1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
|
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
/*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX XX
XX Code Generator Common: XX
XX Methods common to all architectures and register allocation strategies XX
XX XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
*/
// TODO-Cleanup: There are additional methods in CodeGen*.cpp that are almost
// identical, and which should probably be moved here.
#include "jitpch.h"
#ifdef _MSC_VER
#pragma hdrstop
#endif
#include "codegen.h"
#include "gcinfo.h"
#include "emit.h"
#ifndef JIT32_GCENCODER
#include "gcinfoencoder.h"
#endif
/*****************************************************************************/
const BYTE genTypeSizes[] = {
#define DEF_TP(tn, nm, jitType, verType, sz, sze, asze, st, al, tf, howUsed) sz,
#include "typelist.h"
#undef DEF_TP
};
const BYTE genTypeAlignments[] = {
#define DEF_TP(tn, nm, jitType, verType, sz, sze, asze, st, al, tf, howUsed) al,
#include "typelist.h"
#undef DEF_TP
};
const BYTE genTypeStSzs[] = {
#define DEF_TP(tn, nm, jitType, verType, sz, sze, asze, st, al, tf, howUsed) st,
#include "typelist.h"
#undef DEF_TP
};
const BYTE genActualTypes[] = {
#define DEF_TP(tn, nm, jitType, verType, sz, sze, asze, st, al, tf, howUsed) jitType,
#include "typelist.h"
#undef DEF_TP
};
void CodeGenInterface::setFramePointerRequiredEH(bool value)
{
m_cgFramePointerRequired = value;
#ifndef JIT32_GCENCODER
if (value)
{
// EnumGcRefs will only enumerate slots in aborted frames
// if they are fully-interruptible. So if we have a catch
// or finally that will keep frame-vars alive, we need to
// force fully-interruptible.
CLANG_FORMAT_COMMENT_ANCHOR;
#ifdef DEBUG
if (verbose)
{
printf("Method has EH, marking method as fully interruptible\n");
}
#endif
m_cgInterruptible = true;
}
#endif // JIT32_GCENCODER
}
/*****************************************************************************/
CodeGenInterface* getCodeGenerator(Compiler* comp)
{
return new (comp, CMK_Codegen) CodeGen(comp);
}
// CodeGen constructor
CodeGenInterface::CodeGenInterface(Compiler* theCompiler)
: gcInfo(theCompiler), regSet(theCompiler, gcInfo), compiler(theCompiler)
{
}
/*****************************************************************************/
CodeGen::CodeGen(Compiler* theCompiler) : CodeGenInterface(theCompiler)
{
#if defined(_TARGET_XARCH_) && !FEATURE_STACK_FP_X87
negBitmaskFlt = nullptr;
negBitmaskDbl = nullptr;
absBitmaskFlt = nullptr;
absBitmaskDbl = nullptr;
u8ToDblBitmask = nullptr;
#endif // defined(_TARGET_XARCH_) && !FEATURE_STACK_FP_X87
#if defined(FEATURE_PUT_STRUCT_ARG_STK) && !defined(_TARGET_X86_)
m_stkArgVarNum = BAD_VAR_NUM;
#endif
#if defined(UNIX_X86_ABI)
curNestedAlignment = 0;
maxNestedAlignment = 0;
#endif
regTracker.rsTrackInit(compiler, ®Set);
gcInfo.regSet = ®Set;
m_cgEmitter = new (compiler->getAllocator()) emitter();
m_cgEmitter->codeGen = this;
m_cgEmitter->gcInfo = &gcInfo;
#ifdef DEBUG
setVerbose(compiler->verbose);
#endif // DEBUG
compiler->tmpInit();
#ifdef DEBUG
#if defined(_TARGET_X86_) && defined(LEGACY_BACKEND)
// This appears to be x86-specific. It's attempting to make sure all offsets to temps
// are large. For ARM, this doesn't interact well with our decision about whether to use
// R10 or not as a reserved register.
if (regSet.rsStressRegs())
compiler->tmpIntSpillMax = (SCHAR_MAX / sizeof(int));
#endif // defined(_TARGET_X86_) && defined(LEGACY_BACKEND)
#endif // DEBUG
instInit();
#ifdef LEGACY_BACKEND
// TODO-Cleanup: These used to be set in rsInit() - should they be moved to RegSet??
// They are also accessed by the register allocators and fgMorphLclVar().
intRegState.rsCurRegArgNum = 0;
floatRegState.rsCurRegArgNum = 0;
#endif // LEGACY_BACKEND
#ifdef LATE_DISASM
getDisAssembler().disInit(compiler);
#endif
#ifdef DEBUG
genTempLiveChg = true;
genTrnslLocalVarCount = 0;
// Shouldn't be used before it is set in genFnProlog()
compiler->compCalleeRegsPushed = UninitializedWord<unsigned>();
#if defined(_TARGET_XARCH_) && !FEATURE_STACK_FP_X87
// Shouldn't be used before it is set in genFnProlog()
compiler->compCalleeFPRegsSavedMask = (regMaskTP)-1;
#endif // defined(_TARGET_XARCH_) && !FEATURE_STACK_FP_X87
#endif // DEBUG
#ifdef _TARGET_AMD64_
// This will be set before final frame layout.
compiler->compVSQuirkStackPaddingNeeded = 0;
// Set to true if we perform the Quirk that fixes the PPP issue
compiler->compQuirkForPPPflag = false;
#endif // _TARGET_AMD64_
#ifdef LEGACY_BACKEND
genFlagsEqualToNone();
#endif // LEGACY_BACKEND
// Initialize the IP-mapping logic.
compiler->genIPmappingList = nullptr;
compiler->genIPmappingLast = nullptr;
compiler->genCallSite2ILOffsetMap = nullptr;
/* Assume that we not fully interruptible */
genInterruptible = false;
#ifdef DEBUG
genInterruptibleUsed = false;
genCurDispOffset = (unsigned)-1;
#endif
}
void CodeGenInterface::genMarkTreeInReg(GenTreePtr tree, regNumber reg)
{
tree->gtRegNum = reg;
#ifdef LEGACY_BACKEND
tree->SetInReg();
#endif // LEGACY_BACKEND
}
#if CPU_LONG_USES_REGPAIR
void CodeGenInterface::genMarkTreeInRegPair(GenTreePtr tree, regPairNo regPair)
{
tree->gtRegPair = regPair;
#ifdef LEGACY_BACKEND
tree->SetInReg();
#endif // LEGACY_BACKEND
}
#endif
#if defined(_TARGET_X86_) || defined(_TARGET_ARM_)
//---------------------------------------------------------------------
// genTotalFrameSize - return the "total" size of the stack frame, including local size
// and callee-saved register size. There are a few things "missing" depending on the
// platform. The function genCallerSPtoInitialSPdelta() includes those things.
//
// For ARM, this doesn't include the prespilled registers.
//
// For x86, this doesn't include the frame pointer if codeGen->isFramePointerUsed() is true.
// It also doesn't include the pushed return address.
//
// Return value:
// Frame size
int CodeGenInterface::genTotalFrameSize()
{
assert(!IsUninitialized(compiler->compCalleeRegsPushed));
int totalFrameSize = compiler->compCalleeRegsPushed * REGSIZE_BYTES + compiler->compLclFrameSize;
assert(totalFrameSize >= 0);
return totalFrameSize;
}
//---------------------------------------------------------------------
// genSPtoFPdelta - return the offset from SP to the frame pointer.
// This number is going to be positive, since SP must be at the lowest
// address.
//
// There must be a frame pointer to call this function!
int CodeGenInterface::genSPtoFPdelta()
{
assert(isFramePointerUsed());
int delta;
delta = -genCallerSPtoInitialSPdelta() + genCallerSPtoFPdelta();
assert(delta >= 0);
return delta;
}
//---------------------------------------------------------------------
// genCallerSPtoFPdelta - return the offset from Caller-SP to the frame pointer.
// This number is going to be negative, since the Caller-SP is at a higher
// address than the frame pointer.
//
// There must be a frame pointer to call this function!
int CodeGenInterface::genCallerSPtoFPdelta()
{
assert(isFramePointerUsed());
int callerSPtoFPdelta = 0;
#if defined(_TARGET_ARM_)
// On ARM, we first push the prespill registers, then store LR, then R11 (FP), and point R11 at the saved R11.
callerSPtoFPdelta -= genCountBits(regSet.rsMaskPreSpillRegs(true)) * REGSIZE_BYTES;
callerSPtoFPdelta -= 2 * REGSIZE_BYTES;
#elif defined(_TARGET_X86_)
// Thanks to ebp chaining, the difference between ebp-based addresses
// and caller-SP-relative addresses is just the 2 pointers:
// return address
// pushed ebp
callerSPtoFPdelta -= 2 * REGSIZE_BYTES;
#else
#error "Unknown _TARGET_"
#endif // _TARGET_*
assert(callerSPtoFPdelta <= 0);
return callerSPtoFPdelta;
}
//---------------------------------------------------------------------
// genCallerSPtoInitialSPdelta - return the offset from Caller-SP to Initial SP.
//
// This number will be negative.
int CodeGenInterface::genCallerSPtoInitialSPdelta()
{
int callerSPtoSPdelta = 0;
#if defined(_TARGET_ARM_)
callerSPtoSPdelta -= genCountBits(regSet.rsMaskPreSpillRegs(true)) * REGSIZE_BYTES;
callerSPtoSPdelta -= genTotalFrameSize();
#elif defined(_TARGET_X86_)
callerSPtoSPdelta -= genTotalFrameSize();
callerSPtoSPdelta -= REGSIZE_BYTES; // caller-pushed return address
// compCalleeRegsPushed does not account for the frame pointer
// TODO-Cleanup: shouldn't this be part of genTotalFrameSize?
if (isFramePointerUsed())
{
callerSPtoSPdelta -= REGSIZE_BYTES;
}
#else
#error "Unknown _TARGET_"
#endif // _TARGET_*
assert(callerSPtoSPdelta <= 0);
return callerSPtoSPdelta;
}
#endif // defined(_TARGET_X86_) || defined(_TARGET_ARM_)
/*****************************************************************************
* Should we round simple operations (assignments, arithmetic operations, etc.)
*/
// inline
// static
bool CodeGen::genShouldRoundFP()
{
RoundLevel roundLevel = getRoundFloatLevel();
switch (roundLevel)
{
case ROUND_NEVER:
case ROUND_CMP_CONST:
case ROUND_CMP:
return false;
default:
assert(roundLevel == ROUND_ALWAYS);
return true;
}
}
/*****************************************************************************
*
* Initialize some global variables.
*/
void CodeGen::genPrepForCompiler()
{
unsigned varNum;
LclVarDsc* varDsc;
/* Figure out which non-register variables hold pointers */
VarSetOps::AssignNoCopy(compiler, gcInfo.gcTrkStkPtrLcls, VarSetOps::MakeEmpty(compiler));
// Figure out which variables live in registers.
// Also, initialize gcTrkStkPtrLcls to include all tracked variables that do not fully live
// in a register (i.e. they live on the stack for all or part of their lifetime).
// Note that lvRegister indicates that a lclVar is in a register for its entire lifetime.
VarSetOps::AssignNoCopy(compiler, compiler->raRegVarsMask, VarSetOps::MakeEmpty(compiler));
for (varNum = 0, varDsc = compiler->lvaTable; varNum < compiler->lvaCount; varNum++, varDsc++)
{
if (varDsc->lvTracked
#ifndef LEGACY_BACKEND
|| varDsc->lvIsRegCandidate()
#endif // !LEGACY_BACKEND
)
{
if (varDsc->lvRegister
#if FEATURE_STACK_FP_X87
&& !varDsc->IsFloatRegType()
#endif
)
{
VarSetOps::AddElemD(compiler, compiler->raRegVarsMask, varDsc->lvVarIndex);
}
else if (compiler->lvaIsGCTracked(varDsc))
{
VarSetOps::AddElemD(compiler, gcInfo.gcTrkStkPtrLcls, varDsc->lvVarIndex);
}
}
}
VarSetOps::AssignNoCopy(compiler, genLastLiveSet, VarSetOps::MakeEmpty(compiler));
genLastLiveMask = RBM_NONE;
#ifdef DEBUG
compiler->fgBBcountAtCodegen = compiler->fgBBcount;
#endif
}
/*****************************************************************************
* To report exception handling information to the VM, we need the size of the exception
* handling regions. To compute that, we need to emit labels for the beginning block of
* an EH region, and the block that immediately follows a region. Go through the EH
* table and mark all these blocks with BBF_HAS_LABEL to make this happen.
