID)
: GenTree(oper, type DEBUGARG(/*largeNode*/ FALSE)), gtCondition(condition)
{
assert(OperIs(GT_JCC, GT_SETCC));
assert(OperIsCompare(condition));
}
#if DEBUGGABLE_GENTREE
GenTreeCC() : GenTree()
{
}
#endif // DEBUGGABLE_GENTREE
};
//------------------------------------------------------------------------
// Deferred inline functions of GenTree -- these need the subtypes above to
// be defined already.
//------------------------------------------------------------------------
inline bool GenTree::OperIsBlkOp()
{
return (((gtOper == GT_ASG) && varTypeIsStruct(gtOp.gtOp1))
#ifndef LEGACY_BACKEND
|| (OperIsBlk() && (AsBlk()->Data() != nullptr))
#endif
);
}
inline bool GenTree::OperIsDynBlkOp()
{
if (gtOper == GT_ASG)
{
return gtGetOp1()->OperGet() == GT_DYN_BLK;
}
#ifndef LEGACY_BACKEND
else if (gtOper == GT_STORE_DYN_BLK)
{
return true;
}
#endif
return false;
}
inline bool GenTree::OperIsInitBlkOp()
{
if (!OperIsBlkOp())
{
return false;
}
#ifndef LEGACY_BACKEND
GenTree* src;
if (gtOper == GT_ASG)
{
src = gtGetOp2();
}
else
{
src = AsBlk()->Data()->gtSkipReloadOrCopy();
}
#else // LEGACY_BACKEND
GenTree* src = gtGetOp2();
#endif // LEGACY_BACKEND
return src->OperIsInitVal() || src->OperIsConst();
}
inline bool GenTree::OperIsCopyBlkOp()
{
return OperIsBlkOp() && !OperIsInitBlkOp();
}
//------------------------------------------------------------------------
// IsFPZero: Checks whether this is a floating point constant with value 0.0
//
// Return Value:
// Returns true iff the tree is an GT_CNS_DBL, with value of 0.0.
inline bool GenTree::IsFPZero()
{
if ((gtOper == GT_CNS_DBL) && (gtDblCon.gtDconVal == 0.0))
{
return true;
}
return false;
}
//------------------------------------------------------------------------
// IsIntegralConst: Checks whether this is a constant node with the given value
//
// Arguments:
// constVal - the value of interest
//
// Return Value:
// Returns true iff the tree is an integral constant opcode, with
// the given value.
//
// Notes:
// Like gtIconVal, the argument is of ssize_t, so cannot check for
// long constants in a target-independent way.
inline bool GenTree::IsIntegralConst(ssize_t constVal)
{
if ((gtOper == GT_CNS_INT) && (gtIntConCommon.IconValue() == constVal))
{
return true;
}
if ((gtOper == GT_CNS_LNG) && (gtIntConCommon.LngValue() == constVal))
{
return true;
}
return false;
}
//-------------------------------------------------------------------
// IsIntegralConstVector: returns true if this this is a SIMD vector
// with all its elements equal to an integral constant.
//
// Arguments:
// constVal - const value of vector element
//
// Returns:
// True if this represents an integral const SIMD vector.
//
inline bool GenTree::IsIntegralConstVector(ssize_t constVal)
{
#ifdef FEATURE_SIMD
// SIMDIntrinsicInit intrinsic with a const value as initializer
// represents a const vector.
if ((gtOper == GT_SIMD) && (gtSIMD.gtSIMDIntrinsicID == SIMDIntrinsicInit) && gtGetOp1()->IsIntegralConst(constVal))
{
assert(varTypeIsIntegral(gtSIMD.gtSIMDBaseType));
assert(gtGetOp2IfPresent() == nullptr);
return true;
}
#endif
return false;
}
inline bool GenTree::IsBoxedValue()
{
assert(gtOper != GT_BOX || gtBox.BoxOp() != nullptr);
return (gtOper == GT_BOX) && (gtFlags & GTF_BOX_VALUE);
}
inline bool GenTree::IsSIMDEqualityOrInequality() const
{
#ifdef FEATURE_SIMD
if (gtOper == GT_SIMD)
{
// Has to cast away const-ness since AsSIMD() method is non-const.