*
* The beginning blocks of the EH regions already should have this flag set.
*
* No blocks should be added or removed after this.
*
* This code is closely couple with genReportEH() in the sense that any block
* that this procedure has determined it needs to have a label has to be selected
* using the same logic both here and in genReportEH(), so basically any time there is
* a change in the way we handle EH reporting, we have to keep the logic of these two
* methods 'in sync'.
*/
void CodeGen::genPrepForEHCodegen()
{
assert(!compiler->fgSafeBasicBlockCreation);
EHblkDsc* HBtab;
EHblkDsc* HBtabEnd;
bool anyFinallys = false;
for (HBtab = compiler->compHndBBtab, HBtabEnd = compiler->compHndBBtab + compiler->compHndBBtabCount;
HBtab < HBtabEnd; HBtab++)
{
assert(HBtab->ebdTryBeg->bbFlags & BBF_HAS_LABEL);
assert(HBtab->ebdHndBeg->bbFlags & BBF_HAS_LABEL);
if (HBtab->ebdTryLast->bbNext != nullptr)
{
HBtab->ebdTryLast->bbNext->bbFlags |= BBF_HAS_LABEL;
}
if (HBtab->ebdHndLast->bbNext != nullptr)
{
HBtab->ebdHndLast->bbNext->bbFlags |= BBF_HAS_LABEL;
}
if (HBtab->HasFilter())
{
assert(HBtab->ebdFilter->bbFlags & BBF_HAS_LABEL);
// The block after the last block of the filter is
// the handler begin block, which we already asserted
// has BBF_HAS_LABEL set.
}
#ifdef _TARGET_AMD64_
if (HBtab->HasFinallyHandler())
{
anyFinallys = true;
}
#endif // _TARGET_AMD64_
}
#ifdef _TARGET_AMD64_
if (anyFinallys)
{
for (BasicBlock* block = compiler->fgFirstBB; block != nullptr; block = block->bbNext)
{
if (block->bbJumpKind == BBJ_CALLFINALLY)
{
BasicBlock* bbToLabel = block->bbNext;
if (block->isBBCallAlwaysPair())
{
bbToLabel = bbToLabel->bbNext; // skip the BBJ_ALWAYS
}
if (bbToLabel != nullptr)
{
bbToLabel->bbFlags |= BBF_HAS_LABEL;
}
} // block is BBJ_CALLFINALLY
} // for each block
} // if (anyFinallys)
#endif // _TARGET_AMD64_
}
void CodeGenInterface::genUpdateLife(GenTreePtr tree)
{
compiler->compUpdateLife</*ForCodeGen*/ true>(tree);
}
void CodeGenInterface::genUpdateLife(VARSET_VALARG_TP newLife)
{
compiler->compUpdateLife</*ForCodeGen*/ true>(newLife);
}
#ifdef LEGACY_BACKEND
// Returns the liveSet after tree has executed.
// "tree" MUST occur in the current statement, AFTER the most recent
// update of compiler->compCurLifeTree and compiler->compCurLife.
//
VARSET_VALRET_TP CodeGen::genUpdateLiveSetForward(GenTreePtr tree)
{
VARSET_TP startLiveSet(VarSetOps::MakeCopy(compiler, compiler->compCurLife));
GenTreePtr startNode;
assert(tree != compiler->compCurLifeTree);
if (compiler->compCurLifeTree == nullptr)
{
assert(compiler->compCurStmt != nullptr);
startNode = compiler->compCurStmt->gtStmt.gtStmtList;
}
else
{
startNode = compiler->compCurLifeTree->gtNext;
}
return compiler->fgUpdateLiveSet(startLiveSet, startNode, tree);
}
// Determine the registers that are live after "second" has been evaluated,
// but which are not live after "first".
// PRECONDITIONS:
// 1. "first" must occur after compiler->compCurLifeTree in execution order for the current statement
// 2. "second" must occur after "first" in the current statement
//
regMaskTP CodeGen::genNewLiveRegMask(GenTreePtr first, GenTreePtr second)
{
// First, compute the liveset after "first"
VARSET_TP firstLiveSet = genUpdateLiveSetForward(first);
// Now, update the set forward from "first" to "second"
VARSET_TP secondLiveSet = compiler->fgUpdateLiveSet(firstLiveSet, first->gtNext, second);
regMaskTP newLiveMask = genLiveMask(VarSetOps::Diff(compiler, secondLiveSet, firstLiveSet));
return newLiveMask;
}
#endif
// Return the register mask for the given register variable
// inline
regMaskTP CodeGenInterface::genGetRegMask(const LclVarDsc* varDsc)
{
regMaskTP regMask = RBM_NONE;
assert(varDsc->lvIsInReg());
if (varTypeIsFloating(varDsc->TypeGet()))
{
regMask = genRegMaskFloat(varDsc->lvRegNum, varDsc->TypeGet());
}
else
{
regMask = genRegMask(varDsc->lvRegNum);
if (isRegPairType(varDsc->lvType))
{
regMask |= genRegMask(varDsc->lvOtherReg);
}
}
return regMask;
}
// Return the register mask for the given lclVar or regVar tree node
// inline
regMaskTP CodeGenInterface::genGetRegMask(GenTreePtr tree)
{
assert(tree->gtOper == GT_LCL_VAR || tree->gtOper == GT_REG_VAR);
regMaskTP regMask = RBM_NONE;
const LclVarDsc* varDsc = compiler->lvaTable + tree->gtLclVarCommon.gtLclNum;
if (varDsc->lvPromoted)
{
for (unsigned i = varDsc->lvFieldLclStart; i < varDsc->lvFieldLclStart + varDsc->lvFieldCnt; ++i)
{
noway_assert(compiler->lvaTable[i].lvIsStructField);
if (compiler->lvaTable[i].lvIsInReg())
{
regMask |= genGetRegMask(&compiler->lvaTable[i]);
}
}
}
else if (varDsc->lvIsInReg())
{
regMask = genGetRegMask(varDsc);
}
return regMask;
}
// The given lclVar is either going live (being born) or dying.
// It might be both going live and dying (that is, it is a dead store) under MinOpts.
// Update regSet.rsMaskVars accordingly.
// inline
void CodeGenInterface::genUpdateRegLife(const LclVarDsc* varDsc, bool isBorn, bool isDying DEBUGARG(GenTreePtr tree))
{
#if FEATURE_STACK_FP_X87
// The stack fp reg vars are handled elsewhere
if (varTypeIsFloating(varDsc->TypeGet()))
return;
#endif
regMaskTP regMask = genGetRegMask(varDsc);
#ifdef DEBUG
if (compiler->verbose)
{
printf("\t\t\t\t\t\t\tV%02u in reg ", (varDsc - compiler->lvaTable));
varDsc->PrintVarReg();
printf(" is becoming %s ", (isDying) ? "dead" : "live");
Compiler::printTreeID(tree);
printf("\n");
}
#endif // DEBUG
if (isDying)
{
// We'd like to be able to assert the following, however if we are walking
// through a qmark/colon tree, we may encounter multiple last-use nodes.
// assert((regSet.rsMaskVars & regMask) == regMask);
regSet.RemoveMaskVars(regMask);
}
else
{
assert((regSet.rsMaskVars & regMask) == 0);
regSet.AddMaskVars(regMask);
}
}
// Gets a register mask that represent the kill set for a helper call since
// not all JIT Helper calls follow the standard ABI on the target architecture.
//
// TODO-CQ: Currently this list is incomplete (not all helpers calls are
// enumerated) and not 100% accurate (some killsets are bigger than
// what they really are).
// There's some work to be done in several places in the JIT to
// accurately track the registers that are getting killed by
// helper calls:
// a) LSRA needs several changes to accomodate more precise killsets
// for every helper call it sees (both explicitly [easy] and
// implicitly [hard])
// b) Currently for AMD64, when we generate code for a helper call
// we're independently over-pessimizing the killsets of the call
// (independently from LSRA) and this needs changes
// both in CodeGenAmd64.cpp and emitx86.cpp.
//
// The best solution for this problem would be to try to centralize
// the killset information in a single place but then make the
// corresponding changes so every code generation phase is in sync
// about this.
//
// The interim solution is to only add known helper calls that don't
// follow the AMD64 ABI and actually trash registers that are supposed to be non-volatile.
regMaskTP Compiler::compHelperCallKillSet(CorInfoHelpFunc helper)
{
switch (helper)
{
case CORINFO_HELP_ASSIGN_BYREF:
#if defined(_TARGET_AMD64_)
return RBM_RSI | RBM_RDI | RBM_CALLEE_TRASH;
#elif defined(_TARGET_ARM64_)
return RBM_WRITE_BARRIER_SRC_BYREF | RBM_WRITE_BARRIER_DST_BYREF | RBM_CALLEE_TRASH_NOGC;
#elif defined(_TARGET_X86_)
return RBM_ESI | RBM_EDI | RBM_ECX;
#elif defined(_TARGET_ARM_)
return RBM_ARG_1 | RBM_ARG_0 | RBM_CALLEE_TRASH_NOGC;
#else
NYI("Model kill set for CORINFO_HELP_ASSIGN_BYREF on target arch");
return RBM_CALLEE_TRASH;
#endif
case CORINFO_HELP_PROF_FCN_ENTER:
#ifdef RBM_PROFILER_ENTER_TRASH
return RBM_PROFILER_ENTER_TRASH;
#else
NYI("Model kill set for CORINFO_HELP_PROF_FCN_ENTER on target arch");
#endif
case CORINFO_HELP_PROF_FCN_LEAVE:
#ifdef RBM_PROFILER_LEAVE_TRASH
return RBM_PROFILER_LEAVE_TRASH;
#else
NYI("Model kill set for CORINFO_HELP_PROF_FCN_LEAVE on target arch");
#endif
case CORINFO_HELP_PROF_FCN_TAILCALL:
#ifdef RBM_PROFILER_TAILCALL_TRASH
return RBM_PROFILER_TAILCALL_TRASH;
#else
NYI("Model kill set for CORINFO_HELP_PROF_FCN_TAILCALL on target arch");
#endif
case CORINFO_HELP_STOP_FOR_GC:
return RBM_STOP_FOR_GC_TRASH;
case CORINFO_HELP_INIT_PINVOKE_FRAME:
return RBM_INIT_PINVOKE_FRAME_TRASH;
default:
return RBM_CALLEE_TRASH;
}
}
//
// Gets a register mask that represents the kill set for "NO GC" helper calls since
// not all JIT Helper calls follow the standard ABI on the target architecture.
//
// Note: This list may not be complete and defaults to the default NOGC registers.
//
regMaskTP Compiler::compNoGCHelperCallKillSet(CorInfoHelpFunc helper)
{
assert(emitter::emitNoGChelper(helper));
switch (helper)
{
#if defined(_TARGET_AMD64_) || defined(_TARGET_X86_)
case CORINFO_HELP_PROF_FCN_ENTER:
return RBM_PROFILER_ENTER_TRASH;
case CORINFO_HELP_PROF_FCN_LEAVE:
return RBM_PROFILER_LEAVE_TRASH;
case CORINFO_HELP_PROF_FCN_TAILCALL:
return RBM_PROFILER_TAILCALL_TRASH;
#endif // defined(_TARGET_AMD64_) || defined(_TARGET_X86_)
case CORINFO_HELP_ASSIGN_BYREF:
#if defined(_TARGET_AMD64_)
// this helper doesn't trash RSI and RDI
return RBM_CALLEE_TRASH_NOGC & ~(RBM_RSI | RBM_RDI);
#elif defined(_TARGET_X86_)
// This helper only trashes ECX.
return RBM_ECX;
#elif defined(_TARGET_ARM64_)
return RBM_CALLEE_TRASH_NOGC & ~(RBM_WRITE_BARRIER_SRC_BYREF | RBM_WRITE_BARRIER_DST_BYREF);
#else
return RBM_CALLEE_TRASH_NOGC;
#endif // defined(_TARGET_AMD64_)
default:
return RBM_CALLEE_TRASH_NOGC;
}
}
// Update liveness (always var liveness, i.e., compCurLife, and also, if "ForCodeGen" is true, reg liveness, i.e.,
// regSet.rsMaskVars as well)
// if the given lclVar (or indir(addr(local)))/regVar node is going live (being born) or dying.
template <bool ForCodeGen>
void Compiler::compUpdateLifeVar(GenTreePtr tree, VARSET_TP* pLastUseVars)
{
GenTreePtr indirAddrLocal = fgIsIndirOfAddrOfLocal(tree);
assert(tree->OperIsNonPhiLocal() || indirAddrLocal != nullptr);
// Get the local var tree -- if "tree" is "Ldobj(addr(x))", or "ind(addr(x))" this is "x", else it's "tree".
GenTreePtr lclVarTree = indirAddrLocal;
if (lclVarTree == nullptr)
{
lclVarTree = tree;
}
unsigned int lclNum = lclVarTree->gtLclVarCommon.gtLclNum;
LclVarDsc* varDsc = lvaTable + lclNum;
#ifdef DEBUG
#if !defined(_TARGET_AMD64_)
// There are no addr nodes on ARM and we are experimenting with encountering vars in 'random' order.
// Struct fields are not traversed in a consistent order, so ignore them when
// verifying that we see the var nodes in execution order
if (ForCodeGen)
{
if (tree->OperIsIndir())
{
assert(indirAddrLocal != NULL);
}
else if (tree->gtNext != NULL && tree->gtNext->gtOper == GT_ADDR &&
((tree->gtNext->gtNext == NULL || !tree->gtNext->gtNext->OperIsIndir())))
{
assert(tree->IsLocal()); // Can only take the address of a local.
// The ADDR might occur in a context where the address it contributes is eventually
// dereferenced, so we can't say that this is not a use or def.
}
#if 0
// TODO-ARM64-Bug?: These asserts don't seem right for ARM64: I don't understand why we have to assert
// two consecutive lclvars (in execution order) can only be observed if the first one is a struct field.
// It seems to me this is code only applicable to the legacy JIT and not RyuJIT (and therefore why it was
// ifdef'ed out for AMD64).
else if (!varDsc->lvIsStructField)
{
GenTreePtr prevTree;
for (prevTree = tree->gtPrev;
prevTree != NULL && prevTree != compCurLifeTree;
prevTree = prevTree->gtPrev)
{
if ((prevTree->gtOper == GT_LCL_VAR) || (prevTree->gtOper == GT_REG_VAR))
{
LclVarDsc * prevVarDsc = lvaTable + prevTree->gtLclVarCommon.gtLclNum;
// These are the only things for which this method MUST be called
assert(prevVarDsc->lvIsStructField);
}
}
assert(prevTree == compCurLifeTree);
}
#endif // 0
}
#endif // !_TARGET_AMD64_
#endif // DEBUG
compCurLifeTree = tree;
VARSET_TP newLife(VarSetOps::MakeCopy(this, compCurLife));
// By codegen, a struct may not be TYP_STRUCT, so we have to
// check lvPromoted, for the case where the fields are being
// tracked.
if (!varDsc->lvTracked && !varDsc->lvPromoted)
{
return;
}
bool isBorn = ((tree->gtFlags & GTF_VAR_DEF) != 0 && (tree->gtFlags & GTF_VAR_USEASG) == 0); // if it's "x <op>=
// ..." then variable
// "x" must have had a
// previous, original,
// site to be born.
bool isDying = ((tree->gtFlags & GTF_VAR_DEATH) != 0);
#ifndef LEGACY_BACKEND
bool spill = ((tree->gtFlags & GTF_SPILL) != 0);
#endif // !LEGACY_BACKEND
#ifndef LEGACY_BACKEND
// For RyuJIT backend, since all tracked vars are register candidates, but not all are in registers at all times,
// we maintain two separate sets of variables - the total set of variables that are either
// born or dying here, and the subset of those that are on the stack
VARSET_TP stackVarDeltaSet(VarSetOps::MakeEmpty(this));
#endif // !LEGACY_BACKEND
if (isBorn || isDying)
{
bool hasDeadTrackedFieldVars = false; // If this is true, then, for a LDOBJ(ADDR(<promoted struct local>)),
VARSET_TP* deadTrackedFieldVars =
nullptr; // *deadTrackedFieldVars indicates which tracked field vars are dying.
VARSET_TP varDeltaSet(VarSetOps::MakeEmpty(this));
if (varDsc->lvTracked)
{
VarSetOps::AddElemD(this, varDeltaSet, varDsc->lvVarIndex);
if (ForCodeGen)
{
#ifndef LEGACY_BACKEND
if (isBorn && varDsc->lvIsRegCandidate() && tree->gtHasReg())
{
codeGen->genUpdateVarReg(varDsc, tree);
}
#endif // !LEGACY_BACKEND
if (varDsc->lvIsInReg()
#ifndef LEGACY_BACKEND
&& tree->gtRegNum != REG_NA
#endif // !LEGACY_BACKEND
)
{
codeGen->genUpdateRegLife(varDsc, isBorn, isDying DEBUGARG(tree));
}
#ifndef LEGACY_BACKEND
else
{
VarSetOps::AddElemD(this, stackVarDeltaSet, varDsc->lvVarIndex);
}
#endif // !LEGACY_BACKEND
}
}
else if (varDsc->lvPromoted)
{
if (indirAddrLocal != nullptr && isDying)
{
assert(!isBorn); // GTF_VAR_DEATH only set for LDOBJ last use.
hasDeadTrackedFieldVars = GetPromotedStructDeathVars()->Lookup(indirAddrLocal, &deadTrackedFieldVars);
if (hasDeadTrackedFieldVars)
{
VarSetOps::Assign(this, varDeltaSet, *deadTrackedFieldVars);
}
}
for (unsigned i = varDsc->lvFieldLclStart; i < varDsc->lvFieldLclStart + varDsc->lvFieldCnt; ++i)
{
LclVarDsc* fldVarDsc = &(lvaTable[i]);
noway_assert(fldVarDsc->lvIsStructField);
if (fldVarDsc->lvTracked)
{
unsigned fldVarIndex = fldVarDsc->lvVarIndex;
noway_assert(fldVarIndex < lvaTrackedCount);
if (!hasDeadTrackedFieldVars)
{
VarSetOps::AddElemD(this, varDeltaSet, fldVarIndex);
if (ForCodeGen)
{
// We repeat this call here and below to avoid the VarSetOps::IsMember
// test in this, the common case, where we have no deadTrackedFieldVars.
if (fldVarDsc->lvIsInReg())
{
#ifndef LEGACY_BACKEND
if (isBorn)
{
codeGen->genUpdateVarReg(fldVarDsc, tree);
}
#endif // !LEGACY_BACKEND
codeGen->genUpdateRegLife(fldVarDsc, isBorn, isDying DEBUGARG(tree));
}
#ifndef LEGACY_BACKEND
else
{
VarSetOps::AddElemD(this, stackVarDeltaSet, fldVarIndex);
}
#endif // !LEGACY_BACKEND
}
}
else if (ForCodeGen && VarSetOps::IsMember(this, varDeltaSet, fldVarIndex))
{
if (lvaTable[i].lvIsInReg())
{
#ifndef LEGACY_BACKEND
if (isBorn)
{
codeGen->genUpdateVarReg(fldVarDsc, tree);
}
#endif // !LEGACY_BACKEND
codeGen->genUpdateRegLife(fldVarDsc, isBorn, isDying DEBUGARG(tree));
}
#ifndef LEGACY_BACKEND
else
{
VarSetOps::AddElemD(this, stackVarDeltaSet, fldVarIndex);
}
#endif // !LEGACY_BACKEND
}
}
}
}
// First, update the live set
if (isDying)
{
// We'd like to be able to assert the following, however if we are walking
// through a qmark/colon tree, we may encounter multiple last-use nodes.
// assert (VarSetOps::IsSubset(compiler, regVarDeltaSet, newLife));
VarSetOps::DiffD(this, newLife, varDeltaSet);
if (pLastUseVars != nullptr)
{
VarSetOps::Assign(this, *pLastUseVars, varDeltaSet);
}
}
else
{
// This shouldn't be in newLife, unless this is debug code, in which
// case we keep vars live everywhere, OR the variable is address-exposed,
// OR this block is part of a try block, in which case it may be live at the handler
// Could add a check that, if it's in newLife, that it's also in
// fgGetHandlerLiveVars(compCurBB), but seems excessive
//
// For a dead store, it can be the case that we set both isBorn and isDying to true.
// (We don't eliminate dead stores under MinOpts, so we can't assume they're always
// eliminated.) If it's both, we handled it above.
VarSetOps::UnionD(this, newLife, varDeltaSet);
}
}
if (!VarSetOps::Equal(this, compCurLife, newLife))
{
#ifdef DEBUG
if (verbose)
{
printf("\t\t\t\t\t\t\tLive vars: ");
dumpConvertedVarSet(this, compCurLife);
printf(" => ");
dumpConvertedVarSet(this, newLife);
printf("\n");
}
#endif // DEBUG
VarSetOps::Assign(this, compCurLife, newLife);
if (ForCodeGen)
{
#ifndef LEGACY_BACKEND
// Only add vars to the gcInfo.gcVarPtrSetCur if they are currently on stack, since the
// gcInfo.gcTrkStkPtrLcls
// includes all TRACKED vars that EVER live on the stack (i.e. are not always in a register).
VARSET_TP gcTrkStkDeltaSet(
VarSetOps::Intersection(this, codeGen->gcInfo.gcTrkStkPtrLcls, stackVarDeltaSet));
if (!VarSetOps::IsEmpty(this, gcTrkStkDeltaSet))
{
#ifdef DEBUG
if (verbose)
{
printf("\t\t\t\t\t\t\tGCvars: ");
dumpConvertedVarSet(this, codeGen->gcInfo.gcVarPtrSetCur);
printf(" => ");
}
#endif // DEBUG
if (isBorn)
{
VarSetOps::UnionD(this, codeGen->gcInfo.gcVarPtrSetCur, gcTrkStkDeltaSet);
}
else
{
VarSetOps::DiffD(this, codeGen->gcInfo.gcVarPtrSetCur, gcTrkStkDeltaSet);
}
#ifdef DEBUG
if (verbose)
{
dumpConvertedVarSet(this, codeGen->gcInfo.gcVarPtrSetCur);
printf("\n");
}
#endif // DEBUG
}
#else // LEGACY_BACKEND
#ifdef DEBUG
if (verbose)
{
VARSET_TP gcVarPtrSetNew(VarSetOps::Intersection(this, newLife, codeGen->gcInfo.gcTrkStkPtrLcls));
if (!VarSetOps::Equal(this, codeGen->gcInfo.gcVarPtrSetCur, gcVarPtrSetNew))
{
printf("\t\t\t\t\t\t\tGCvars: ");
dumpConvertedVarSet(this, codeGen->gcInfo.gcVarPtrSetCur);
printf(" => ");
dumpConvertedVarSet(this, gcVarPtrSetNew);
printf("\n");
}
}
#endif // DEBUG
VarSetOps::AssignNoCopy(this, codeGen->gcInfo.gcVarPtrSetCur,
VarSetOps::Intersection(this, newLife, codeGen->gcInfo.gcTrkStkPtrLcls));
#endif // LEGACY_BACKEND
codeGen->siUpdate();
}
}
#ifndef LEGACY_BACKEND
if (ForCodeGen && spill)
{
assert(!varDsc->lvPromoted);
codeGen->genSpillVar(tree);
if (VarSetOps::IsMember(this, codeGen->gcInfo.gcTrkStkPtrLcls, varDsc->lvVarIndex))
{
if (!VarSetOps::IsMember(this, codeGen->gcInfo.gcVarPtrSetCur, varDsc->lvVarIndex))
{
VarSetOps::AddElemD(this, codeGen->gcInfo.gcVarPtrSetCur, varDsc->lvVarIndex);
#ifdef DEBUG
if (verbose)
{
printf("\t\t\t\t\t\t\tVar V%02u becoming live\n", varDsc - lvaTable);
}
#endif // DEBUG
}
}
}
#endif // !LEGACY_BACKEND
}
// Need an explicit instantiation.