GenTreeSIMD* simdNode = const_cast<GenTree*>(this)->AsSIMD();
return (simdNode->gtSIMDIntrinsicID == SIMDIntrinsicOpEquality ||
simdNode->gtSIMDIntrinsicID == SIMDIntrinsicOpInEquality);
}
#endif
return false;
}
inline GenTreePtr GenTree::MoveNext()
{
assert(OperIsAnyList());
return gtOp.gtOp2;
}
#ifdef DEBUG
//------------------------------------------------------------------------
// IsValidCallArgument: Given an GenTree node that represents an argument
// enforce (or don't enforce) the following invariant.
//
// Arguments:
// instance method for a GenTree node
//
// Return values:
// true: the GenTree node is accepted as a valid argument
// false: the GenTree node is not accepted as a valid argumeny
//
// Notes:
// For targets that don't support arguments as a list of fields, we do not support GT_FIELD_LIST.
//
// Currently for AMD64 UNIX we allow a limited case where a GT_FIELD_LIST is
// allowed but every element must be a GT_LCL_FLD.
//
// For the future targets that allow for Multireg args (and this includes the current ARM64 target),
// or that allow for passing promoted structs, we allow a GT_FIELD_LIST of arbitrary nodes.
// These would typically start out as GT_LCL_VARs or GT_LCL_FLDS or GT_INDs,
// but could be changed into constants or GT_COMMA trees by the later
// optimization phases.
inline bool GenTree::IsValidCallArgument()
{
if (OperIsList())
{
// GT_FIELD_LIST is the only list allowed.
return false;
}
if (OperIsFieldList())
{
#if defined(LEGACY_BACKEND) || (!FEATURE_MULTIREG_ARGS && !FEATURE_PUT_STRUCT_ARG_STK)
// Not allowed to have a GT_FIELD_LIST for an argument
// unless we have a RyuJIT backend and FEATURE_MULTIREG_ARGS or FEATURE_PUT_STRUCT_ARG_STK
return false;
#else // we have RyuJIT backend and FEATURE_MULTIREG_ARGS or FEATURE_PUT_STRUCT_ARG_STK
#ifdef FEATURE_UNIX_AMD64_STRUCT_PASSING
// For UNIX ABI we currently only allow a GT_FIELD_LIST of GT_LCL_FLDs nodes
GenTree* gtListPtr = this;
while (gtListPtr != nullptr)
{
// ToDo: fix UNIX_AMD64 so that we do not generate this kind of a List
// Note the list as currently created is malformed, as the last entry is a nullptr
if (gtListPtr->Current() == nullptr)
{
break;
}
// Only a list of GT_LCL_FLDs is allowed
if (gtListPtr->Current()->OperGet() != GT_LCL_FLD)
{
return false;
}
gtListPtr = gtListPtr->MoveNext();
}
#endif // FEATURE_UNIX_AMD64_STRUCT_PASSING
// Note that for non-UNIX ABI the GT_FIELD_LIST may contain any node
//
// We allow this GT_FIELD_LIST as an argument
return true;
#endif // FEATURE_MULTIREG_ARGS
}
// We don't have either kind of list, so it satisfies the invariant.