template void Compiler::compUpdateLifeVar<false>(GenTreePtr tree, VARSET_TP* pLastUseVars);
template <bool ForCodeGen>
void Compiler::compChangeLife(VARSET_VALARG_TP newLife DEBUGARG(GenTreePtr tree))
{
LclVarDsc* varDsc;
#ifdef DEBUG
if (verbose)
{
if (tree != nullptr)
{
Compiler::printTreeID(tree);
}
printf("Change life %s ", VarSetOps::ToString(this, compCurLife));
dumpConvertedVarSet(this, compCurLife);
printf(" -> %s ", VarSetOps::ToString(this, newLife));
dumpConvertedVarSet(this, newLife);
printf("\n");
}
#endif // DEBUG
/* We should only be called when the live set has actually changed */
noway_assert(!VarSetOps::Equal(this, compCurLife, newLife));
if (!ForCodeGen)
{
VarSetOps::Assign(this, compCurLife, newLife);
return;
}
/* Figure out which variables are becoming live/dead at this point */
// deadSet = compCurLife - newLife
VARSET_TP deadSet(VarSetOps::Diff(this, compCurLife, newLife));
// bornSet = newLife - compCurLife
VARSET_TP bornSet(VarSetOps::Diff(this, newLife, compCurLife));
/* Can't simultaneously become live and dead at the same time */
// (deadSet UNION bornSet) != EMPTY
noway_assert(!VarSetOps::IsEmptyUnion(this, deadSet, bornSet));
// (deadSet INTERSECTION bornSet) == EMPTY
noway_assert(VarSetOps::IsEmptyIntersection(this, deadSet, bornSet));
#ifdef LEGACY_BACKEND
// In the LEGACY_BACKEND case, we only consider variables that are fully enregisterd
// and there may be none.
VarSetOps::IntersectionD(this, deadSet, raRegVarsMask);
VarSetOps::IntersectionD(this, bornSet, raRegVarsMask);
// And all gcTrkStkPtrLcls that are now live will be on the stack
VarSetOps::AssignNoCopy(this, codeGen->gcInfo.gcVarPtrSetCur,
VarSetOps::Intersection(this, newLife, codeGen->gcInfo.gcTrkStkPtrLcls));
#endif // LEGACY_BACKEND
VarSetOps::Assign(this, compCurLife, newLife);
// Handle the dying vars first, then the newly live vars.
// This is because, in the RyuJIT backend case, they may occupy registers that
// will be occupied by another var that is newly live.
VarSetOps::Iter deadIter(this, deadSet);
unsigned deadVarIndex = 0;
while (deadIter.NextElem(&deadVarIndex))
{
unsigned varNum = lvaTrackedToVarNum[deadVarIndex];
varDsc = lvaTable + varNum;
bool isGCRef = (varDsc->TypeGet() == TYP_REF);
bool isByRef = (varDsc->TypeGet() == TYP_BYREF);
if (varDsc->lvIsInReg())
{
// TODO-Cleanup: Move the code from compUpdateLifeVar to genUpdateRegLife that updates the
// gc sets
regMaskTP regMask = varDsc->lvRegMask();
if (isGCRef)
{
codeGen->gcInfo.gcRegGCrefSetCur &= ~regMask;
}
else if (isByRef)
{
codeGen->gcInfo.gcRegByrefSetCur &= ~regMask;
}
codeGen->genUpdateRegLife(varDsc, false /*isBorn*/, true /*isDying*/ DEBUGARG(tree));
}
#ifndef LEGACY_BACKEND
// This isn't in a register, so update the gcVarPtrSetCur.
// (Note that in the LEGACY_BACKEND case gcVarPtrSetCur is updated above unconditionally
// for all gcTrkStkPtrLcls in newLife, because none of them ever live in a register.)
else if (isGCRef || isByRef)
{
VarSetOps::RemoveElemD(this, codeGen->gcInfo.gcVarPtrSetCur, deadVarIndex);
JITDUMP("\t\t\t\t\t\t\tV%02u becoming dead\n", varNum);
}
#endif // !LEGACY_BACKEND
}
VarSetOps::Iter bornIter(this, bornSet);
unsigned bornVarIndex = 0;
while (bornIter.NextElem(&bornVarIndex))
{
unsigned varNum = lvaTrackedToVarNum[bornVarIndex];
varDsc = lvaTable + varNum;
bool isGCRef = (varDsc->TypeGet() == TYP_REF);
bool isByRef = (varDsc->TypeGet() == TYP_BYREF);
if (varDsc->lvIsInReg())
{
#ifndef LEGACY_BACKEND
#ifdef DEBUG
if (VarSetOps::IsMember(this, codeGen->gcInfo.gcVarPtrSetCur, bornVarIndex))
{
JITDUMP("\t\t\t\t\t\t\tRemoving V%02u from gcVarPtrSetCur\n", varNum);
}
#endif // DEBUG
VarSetOps::RemoveElemD(this, codeGen->gcInfo.gcVarPtrSetCur, bornVarIndex);
#endif // !LEGACY_BACKEND
codeGen->genUpdateRegLife(varDsc, true /*isBorn*/, false /*isDying*/ DEBUGARG(tree));
regMaskTP regMask = varDsc->lvRegMask();
if (isGCRef)
{
codeGen->gcInfo.gcRegGCrefSetCur |= regMask;
}
else if (isByRef)
{
codeGen->gcInfo.gcRegByrefSetCur |= regMask;
}
}
#ifndef LEGACY_BACKEND
// This isn't in a register, so update the gcVarPtrSetCur
else if (lvaIsGCTracked(varDsc))
{
VarSetOps::AddElemD(this, codeGen->gcInfo.gcVarPtrSetCur, bornVarIndex);
JITDUMP("\t\t\t\t\t\t\tV%02u becoming live\n", varNum);
}
#endif // !LEGACY_BACKEND
}
codeGen->siUpdate();
}
// Need an explicit instantiation.
template void Compiler::compChangeLife<true>(VARSET_VALARG_TP newLife DEBUGARG(GenTreePtr tree));
#ifdef LEGACY_BACKEND
/*****************************************************************************
*
* Get the mask of integer registers that contain 'live' enregistered
* local variables after "tree".
*
* The output is the mask of integer registers that are currently
* alive and holding the enregistered local variables.
*/
regMaskTP CodeGenInterface::genLiveMask(GenTreePtr tree)
{
regMaskTP liveMask = regSet.rsMaskVars;
GenTreePtr nextNode;
if (compiler->compCurLifeTree == nullptr)
{
assert(compiler->compCurStmt != nullptr);
nextNode = compiler->compCurStmt->gtStmt.gtStmtList;
}
else
{
nextNode = compiler->compCurLifeTree->gtNext;
}
// Theoretically, we should always be able to find "tree" by walking
// forward in execution order. But unfortunately, there is at least
// one case (addressing) where a node may be evaluated out of order
// So, we have to handle that case
bool outOfOrder = false;
for (; nextNode != tree->gtNext; nextNode = nextNode->gtNext)
{
if (nextNode == nullptr)
{
outOfOrder = true;
break;
}
if (nextNode->gtOper == GT_LCL_VAR || nextNode->gtOper == GT_REG_VAR)
{
bool isBorn = ((tree->gtFlags & GTF_VAR_DEF) != 0 && (tree->gtFlags & GTF_VAR_USEASG) == 0);
bool isDying = ((nextNode->gtFlags & GTF_VAR_DEATH) != 0);
if (isBorn || isDying)
{
regMaskTP regMask = genGetRegMask(nextNode);
if (regMask != RBM_NONE)
{
if (isBorn)
{
liveMask |= regMask;
}
else
{
liveMask &= ~(regMask);
}
}
}
}
}
if (outOfOrder)
{
assert(compiler->compCurLifeTree != nullptr);
liveMask = regSet.rsMaskVars;
// We were unable to find "tree" by traversing forward. We must now go
// backward from compiler->compCurLifeTree instead. We have to start with compiler->compCurLifeTree,
// since regSet.rsMaskVars reflects its completed execution
for (nextNode = compiler->compCurLifeTree; nextNode != tree; nextNode = nextNode->gtPrev)
{
assert(nextNode != nullptr);
if (nextNode->gtOper == GT_LCL_VAR || nextNode->gtOper == GT_REG_VAR)
{
bool isBorn = ((tree->gtFlags & GTF_VAR_DEF) != 0 && (tree->gtFlags & GTF_VAR_USEASG) == 0);
bool isDying = ((nextNode->gtFlags & GTF_VAR_DEATH) != 0);
if (isBorn || isDying)
{
regMaskTP regMask = genGetRegMask(nextNode);
if (regMask != RBM_NONE)
{
// We're going backward - so things born are removed
// and vice versa
if (isBorn)
{
liveMask &= ~(regMask);
}
else
{
liveMask |= regMask;
}
}
}
}
}
}
return liveMask;
}
/*****************************************************************************
*
* Get the mask of integer registers that contain 'live' enregistered
* local variables.
* The input is a liveSet which contains a set of local
* variables that are currently alive
*
* The output is the mask of x86 integer registers that are currently
* alive and holding the enregistered local variables
*/
regMaskTP CodeGenInterface::genLiveMask(VARSET_VALARG_TP liveSet)
{
// Check for the zero LiveSet mask
if (VarSetOps::IsEmpty(compiler, liveSet))
{
return RBM_NONE;
}
// set if our liveSet matches the one we have cached: genLastLiveSet -> genLastLiveMask
if (VarSetOps::Equal(compiler, liveSet, genLastLiveSet))
{
return genLastLiveMask;
}
regMaskTP liveMask = 0;
VarSetOps::Iter iter(compiler, liveSet);
unsigned varIndex = 0;
while (iter.NextElem(&varIndex))
{
// If the variable is not enregistered, then it can't contribute to the liveMask
if (!VarSetOps::IsMember(compiler, compiler->raRegVarsMask, varIndex))
{
continue;
}
// Find the variable in compiler->lvaTable
unsigned varNum = compiler->lvaTrackedToVarNum[varIndex];
LclVarDsc* varDsc = compiler->lvaTable + varNum;
#if !FEATURE_FP_REGALLOC
// If the variable is a floating point type, then it can't contribute to the liveMask
if (varDsc->IsFloatRegType())
{
continue;
}
#endif
noway_assert(compiler->lvaTable[varNum].lvRegister);
regMaskTP regBit;
if (varTypeIsFloating(varDsc->TypeGet()))
{
regBit = genRegMaskFloat(varDsc->lvRegNum, varDsc->TypeGet());
}
else
{
regBit = genRegMask(varDsc->lvRegNum);
// For longs we may have two regs
if (isRegPairType(varDsc->lvType) && varDsc->lvOtherReg != REG_STK)
{
regBit |= genRegMask(varDsc->lvOtherReg);
}
}
noway_assert(regBit != 0);
// We should not already have any of these bits set
noway_assert((liveMask & regBit) == 0);
// Update the liveMask with the register bits that are live
liveMask |= regBit;
}
// cache the last mapping between gtLiveSet -> liveMask
VarSetOps::Assign(compiler, genLastLiveSet, liveSet);
genLastLiveMask = liveMask;
return liveMask;
}
#endif
/*****************************************************************************
*
* Generate a spill.
*/
void CodeGenInterface::spillReg(var_types type, TempDsc* tmp, regNumber reg)
{
getEmitter()->emitIns_S_R(ins_Store(type), emitActualTypeSize(type), reg, tmp->tdTempNum(), 0);
}
/*****************************************************************************
*
* Generate a reload.
*/
void CodeGenInterface::reloadReg(var_types type, TempDsc* tmp, regNumber reg)
{
getEmitter()->emitIns_R_S(ins_Load(type), emitActualTypeSize(type), reg, tmp->tdTempNum(), 0);
}
#ifdef LEGACY_BACKEND
#if defined(_TARGET_ARM_) || defined(_TARGET_AMD64_)
void CodeGenInterface::reloadFloatReg(var_types type, TempDsc* tmp, regNumber reg)
{
var_types tmpType = tmp->tdTempType();
getEmitter()->emitIns_R_S(ins_FloatLoad(type), emitActualTypeSize(tmpType), reg, tmp->tdTempNum(), 0);
}
#endif
#endif // LEGACY_BACKEND
// inline
regNumber CodeGenInterface::genGetThisArgReg(GenTreeCall* call) const
{
return REG_ARG_0;
}
//----------------------------------------------------------------------
// getSpillTempDsc: get the TempDsc corresponding to a spilled tree.
//
// Arguments:
// tree - spilled GenTree node
//
// Return Value:
// TempDsc corresponding to tree
TempDsc* CodeGenInterface::getSpillTempDsc(GenTree* tree)
{
// tree must be in spilled state.
assert((tree->gtFlags & GTF_SPILLED) != 0);
// Get the tree's SpillDsc.
RegSet::SpillDsc* prevDsc;
RegSet::SpillDsc* spillDsc = regSet.rsGetSpillInfo(tree, tree->gtRegNum, &prevDsc);
assert(spillDsc != nullptr);
// Get the temp desc.
TempDsc* temp = regSet.rsGetSpillTempWord(tree->gtRegNum, spillDsc, prevDsc);
return temp;
}
#ifdef _TARGET_XARCH_
#ifdef _TARGET_AMD64_
// Returns relocation type hint for an addr.
// Note that there are no reloc hints on x86.
//
// Arguments
// addr - data address
//
// Returns
// relocation type hint
//
unsigned short CodeGenInterface::genAddrRelocTypeHint(size_t addr)
{
return compiler->eeGetRelocTypeHint((void*)addr);
}
#endif //_TARGET_AMD64_
// Return true if an absolute indirect data address can be encoded as IP-relative.
// offset. Note that this method should be used only when the caller knows that
// the address is an icon value that VM has given and there is no GenTree node
// representing it. Otherwise, one should always use FitsInAddrBase().
//
// Arguments
// addr - an absolute indirect data address
//
// Returns
// true if indir data addr could be encoded as IP-relative offset.
//
bool CodeGenInterface::genDataIndirAddrCanBeEncodedAsPCRelOffset(size_t addr)
{
#ifdef _TARGET_AMD64_
return genAddrRelocTypeHint(addr) == IMAGE_REL_BASED_REL32;
#else
// x86: PC-relative addressing is available only for control flow instructions (jmp and call)
return false;
#endif
}
// Return true if an indirect code address can be encoded as IP-relative offset.
// Note that this method should be used only when the caller knows that the
// address is an icon value that VM has given and there is no GenTree node
// representing it. Otherwise, one should always use FitsInAddrBase().
//
// Arguments
// addr - an absolute indirect code address
//
// Returns
// true if indir code addr could be encoded as IP-relative offset.
//
bool CodeGenInterface::genCodeIndirAddrCanBeEncodedAsPCRelOffset(size_t addr)
{
#ifdef _TARGET_AMD64_
return genAddrRelocTypeHint(addr) == IMAGE_REL_BASED_REL32;
#else
// x86: PC-relative addressing is available only for control flow instructions (jmp and call)
return true;
#endif
}
// Return true if an indirect code address can be encoded as 32-bit displacement
// relative to zero. Note that this method should be used only when the caller
// knows that the address is an icon value that VM has given and there is no
// GenTree node representing it. Otherwise, one should always use FitsInAddrBase().
//
// Arguments
// addr - absolute indirect code address
//
// Returns
// true if absolute indir code addr could be encoded as 32-bit displacement relative to zero.
//
bool CodeGenInterface::genCodeIndirAddrCanBeEncodedAsZeroRelOffset(size_t addr)
{
return GenTreeIntConCommon::FitsInI32((ssize_t)addr);
}
// Return true if an absolute indirect code address needs a relocation recorded with VM.
//
// Arguments
// addr - an absolute indirect code address
//
// Returns
// true if indir code addr needs a relocation recorded with VM
//
bool CodeGenInterface::genCodeIndirAddrNeedsReloc(size_t addr)
{
// If generating relocatable ngen code, then all code addr should go through relocation
if (compiler->opts.compReloc)
{
return true;
}
#ifdef _TARGET_AMD64_
// If code addr could be encoded as 32-bit offset relative to IP, we need to record a relocation.
if (genCodeIndirAddrCanBeEncodedAsPCRelOffset(addr))
{
return true;
}
// It could be possible that the code indir addr could be encoded as 32-bit displacement relative
// to zero. But we don't need to emit a relocation in that case.
return false;
#else //_TARGET_X86_
// On x86 there is need for recording relocations during jitting,
// because all addrs fit within 32-bits.
return false;
#endif //_TARGET_X86_
}
// Return true if a direct code address needs to be marked as relocatable.
//
// Arguments
// addr - absolute direct code address
//
// Returns
// true if direct code addr needs a relocation recorded with VM
//
bool CodeGenInterface::genCodeAddrNeedsReloc(size_t addr)
{
// If generating relocatable ngen code, then all code addr should go through relocation
if (compiler->opts.compReloc)
{
return true;
}
#ifdef _TARGET_AMD64_
// By default all direct code addresses go through relocation so that VM will setup
// a jump stub if addr cannot be encoded as pc-relative offset.
return true;
#else //_TARGET_X86_
// On x86 there is no need for recording relocations during jitting,
// because all addrs fit within 32-bits.
return false;
#endif //_TARGET_X86_
}
#endif //_TARGET_XARCH_
/*****************************************************************************
*
* The following can be used to create basic blocks that serve as labels for
* the emitter. Use with caution - these are not real basic blocks!
*
*/
// inline
BasicBlock* CodeGen::genCreateTempLabel()
{
#ifdef DEBUG
// These blocks don't affect FP
compiler->fgSafeBasicBlockCreation = true;
#endif
BasicBlock* block = compiler->bbNewBasicBlock(BBJ_NONE);
#ifdef DEBUG
compiler->fgSafeBasicBlockCreation = false;
#endif
block->bbFlags |= BBF_JMP_TARGET | BBF_HAS_LABEL;
// Use coldness of current block, as this label will
// be contained in it.
block->bbFlags |= (compiler->compCurBB->bbFlags & BBF_COLD);
#ifdef DEBUG
#ifdef UNIX_X86_ABI
block->bbTgtStkDepth = (genStackLevel - curNestedAlignment) / sizeof(int);
#else
block->bbTgtStkDepth = genStackLevel / sizeof(int);
#endif
#endif
return block;
}
// inline
void CodeGen::genDefineTempLabel(BasicBlock* label)
{
#ifdef DEBUG
if (compiler->opts.dspCode)
{
printf("\n L_M%03u_BB%02u:\n", Compiler::s_compMethodsCount, label->bbNum);
}
#endif
label->bbEmitCookie =
getEmitter()->emitAddLabel(gcInfo.gcVarPtrSetCur, gcInfo.gcRegGCrefSetCur, gcInfo.gcRegByrefSetCur);
#ifdef LEGACY_BACKEND
/* gcInfo.gcRegGCrefSetCur does not account for redundant load-suppression
of GC vars, and the emitter will not know about */
regTracker.rsTrackRegClrPtr();
#endif
}
/*****************************************************************************
*
* Adjust the stack pointer by the given value; assumes that this follows
* a call so only callee-saved registers (and registers that may hold a
* return value) are used at this point.
*/
void CodeGen::genAdjustSP(ssize_t delta)
{
#if defined(_TARGET_X86_) && !defined(UNIX_X86_ABI)
if (delta == sizeof(int))
inst_RV(INS_pop, REG_ECX, TYP_INT);
else
#endif
inst_RV_IV(INS_add, REG_SPBASE, delta, EA_PTRSIZE);
}
//------------------------------------------------------------------------
// genAdjustStackLevel: Adjust the stack level, if required, for a throw helper block
//
// Arguments:
// block - The BasicBlock for which we are about to generate code.
//
// Assumptions:
// Must be called just prior to generating code for 'block'.
//
// Notes:
// This only makes an adjustment if !FEATURE_FIXED_OUT_ARGS, if there is no frame pointer,
// and if 'block' is a throw helper block with a non-zero stack level.
void CodeGen::genAdjustStackLevel(BasicBlock* block)
{
#if !FEATURE_FIXED_OUT_ARGS
// Check for inserted throw blocks and adjust genStackLevel.
CLANG_FORMAT_COMMENT_ANCHOR;
#if defined(UNIX_X86_ABI)
if (isFramePointerUsed() && compiler->fgIsThrowHlpBlk(block))
{
// x86/Linux requires stack frames to be 16-byte aligned, but SP may be unaligned
// at this point if a jump to this block is made in the middle of pushing arugments.
//
// Here we restore SP to prevent potential stack alignment issues.
getEmitter()->emitIns_R_AR(INS_lea, EA_PTRSIZE, REG_SPBASE, REG_FPBASE, -genSPtoFPdelta());
}
#endif
if (!isFramePointerUsed() && compiler->fgIsThrowHlpBlk(block))
{
noway_assert(block->bbFlags & BBF_JMP_TARGET);
SetStackLevel(compiler->fgThrowHlpBlkStkLevel(block) * sizeof(int));
if (genStackLevel != 0)
{
#ifdef _TARGET_X86_
getEmitter()->emitMarkStackLvl(genStackLevel);
inst_RV_IV(INS_add, REG_SPBASE, genStackLevel, EA_PTRSIZE);
SetStackLevel(0);
#else // _TARGET_X86_
NYI("Need emitMarkStackLvl()");
#endif // _TARGET_X86_
}
}
#endif // !FEATURE_FIXED_OUT_ARGS
}
#ifdef _TARGET_ARM_
// return size
// alignmentWB is out param
unsigned CodeGenInterface::InferOpSizeAlign(GenTreePtr op, unsigned* alignmentWB)
{
unsigned alignment = 0;
unsigned opSize = 0;
if (op->gtType == TYP_STRUCT || op->OperIsCopyBlkOp())
{
opSize = InferStructOpSizeAlign(op, &alignment);
}
else
{
alignment = genTypeAlignments[op->TypeGet()];
opSize = genTypeSizes[op->TypeGet()];
}
assert(opSize != 0);
assert(alignment != 0);
(*alignmentWB) = alignment;
return opSize;
}
// return size
// alignmentWB is out param
unsigned CodeGenInterface::InferStructOpSizeAlign(GenTreePtr op, unsigned* alignmentWB)
{
unsigned alignment = 0;
unsigned opSize = 0;
while (op->gtOper == GT_COMMA)
{
op = op->gtOp.gtOp2;
}
if (op->gtOper == GT_OBJ)
{
CORINFO_CLASS_HANDLE clsHnd = op->AsObj()->gtClass;
opSize = compiler->info.compCompHnd->getClassSize(clsHnd);
alignment = roundUp(compiler->info.compCompHnd->getClassAlignmentRequirement(clsHnd), TARGET_POINTER_SIZE);
}
else if (op->gtOper == GT_LCL_VAR)
{
unsigned varNum = op->gtLclVarCommon.gtLclNum;
LclVarDsc* varDsc = compiler->lvaTable + varNum;
assert(varDsc->lvType == TYP_STRUCT);
opSize = varDsc->lvSize();
if (varDsc->lvStructDoubleAlign)
{
alignment = TARGET_POINTER_SIZE * 2;
}
else
{
alignment = TARGET_POINTER_SIZE;
}
}
else if (op->OperIsCopyBlkOp())
{
GenTreePtr op2 = op->gtOp.gtOp2;
if (op2->OperGet() == GT_CNS_INT)
{
if (op2->IsIconHandle(GTF_ICON_CLASS_HDL))
{
CORINFO_CLASS_HANDLE clsHnd = (CORINFO_CLASS_HANDLE)op2->gtIntCon.gtIconVal;
opSize = roundUp(compiler->info.compCompHnd->getClassSize(clsHnd), TARGET_POINTER_SIZE);
alignment =
roundUp(compiler->info.compCompHnd->getClassAlignmentRequirement(clsHnd), TARGET_POINTER_SIZE);
}
else
{
opSize = op2->gtIntCon.gtIconVal;
GenTreePtr op1 = op->gtOp.gtOp1;
assert(op1->OperGet() == GT_LIST);
GenTreePtr dstAddr = op1->gtOp.gtOp1;
if (dstAddr->OperGet() == GT_ADDR)
{
InferStructOpSizeAlign(dstAddr->gtOp.gtOp1, &alignment);
}
else
{
assert(!"Unhandle dstAddr node");
alignment = TARGET_POINTER_SIZE;
}
}
}
else
{
noway_assert(!"Variable sized COPYBLK register arg!");
opSize = 0;
alignment = TARGET_POINTER_SIZE;
}
}
else if (op->gtOper == GT_MKREFANY)
{
opSize = TARGET_POINTER_SIZE * 2;
alignment = TARGET_POINTER_SIZE;
}
else if (op->IsArgPlaceHolderNode())
{
CORINFO_CLASS_HANDLE clsHnd = op->gtArgPlace.gtArgPlaceClsHnd;
assert(clsHnd != 0);
opSize = roundUp(compiler->info.compCompHnd->getClassSize(clsHnd), TARGET_POINTER_SIZE);
alignment = roundUp(compiler->info.compCompHnd->getClassAlignmentRequirement(clsHnd), TARGET_POINTER_SIZE);
}
else
{
assert(!"Unhandled gtOper");
opSize = TARGET_POINTER_SIZE;
alignment = TARGET_POINTER_SIZE;
}
assert(opSize != 0);
assert(alignment != 0);
(*alignmentWB) = alignment;
return opSize;
}
#endif // _TARGET_ARM_
/*****************************************************************************
*
* Take an address expression and try to find the best set of components to
* form an address mode; returns non-zero if this is successful.