return true;
}
#endif // DEBUG
inline GenTreePtr GenTree::Current()
{
assert(OperIsAnyList());
return gtOp.gtOp1;
}
inline GenTreePtr* GenTree::pCurrent()
{
assert(OperIsAnyList());
return &(gtOp.gtOp1);
}
inline GenTreePtr GenTree::gtGetOp1()
{
return gtOp.gtOp1;
}
#ifdef DEBUG
/* static */
inline bool GenTree::RequiresNonNullOp2(genTreeOps oper)
{
switch (oper)
{
case GT_ADD:
case GT_SUB:
case GT_MUL:
case GT_DIV:
case GT_MOD:
case GT_UDIV:
case GT_UMOD:
case GT_OR:
case GT_XOR:
case GT_AND:
case GT_LSH:
case GT_RSH:
case GT_RSZ:
case GT_ROL:
case GT_ROR:
case GT_INDEX:
case GT_ASG:
#ifdef LEGACY_BACKEND
case GT_ASG_ADD:
case GT_ASG_SUB:
case GT_ASG_MUL:
case GT_ASG_DIV:
case GT_ASG_MOD:
case GT_ASG_UDIV:
case GT_ASG_UMOD:
case GT_ASG_OR:
case GT_ASG_XOR:
case GT_ASG_AND:
case GT_ASG_LSH:
case GT_ASG_RSH:
case GT_ASG_RSZ:
#endif
case GT_EQ:
case GT_NE:
case GT_LT:
case GT_LE:
case GT_GE:
case GT_GT:
case GT_COMMA:
case GT_QMARK:
case GT_COLON:
case GT_MKREFANY:
return true;
default:
return false;
}
}
#endif // DEBUG
inline GenTreePtr GenTree::gtGetOp2()
{
assert(OperIsBinary());
GenTreePtr op2 = gtOp.gtOp2;
// Only allow null op2 if the node type allows it, e.g. GT_LIST.
assert((op2 != nullptr) || !RequiresNonNullOp2(gtOper));
return op2;
}
inline GenTreePtr GenTree::gtGetOp2IfPresent()
{
/* gtOp.gtOp2 is only valid for GTK_BINOP nodes. */
GenTreePtr op2 = OperIsBinary() ? gtOp.gtOp2 : nullptr;
// This documents the genTreeOps for which gtOp.gtOp2 cannot be nullptr.
// This helps prefix in its analysis of code which calls gtGetOp2()
assert((op2 != nullptr) || !RequiresNonNullOp2(gtOper));
return op2;
}
inline GenTreePtr GenTree::gtEffectiveVal(bool commaOnly)
{
GenTree* effectiveVal = this;
for (;;)
{
if (effectiveVal->gtOper == GT_COMMA)
{
effectiveVal = effectiveVal->gtOp.gtOp2;
}
else if (!commaOnly && (effectiveVal->gtOper == GT_NOP) && (effectiveVal->gtOp.gtOp1 != nullptr))
{
effectiveVal = effectiveVal->gtOp.gtOp1;
}
else
{
return effectiveVal;
}
}
}
inline GenTree* GenTree::gtSkipReloadOrCopy()
{
// There can be only one reload or copy (we can't have a reload/copy of a reload/copy)
if (gtOper == GT_RELOAD || gtOper == GT_COPY)
{
assert(gtGetOp1()->OperGet() != GT_RELOAD && gtGetOp1()->OperGet() != GT_COPY);
return gtGetOp1();
}
return this;
}
//-----------------------------------------------------------------------------------
// IsMultiRegCall: whether a call node returning its value in more than one register
//
// Arguments:
// None
//
// Return Value:
// Returns true if this GenTree is a multi register returning call
inline bool GenTree::IsMultiRegCall() const
{
if (this->IsCall())
{
// We cannot use AsCall() as it is not declared const
const GenTreeCall* call = reinterpret_cast<const GenTreeCall*>(this);
return call->HasMultiRegRetVal();
}
return false;
}
//-----------------------------------------------------------------------------------
// IsMultiRegNode: whether a node returning its value in more than one register
//
// Arguments:
// None
//
// Return Value:
// Returns true if this GenTree is a multi-reg node.
inline bool GenTree::IsMultiRegNode() const
{
if (IsMultiRegCall())
{
return true;
}
#if !defined(LEGACY_BACKEND) && defined(_TARGET_ARM_)
if (OperIsMultiRegOp() || OperIsPutArgSplit() || (gtOper == GT_COPY))
{
return true;
}
#endif
return false;
}
//-------------------------------------------------------------------------
// IsCopyOrReload: whether this is a GT_COPY or GT_RELOAD node.
//
// Arguments:
// None
//
// Return Value:
// Returns true if this GenTree is a copy or reload node.
inline bool GenTree::IsCopyOrReload() const
{
return (gtOper == GT_COPY || gtOper == GT_RELOAD);
}
//-----------------------------------------------------------------------------------
// IsCopyOrReloadOfMultiRegCall: whether this is a GT_COPY or GT_RELOAD of a multi-reg
// call node.