*
* TODO-Cleanup: The RyuJIT backend never uses this to actually generate code.
* Refactor this code so that the underlying analysis can be used in
* the RyuJIT Backend to do lowering, instead of having to call this method with the
* option to not generate the code.
*
* 'fold' specifies if it is OK to fold the array index which hangs off
* a GT_NOP node.
*
* If successful, the parameters will be set to the following values:
*
* *rv1Ptr ... base operand
* *rv2Ptr ... optional operand
* *revPtr ... true if rv2 is before rv1 in the evaluation order
* #if SCALED_ADDR_MODES
* *mulPtr ... optional multiplier (2/4/8) for rv2
* Note that for [reg1 + reg2] and [reg1 + reg2 + icon], *mulPtr == 0.
* #endif
* *cnsPtr ... integer constant [optional]
*
* The 'mode' parameter may have one of the following values:
*
* #if LEA_AVAILABLE
* +1 ... we're trying to compute a value via 'LEA'
* #endif
*
* 0 ... we're trying to form an address mode
*
* -1 ... we're generating code for an address mode,
* and thus the address must already form an
* address mode (without any further work)
*
* IMPORTANT NOTE: This routine doesn't generate any code, it merely
* identifies the components that might be used to
* form an address mode later on.
*/
bool CodeGen::genCreateAddrMode(GenTreePtr addr,
int mode,
bool fold,
regMaskTP regMask,
bool* revPtr,
GenTreePtr* rv1Ptr,
GenTreePtr* rv2Ptr,
#if SCALED_ADDR_MODES
unsigned* mulPtr,
#endif
unsigned* cnsPtr,
bool nogen)
{
#ifndef LEGACY_BACKEND
assert(nogen == true);
#endif // !LEGACY_BACKEND
/*
The following indirections are valid address modes on x86/x64:
[ icon] * not handled here
[reg ]
[reg + icon]
[reg1 + reg2 ]
[reg1 + reg2 + icon]
[reg1 + 2 * reg2 ]
[reg1 + 4 * reg2 ]
[reg1 + 8 * reg2 ]
[ 2 * reg2 + icon]
[ 4 * reg2 + icon]
[ 8 * reg2 + icon]
[reg1 + 2 * reg2 + icon]
[reg1 + 4 * reg2 + icon]
[reg1 + 8 * reg2 + icon]
The following indirections are valid address modes on arm64:
[reg]
[reg + icon]
[reg1 + reg2]
[reg1 + reg2 * natural-scale]
*/
/* All indirect address modes require the address to be an addition */
if (addr->gtOper != GT_ADD)
{
return false;
}
// Can't use indirect addressing mode as we need to check for overflow.
// Also, can't use 'lea' as it doesn't set the flags.
if (addr->gtOverflow())
{
return false;
}
GenTreePtr rv1 = nullptr;
GenTreePtr rv2 = nullptr;
GenTreePtr op1;
GenTreePtr op2;
ssize_t cns;
#if SCALED_ADDR_MODES
unsigned mul;
#endif
GenTreePtr tmp;
/* What order are the sub-operands to be evaluated */
if (addr->gtFlags & GTF_REVERSE_OPS)
{
op1 = addr->gtOp.gtOp2;
op2 = addr->gtOp.gtOp1;
}
else
{
op1 = addr->gtOp.gtOp1;
op2 = addr->gtOp.gtOp2;
}
bool rev = false; // Is op2 first in the evaluation order?
/*
A complex address mode can combine the following operands:
op1 ... base address
op2 ... optional scaled index
#if SCALED_ADDR_MODES
mul ... optional multiplier (2/4/8) for op2
#endif
cns ... optional displacement
Here we try to find such a set of operands and arrange for these
to sit in registers.
*/
cns = 0;
#if SCALED_ADDR_MODES
mul = 0;
#endif
AGAIN:
/* We come back to 'AGAIN' if we have an add of a constant, and we are folding that
constant, or we have gone through a GT_NOP or GT_COMMA node. We never come back
here if we find a scaled index.
*/
CLANG_FORMAT_COMMENT_ANCHOR;
#if SCALED_ADDR_MODES
assert(mul == 0);
#endif
#ifdef LEGACY_BACKEND
/* Check both operands as far as being register variables */
if (mode != -1)
{
if (op1->gtOper == GT_LCL_VAR)
genMarkLclVar(op1);
if (op2->gtOper == GT_LCL_VAR)
genMarkLclVar(op2);
}
#endif // LEGACY_BACKEND
/* Special case: keep constants as 'op2' */
if (op1->IsCnsIntOrI())
{
// Presumably op2 is assumed to not be a constant (shouldn't happen if we've done constant folding)?
tmp = op1;
op1 = op2;
op2 = tmp;
}
/* Check for an addition of a constant */
if (op2->IsIntCnsFitsInI32() && (op2->gtType != TYP_REF) && FitsIn<INT32>(cns + op2->gtIntConCommon.IconValue()))
{
/* We're adding a constant */
cns += op2->gtIntConCommon.IconValue();
#ifdef LEGACY_BACKEND
/* Can (and should) we use "add reg, icon" ? */
if (op1->InReg() && mode == 1 && !nogen)
{
regNumber reg1 = op1->gtRegNum;
if ((regMask == 0 || (regMask & genRegMask(reg1))) && genRegTrashable(reg1, addr))
{
// In case genMarkLclVar(op1) bashed it above and it is
// the last use of the variable.
genUpdateLife(op1);
/* 'reg1' is trashable, so add "icon" into it */
genIncRegBy(reg1, cns, addr, addr->TypeGet());
genUpdateLife(addr);
return true;
}
}
#endif // LEGACY_BACKEND
#if defined(_TARGET_ARM64_) || (defined(_TARGET_ARM_) && !defined(LEGACY_BACKEND))
if (cns == 0)
#endif
{
/* Inspect the operand the constant is being added to */
switch (op1->gtOper)
{
case GT_ADD:
if (op1->gtOverflow())
{
break;
}
op2 = op1->gtOp.gtOp2;
op1 = op1->gtOp.gtOp1;
goto AGAIN;
#if SCALED_ADDR_MODES && !defined(_TARGET_ARM64_) && !(defined(_TARGET_ARM_) && !defined(LEGACY_BACKEND))
// TODO-ARM64-CQ, TODO-ARM-CQ: For now we don't try to create a scaled index.
case GT_MUL:
if (op1->gtOverflow())
{
return false; // Need overflow check
}
__fallthrough;
case GT_LSH:
mul = op1->GetScaledIndex();
if (mul)
{
/* We can use "[mul*rv2 + icon]" */
rv1 = nullptr;
rv2 = op1->gtOp.gtOp1;
goto FOUND_AM;
}
break;
#endif
default:
break;
}
}
/* The best we can do is "[rv1 + icon]" */
rv1 = op1;
rv2 = nullptr;
goto FOUND_AM;
}
// op2 is not a constant. So keep on trying.
CLANG_FORMAT_COMMENT_ANCHOR;
#ifdef LEGACY_BACKEND
// Does op1 or op2 already sit in a register?
if (op1->InReg())
{
/* op1 is sitting in a register */
}
else if (op2->InReg())
{
/* op2 is sitting in a register. Keep the enregistered value as op1 */
tmp = op1;
op1 = op2;
op2 = tmp;
noway_assert(rev == false);
rev = true;
}
else
#endif // LEGACY_BACKEND
{
/* Neither op1 nor op2 are sitting in a register right now */
switch (op1->gtOper)
{
#if !defined(_TARGET_ARM64_) && !(defined(_TARGET_ARM_) && !defined(LEGACY_BACKEND))
// TODO-ARM64-CQ, TODO-ARM-CQ: For now we don't try to create a scaled index.
case GT_ADD:
if (op1->gtOverflow())
{
break;
}
if (op1->gtOp.gtOp2->IsIntCnsFitsInI32() && FitsIn<INT32>(cns + op1->gtOp.gtOp2->gtIntCon.gtIconVal))
{
cns += op1->gtOp.gtOp2->gtIntCon.gtIconVal;
op1 = op1->gtOp.gtOp1;
goto AGAIN;
}
break;
#if SCALED_ADDR_MODES
case GT_MUL:
if (op1->gtOverflow())
{
break;
}
__fallthrough;
case GT_LSH:
mul = op1->GetScaledIndex();
if (mul)
{
/* 'op1' is a scaled value */
rv1 = op2;
rv2 = op1->gtOp.gtOp1;
int argScale;
while ((rv2->gtOper == GT_MUL || rv2->gtOper == GT_LSH) && (argScale = rv2->GetScaledIndex()) != 0)
{
if (jitIsScaleIndexMul(argScale * mul))
{
mul = mul * argScale;
rv2 = rv2->gtOp.gtOp1;
}
else
{
break;
}
}
noway_assert(rev == false);
rev = true;
goto FOUND_AM;
}
break;
#endif // SCALED_ADDR_MODES
#endif // !_TARGET_ARM64_ && !(_TARGET_ARM_ && !LEGACY_BACKEND)
case GT_NOP:
if (!nogen)
{
break;
}
op1 = op1->gtOp.gtOp1;
goto AGAIN;
case GT_COMMA:
if (!nogen)
{
break;
}
op1 = op1->gtOp.gtOp2;
goto AGAIN;
default:
break;
}
noway_assert(op2);
switch (op2->gtOper)
{
#if !defined(_TARGET_ARM64_) && !(defined(_TARGET_ARM_) && !defined(LEGACY_BACKEND))
// TODO-ARM64-CQ, TODO-ARM-CQ: For now we don't try to create a scaled index.
case GT_ADD:
if (op2->gtOverflow())
{
break;
}
if (op2->gtOp.gtOp2->IsIntCnsFitsInI32() && FitsIn<INT32>(cns + op2->gtOp.gtOp2->gtIntCon.gtIconVal))
{
cns += op2->gtOp.gtOp2->gtIntCon.gtIconVal;
op2 = op2->gtOp.gtOp1;
goto AGAIN;
}
break;
#if SCALED_ADDR_MODES
case GT_MUL:
if (op2->gtOverflow())
{
break;
}
__fallthrough;
case GT_LSH:
mul = op2->GetScaledIndex();
if (mul)
{
// 'op2' is a scaled value...is it's argument also scaled?
int argScale;
rv2 = op2->gtOp.gtOp1;
while ((rv2->gtOper == GT_MUL || rv2->gtOper == GT_LSH) && (argScale = rv2->GetScaledIndex()) != 0)
{
if (jitIsScaleIndexMul(argScale * mul))
{
mul = mul * argScale;
rv2 = rv2->gtOp.gtOp1;
}
else
{
break;
}
}
rv1 = op1;
goto FOUND_AM;
}
break;
#endif // SCALED_ADDR_MODES
#endif // !_TARGET_ARM64_ && !(_TARGET_ARM_ && !LEGACY_BACKEND)
case GT_NOP:
if (!nogen)
{
break;
}
op2 = op2->gtOp.gtOp1;
goto AGAIN;
case GT_COMMA:
if (!nogen)
{
break;
}
op2 = op2->gtOp.gtOp2;
goto AGAIN;
default:
break;
}
goto ADD_OP12;
}
#ifdef LEGACY_BACKEND
// op1 is in a register.
// Note that this case only occurs during codegen for LEGACY_BACKEND.
// Is op2 an addition or a scaled value?
noway_assert(op2);
switch (op2->gtOper)
{
case GT_ADD:
if (op2->gtOverflow())
{
break;
}
if (op2->gtOp.gtOp2->IsIntCnsFitsInI32() && FitsIn<INT32>(cns + op2->gtOp.gtOp2->gtIntCon.gtIconVal))
{
cns += op2->gtOp.gtOp2->gtIntCon.gtIconVal;
op2 = op2->gtOp.gtOp1;
goto AGAIN;
}
break;
#if SCALED_ADDR_MODES
case GT_MUL:
if (op2->gtOverflow())
{
break;
}
__fallthrough;
case GT_LSH:
mul = op2->GetScaledIndex();
if (mul)
{
rv1 = op1;
rv2 = op2->gtOp.gtOp1;
int argScale;
while ((rv2->gtOper == GT_MUL || rv2->gtOper == GT_LSH) && (argScale = rv2->GetScaledIndex()) != 0)
{
if (jitIsScaleIndexMul(argScale * mul))
{
mul = mul * argScale;
rv2 = rv2->gtOp.gtOp1;
}
else
{
break;
}
}
goto FOUND_AM;
}
break;
#endif // SCALED_ADDR_MODES
default:
break;
}
#endif // LEGACY_BACKEND
ADD_OP12:
/* The best we can do "[rv1 + rv2]" or "[rv1 + rv2 + cns]" */
rv1 = op1;
rv2 = op2;
#ifdef _TARGET_ARM64_
assert(cns == 0);
#endif
FOUND_AM:
#ifdef LEGACY_BACKEND
/* Check for register variables */
if (mode != -1)
{
if (rv1 && rv1->gtOper == GT_LCL_VAR)
genMarkLclVar(rv1);
if (rv2 && rv2->gtOper == GT_LCL_VAR)
genMarkLclVar(rv2);
}
#endif // LEGACY_BACKEND
if (rv2)
{
/* Make sure a GC address doesn't end up in 'rv2' */
if (varTypeIsGC(rv2->TypeGet()))
{
noway_assert(rv1 && !varTypeIsGC(rv1->TypeGet()));
tmp = rv1;
rv1 = rv2;
rv2 = tmp;
rev = !rev;
}
/* Special case: constant array index (that is range-checked) */
CLANG_FORMAT_COMMENT_ANCHOR;
#if defined(LEGACY_BACKEND)
// If we've already placed rv2 in a register, we are probably being called in a context that has already
// presumed that an addressing mode will be created, even if rv2 is constant, and if we fold we may not find a
// useful addressing mode (e.g. if we had [mul * rv2 + cns] it might happen to fold to [cns2].
if (mode == -1 && rv2->InReg())
{
fold = false;
}
#endif
if (fold)
{
ssize_t tmpMul;
GenTreePtr index;
if ((rv2->gtOper == GT_MUL || rv2->gtOper == GT_LSH) && (rv2->gtOp.gtOp2->IsCnsIntOrI()))
{
/* For valuetype arrays where we can't use the scaled address
mode, rv2 will point to the scaled index. So we have to do
more work */
tmpMul = compiler->optGetArrayRefScaleAndIndex(rv2, &index DEBUGARG(false));
if (mul)
{
tmpMul *= mul;
}
}
else
{
/* May be a simple array. rv2 will points to the actual index */
index = rv2;
tmpMul = mul;
}
/* Get hold of the array index and see if it's a constant */
if (index->IsIntCnsFitsInI32())
{
/* Get hold of the index value */
ssize_t ixv = index->AsIntConCommon()->IconValue();
#if SCALED_ADDR_MODES
/* Scale the index if necessary */
if (tmpMul)
{
ixv *= tmpMul;
}
#endif
if (FitsIn<INT32>(cns + ixv))
{
/* Add the scaled index to the offset value */
cns += ixv;
#if SCALED_ADDR_MODES
/* There is no scaled operand any more */
mul = 0;
#endif
rv2 = nullptr;
}
}
}
}
// We shouldn't have [rv2*1 + cns] - this is equivalent to [rv1 + cns]
noway_assert(rv1 || mul != 1);
noway_assert(FitsIn<INT32>(cns));
if (rv1 == nullptr && rv2 == nullptr)
{
return false;
}
/* Success - return the various components to the caller */
*revPtr = rev;
*rv1Ptr = rv1;
*rv2Ptr = rv2;
#if SCALED_ADDR_MODES
*mulPtr = mul;
#endif
// TODO-Cleanup: The offset is signed and it should be returned as such. See also
// GenTreeAddrMode::gtOffset and its associated cleanup note.
*cnsPtr = (unsigned)cns;
return true;
}
/*****************************************************************************
* The condition to use for (the jmp/set for) the given type of operation
*
* In case of amd64, this routine should be used when there is no gentree available
* and one needs to generate jumps based on integer comparisons. When gentree is
* available always use its overloaded version.
*
*/
// static
emitJumpKind CodeGen::genJumpKindForOper(genTreeOps cmp, CompareKind compareKind)
{
const static BYTE genJCCinsSigned[] = {
#if defined(_TARGET_XARCH_)
EJ_je, // GT_EQ
EJ_jne, // GT_NE
EJ_jl, // GT_LT
EJ_jle, // GT_LE
EJ_jge, // GT_GE
EJ_jg, // GT_GT
#ifndef LEGACY_BACKEND
EJ_je, // GT_TEST_EQ
EJ_jne, // GT_TEST_NE
#endif
#elif defined(_TARGET_ARMARCH_)
EJ_eq, // GT_EQ
EJ_ne, // GT_NE
EJ_lt, // GT_LT
EJ_le, // GT_LE
EJ_ge, // GT_GE
EJ_gt, // GT_GT
#if defined(_TARGET_ARM64_)
EJ_eq, // GT_TEST_EQ
EJ_ne, // GT_TEST_NE
#endif
#endif
};
const static BYTE genJCCinsUnsigned[] = /* unsigned comparison */
{
#if defined(_TARGET_XARCH_)
EJ_je, // GT_EQ
EJ_jne, // GT_NE
EJ_jb, // GT_LT
EJ_jbe, // GT_LE
EJ_jae, // GT_GE
EJ_ja, // GT_GT
#ifndef LEGACY_BACKEND
EJ_je, // GT_TEST_EQ
EJ_jne, // GT_TEST_NE
#endif
#elif defined(_TARGET_ARMARCH_)
EJ_eq, // GT_EQ
EJ_ne, // GT_NE
EJ_lo, // GT_LT
EJ_ls, // GT_LE
EJ_hs, // GT_GE
EJ_hi, // GT_GT
#if defined(_TARGET_ARM64_)
EJ_eq, // GT_TEST_EQ
EJ_ne, // GT_TEST_NE
#endif
#endif
};
const static BYTE genJCCinsLogical[] = /* logical operation */
{
#if defined(_TARGET_XARCH_)
EJ_je, // GT_EQ (Z == 1)
EJ_jne, // GT_NE (Z == 0)
EJ_js, // GT_LT (S == 1)
EJ_NONE, // GT_LE
EJ_jns, // GT_GE (S == 0)
EJ_NONE, // GT_GT
#ifndef LEGACY_BACKEND
EJ_NONE, // GT_TEST_EQ
EJ_NONE, // GT_TEST_NE
#endif
#elif defined(_TARGET_ARMARCH_)
EJ_eq, // GT_EQ (Z == 1)
EJ_ne, // GT_NE (Z == 0)
EJ_mi, // GT_LT (N == 1)
EJ_NONE, // GT_LE
EJ_pl, // GT_GE (N == 0)
EJ_NONE, // GT_GT
#if defined(_TARGET_ARM64_)
EJ_eq, // GT_TEST_EQ
EJ_ne, // GT_TEST_NE
#endif
#endif
};
#if defined(_TARGET_XARCH_)
assert(genJCCinsSigned[GT_EQ - GT_EQ] == EJ_je);
assert(genJCCinsSigned[GT_NE - GT_EQ] == EJ_jne);
assert(genJCCinsSigned[GT_LT - GT_EQ] == EJ_jl);
assert(genJCCinsSigned[GT_LE - GT_EQ] == EJ_jle);
assert(genJCCinsSigned[GT_GE - GT_EQ] == EJ_jge);
assert(genJCCinsSigned[GT_GT - GT_EQ] == EJ_jg);
#ifndef LEGACY_BACKEND
assert(genJCCinsSigned[GT_TEST_EQ - GT_EQ] == EJ_je);
assert(genJCCinsSigned[GT_TEST_NE - GT_EQ] == EJ_jne);
#endif
assert(genJCCinsUnsigned[GT_EQ - GT_EQ] == EJ_je);
assert(genJCCinsUnsigned[GT_NE - GT_EQ] == EJ_jne);
assert(genJCCinsUnsigned[GT_LT - GT_EQ] == EJ_jb);
assert(genJCCinsUnsigned[GT_LE - GT_EQ] == EJ_jbe);
assert(genJCCinsUnsigned[GT_GE - GT_EQ] == EJ_jae);
assert(genJCCinsUnsigned[GT_GT - GT_EQ] == EJ_ja);
#ifndef LEGACY_BACKEND
assert(genJCCinsUnsigned[GT_TEST_EQ - GT_EQ] == EJ_je);
assert(genJCCinsUnsigned[GT_TEST_NE - GT_EQ] == EJ_jne);
#endif
assert(genJCCinsLogical[GT_EQ - GT_EQ] == EJ_je);
assert(genJCCinsLogical[GT_NE - GT_EQ] == EJ_jne);
assert(genJCCinsLogical[GT_LT - GT_EQ] == EJ_js);
assert(genJCCinsLogical[GT_GE - GT_EQ] == EJ_jns);
#elif defined(_TARGET_ARMARCH_)
assert(genJCCinsSigned[GT_EQ - GT_EQ] == EJ_eq);
assert(genJCCinsSigned[GT_NE - GT_EQ] == EJ_ne);
assert(genJCCinsSigned[GT_LT - GT_EQ] == EJ_lt);
assert(genJCCinsSigned[GT_LE - GT_EQ] == EJ_le);
assert(genJCCinsSigned[GT_GE - GT_EQ] == EJ_ge);
assert(genJCCinsSigned[GT_GT - GT_EQ] == EJ_gt);
assert(genJCCinsUnsigned[GT_EQ - GT_EQ] == EJ_eq);
assert(genJCCinsUnsigned[GT_NE - GT_EQ] == EJ_ne);
assert(genJCCinsUnsigned[GT_LT - GT_EQ] == EJ_lo);
assert(genJCCinsUnsigned[GT_LE - GT_EQ] == EJ_ls);
assert(genJCCinsUnsigned[GT_GE - GT_EQ] == EJ_hs);
assert(genJCCinsUnsigned[GT_GT - GT_EQ] == EJ_hi);
assert(genJCCinsLogical[GT_EQ - GT_EQ] == EJ_eq);
assert(genJCCinsLogical[GT_NE - GT_EQ] == EJ_ne);
assert(genJCCinsLogical[GT_LT - GT_EQ] == EJ_mi);
assert(genJCCinsLogical[GT_GE - GT_EQ] == EJ_pl);
#else
assert(!"unknown arch");
#endif
assert(GenTree::OperIsCompare(cmp));
emitJumpKind result = EJ_COUNT;
if (compareKind == CK_UNSIGNED)
{
result = (emitJumpKind)genJCCinsUnsigned[cmp - GT_EQ];
}
else if (compareKind == CK_SIGNED)
{
result = (emitJumpKind)genJCCinsSigned[cmp - GT_EQ];
}
else if (compareKind == CK_LOGICAL)
{
result = (emitJumpKind)genJCCinsLogical[cmp - GT_EQ];
}
assert(result != EJ_COUNT);
return result;
}
#ifndef LEGACY_BACKEND
#ifdef _TARGET_ARMARCH_
//------------------------------------------------------------------------
// genEmitGSCookieCheck: Generate code to check that the GS cookie
// wasn't thrashed by a buffer overrun. Coomon code for ARM32 and ARM64
//
void CodeGen::genEmitGSCookieCheck(bool pushReg)
{
noway_assert(compiler->gsGlobalSecurityCookieAddr || compiler->gsGlobalSecurityCookieVal);
// Make sure that the return register is reported as live GC-ref so that any GC that kicks in while
// executing GS cookie check will not collect the object pointed to by REG_INTRET (R0).