//
// Arguments:
// None
//
// Return Value:
// Returns true if this GenTree is a copy or reload of multi-reg call node.
inline bool GenTree::IsCopyOrReloadOfMultiRegCall() const
{
if (IsCopyOrReload())
{
GenTree* t = const_cast<GenTree*>(this);
return t->gtGetOp1()->IsMultiRegCall();
}
return false;
}
inline bool GenTree::IsCnsIntOrI() const
{
return (gtOper == GT_CNS_INT);
}
inline bool GenTree::IsIntegralConst() const
{
#ifdef _TARGET_64BIT_
return IsCnsIntOrI();
#else // !_TARGET_64BIT_
return ((gtOper == GT_CNS_INT) || (gtOper == GT_CNS_LNG));
#endif // !_TARGET_64BIT_
}
// Is this node an integer constant that fits in a 32-bit signed integer (INT32)
inline bool GenTree::IsIntCnsFitsInI32()
{
#ifdef _TARGET_64BIT_
return IsCnsIntOrI() && AsIntCon()->FitsInI32();
#else // !_TARGET_64BIT_
return IsCnsIntOrI();
#endif // !_TARGET_64BIT_
}
inline bool GenTree::IsCnsFltOrDbl() const
{
return OperGet() == GT_CNS_DBL;
}
inline bool GenTree::IsCnsNonZeroFltOrDbl()
{
if (OperGet() == GT_CNS_DBL)
{
double constValue = gtDblCon.gtDconVal;
return *(__int64*)&constValue != 0;
}
return false;
}
inline bool GenTree::IsHelperCall()
{
return OperGet() == GT_CALL && gtCall.gtCallType == CT_HELPER;
}
inline var_types GenTree::CastFromType()
{
return this->gtCast.CastOp()->TypeGet();
}
inline var_types& GenTree::CastToType()
{
return this->gtCast.gtCastType;
}
//-----------------------------------------------------------------------------------
// HasGCPtr: determine whether this block op involves GC pointers
//
// Arguments:
// None
//
// Return Value:
// Returns true iff the object being copied contains one or more GC pointers.
//
// Notes:
// Of the block nodes, only GT_OBJ and ST_STORE_OBJ are allowed to have GC pointers.
//
inline bool GenTreeBlk::HasGCPtr()
{
if ((gtOper == GT_OBJ) || (gtOper == GT_STORE_OBJ))
{
return (AsObj()->gtGcPtrCount != 0);
}
return false;
}
inline bool GenTree::isUsedFromSpillTemp() const
{
#if !defined(LEGACY_BACKEND)
// If spilled and no reg at use, then it is used from the spill temp location rather than being reloaded.
if (((gtFlags & GTF_SPILLED) != 0) && ((gtFlags & GTF_NOREG_AT_USE) != 0))
{
return true;
}
#endif //! LEGACY_BACKEND
return false;
}
/*****************************************************************************/
#ifndef _HOST_64BIT_
#include <poppack.h>
#endif
/*****************************************************************************/
#if SMALL_TREE_NODES
// In debug, on some platforms (e.g., when LATE_DISASM is defined), GenTreeIntCon is bigger than GenTreeLclFld.
const size_t TREE_NODE_SZ_SMALL = max(sizeof(GenTreeIntCon), sizeof(GenTreeLclFld));
#endif // SMALL_TREE_NODES
const size_t TREE_NODE_SZ_LARGE = sizeof(GenTreeCall);
/*****************************************************************************
* Types returned by GenTree::lvaLclVarRefs()
*/
enum varRefKinds
{
VR_INVARIANT = 0x00, // an invariant value
VR_NONE = 0x00,
VR_IND_REF = 0x01, // an object reference
VR_IND_SCL = 0x02, // a non-object reference
VR_GLB_VAR = 0x04, // a global (clsVar)
};
// Add a temp define to avoid merge conflict.
#define VR_IND_PTR VR_IND_REF
/*****************************************************************************/
#endif // !GENTREE_H
/*****************************************************************************/
|