if (!pushReg && (compiler->info.compRetType == TYP_REF))
gcInfo.gcRegGCrefSetCur |= RBM_INTRET;
regNumber regGSConst = REG_TMP_0;
regNumber regGSValue = REG_TMP_1;
if (compiler->gsGlobalSecurityCookieAddr == nullptr)
{
// load the GS cookie constant into a reg
//
genSetRegToIcon(regGSConst, compiler->gsGlobalSecurityCookieVal, TYP_I_IMPL);
}
else
{
// Ngen case - GS cookie constant needs to be accessed through an indirection.
instGen_Set_Reg_To_Imm(EA_HANDLE_CNS_RELOC, regGSConst, (ssize_t)compiler->gsGlobalSecurityCookieAddr);
getEmitter()->emitIns_R_R_I(ins_Load(TYP_I_IMPL), EA_PTRSIZE, regGSConst, regGSConst, 0);
}
// Load this method's GS value from the stack frame
getEmitter()->emitIns_R_S(ins_Load(TYP_I_IMPL), EA_PTRSIZE, regGSValue, compiler->lvaGSSecurityCookie, 0);
// Compare with the GC cookie constant
getEmitter()->emitIns_R_R(INS_cmp, EA_PTRSIZE, regGSConst, regGSValue);
BasicBlock* gsCheckBlk = genCreateTempLabel();
emitJumpKind jmpEqual = genJumpKindForOper(GT_EQ, CK_SIGNED);
inst_JMP(jmpEqual, gsCheckBlk);
// regGSConst and regGSValue aren't needed anymore, we can use them for helper call
genEmitHelperCall(CORINFO_HELP_FAIL_FAST, 0, EA_UNKNOWN, regGSConst);
genDefineTempLabel(gsCheckBlk);
}
#endif // _TARGET_ARMARCH_
#endif // !LEGACY_BACKEND
/*****************************************************************************
*
* Generate an exit sequence for a return from a method (note: when compiling
* for speed there might be multiple exit points).
*/
void CodeGen::genExitCode(BasicBlock* block)
{
/* Just wrote the first instruction of the epilog - inform debugger
Note that this may result in a duplicate IPmapping entry, and
that this is ok */
// For non-optimized debuggable code, there is only one epilog.
genIPmappingAdd((IL_OFFSETX)ICorDebugInfo::EPILOG, true);
bool jmpEpilog = ((block->bbFlags & BBF_HAS_JMP) != 0);
if (compiler->getNeedsGSSecurityCookie())
{
genEmitGSCookieCheck(jmpEpilog);
if (jmpEpilog)
{
// Dev10 642944 -
// The GS cookie check created a temp label that has no live
// incoming GC registers, we need to fix that
unsigned varNum;
LclVarDsc* varDsc;
/* Figure out which register parameters hold pointers */
for (varNum = 0, varDsc = compiler->lvaTable; varNum < compiler->lvaCount && varDsc->lvIsRegArg;
varNum++, varDsc++)
{
noway_assert(varDsc->lvIsParam);
gcInfo.gcMarkRegPtrVal(varDsc->lvArgReg, varDsc->TypeGet());
}
getEmitter()->emitThisGCrefRegs = getEmitter()->emitInitGCrefRegs = gcInfo.gcRegGCrefSetCur;
getEmitter()->emitThisByrefRegs = getEmitter()->emitInitByrefRegs = gcInfo.gcRegByrefSetCur;
}
}
genReserveEpilog(block);
}
/*****************************************************************************
*
* Generate code for an out-of-line exception.
* For debuggable code, we generate the 'throw' inline.
* For non-dbg code, we share the helper blocks created by fgAddCodeRef().
*/
void CodeGen::genJumpToThrowHlpBlk(emitJumpKind jumpKind, SpecialCodeKind codeKind, GenTreePtr failBlk)
{
bool useThrowHlpBlk = !compiler->opts.compDbgCode;
#if defined(UNIX_X86_ABI) && FEATURE_EH_FUNCLETS
// Inline exception-throwing code in funclet to make it possible to unwind funclet frames.
useThrowHlpBlk = useThrowHlpBlk && (compiler->funCurrentFunc()->funKind == FUNC_ROOT);
#endif // UNIX_X86_ABI && FEATURE_EH_FUNCLETS
if (useThrowHlpBlk)
{
/* For non-debuggable code, find and use the helper block for
raising the exception. The block may be shared by other trees too. */
BasicBlock* tgtBlk;
if (failBlk)
{
/* We already know which block to jump to. Use that. */
noway_assert(failBlk->gtOper == GT_LABEL);
tgtBlk = failBlk->gtLabel.gtLabBB;
noway_assert(
tgtBlk ==
compiler->fgFindExcptnTarget(codeKind, compiler->bbThrowIndex(compiler->compCurBB))->acdDstBlk);
}
else
{
/* Find the helper-block which raises the exception. */
Compiler::AddCodeDsc* add =
compiler->fgFindExcptnTarget(codeKind, compiler->bbThrowIndex(compiler->compCurBB));
PREFIX_ASSUME_MSG((add != nullptr), ("ERROR: failed to find exception throw block"));
tgtBlk = add->acdDstBlk;
}
noway_assert(tgtBlk);
// Jump to the excption-throwing block on error.
inst_JMP(jumpKind, tgtBlk);
}
else
{
/* The code to throw the exception will be generated inline, and
we will jump around it in the normal non-exception case */
BasicBlock* tgtBlk = nullptr;
emitJumpKind reverseJumpKind = emitter::emitReverseJumpKind(jumpKind);
if (reverseJumpKind != jumpKind)
{
tgtBlk = genCreateTempLabel();
inst_JMP(reverseJumpKind, tgtBlk);
}
genEmitHelperCall(compiler->acdHelper(codeKind), 0, EA_UNKNOWN);
/* Define the spot for the normal non-exception case to jump to */
if (tgtBlk != nullptr)
{
assert(reverseJumpKind != jumpKind);
genDefineTempLabel(tgtBlk);
}
}
}
/*****************************************************************************
*
* The last operation done was generating code for "tree" and that would
* have set the flags. Check if the operation caused an overflow.
*/
// inline
void CodeGen::genCheckOverflow(GenTreePtr tree)
{
// Overflow-check should be asked for this tree
noway_assert(tree->gtOverflow());
const var_types type = tree->TypeGet();
// Overflow checks can only occur for the non-small types: (i.e. TYP_INT,TYP_LONG)
noway_assert(!varTypeIsSmall(type));
emitJumpKind jumpKind;
#ifdef _TARGET_ARM64_
if (tree->OperGet() == GT_MUL)
{
jumpKind = EJ_ne;
}
else
#endif
{
bool isUnsignedOverflow = ((tree->gtFlags & GTF_UNSIGNED) != 0);
#if defined(_TARGET_XARCH_)
jumpKind = isUnsignedOverflow ? EJ_jb : EJ_jo;
#elif defined(_TARGET_ARMARCH_)
jumpKind = isUnsignedOverflow ? EJ_lo : EJ_vs;
if (jumpKind == EJ_lo)
{
if ((tree->OperGet() != GT_SUB)
#ifdef LEGACY_BACKEND
&& (tree->gtOper != GT_ASG_SUB)
#endif
)
{
jumpKind = EJ_hs;
}
}
#endif // defined(_TARGET_ARMARCH_)
}
// Jump to the block which will throw the expection
genJumpToThrowHlpBlk(jumpKind, SCK_OVERFLOW);
}
#if FEATURE_EH_FUNCLETS
/*****************************************************************************
*
* Update the current funclet as needed by calling genUpdateCurrentFunclet().
* For non-BBF_FUNCLET_BEG blocks, it asserts that the current funclet
* is up-to-date.
*
*/
void CodeGen::genUpdateCurrentFunclet(BasicBlock* block)
{
if (block->bbFlags & BBF_FUNCLET_BEG)
{
compiler->funSetCurrentFunc(compiler->funGetFuncIdx(block));
if (compiler->funCurrentFunc()->funKind == FUNC_FILTER)
{
assert(compiler->ehGetDsc(compiler->funCurrentFunc()->funEHIndex)->ebdFilter == block);
}
else
{
// We shouldn't see FUNC_ROOT
assert(compiler->funCurrentFunc()->funKind == FUNC_HANDLER);
assert(compiler->ehGetDsc(compiler->funCurrentFunc()->funEHIndex)->ebdHndBeg == block);
}
}
else
{
assert(compiler->compCurrFuncIdx <= compiler->compFuncInfoCount);
if (compiler->funCurrentFunc()->funKind == FUNC_FILTER)
{
assert(compiler->ehGetDsc(compiler->funCurrentFunc()->funEHIndex)->InFilterRegionBBRange(block));
}
else if (compiler->funCurrentFunc()->funKind == FUNC_ROOT)
{
assert(!block->hasHndIndex());
}
else
{
assert(compiler->funCurrentFunc()->funKind == FUNC_HANDLER);
assert(compiler->ehGetDsc(compiler->funCurrentFunc()->funEHIndex)->InHndRegionBBRange(block));
}
}
}
#if defined(_TARGET_ARM_)
void CodeGen::genInsertNopForUnwinder(BasicBlock* block)
{
// If this block is the target of a finally return, we need to add a preceding NOP, in the same EH region,
// so the unwinder doesn't get confused by our "movw lr, xxx; movt lr, xxx; b Lyyy" calling convention that
// calls the funclet during non-exceptional control flow.
if (block->bbFlags & BBF_FINALLY_TARGET)
{
assert(block->bbFlags & BBF_JMP_TARGET);
#ifdef DEBUG
if (compiler->verbose)
{
printf("\nEmitting finally target NOP predecessor for BB%02u\n", block->bbNum);
}
#endif
// Create a label that we'll use for computing the start of an EH region, if this block is
// at the beginning of such a region. If we used the existing bbEmitCookie as is for
// determining the EH regions, then this NOP would end up outside of the region, if this
// block starts an EH region. If we pointed the existing bbEmitCookie here, then the NOP
// would be executed, which we would prefer not to do.
block->bbUnwindNopEmitCookie =
getEmitter()->emitAddLabel(gcInfo.gcVarPtrSetCur, gcInfo.gcRegGCrefSetCur, gcInfo.gcRegByrefSetCur);
instGen(INS_nop);
}
}
#endif
#endif // FEATURE_EH_FUNCLETS
/*****************************************************************************
*
* Generate code for the function.
*/
void CodeGen::genGenerateCode(void** codePtr, ULONG* nativeSizeOfCode)
{
#ifdef DEBUG
if (verbose)
{
printf("*************** In genGenerateCode()\n");
compiler->fgDispBasicBlocks(compiler->verboseTrees);
}
#endif
unsigned codeSize;
unsigned prologSize;
unsigned epilogSize;
void* consPtr;
#ifdef DEBUG
genInterruptibleUsed = true;
#if STACK_PROBES
genNeedPrologStackProbe = false;
#endif
compiler->fgDebugCheckBBlist();
#endif // DEBUG
/* This is the real thing */
genPrepForCompiler();
/* Prepare the emitter */
getEmitter()->Init();
#ifdef DEBUG
VarSetOps::AssignNoCopy(compiler, genTempOldLife, VarSetOps::MakeEmpty(compiler));
#endif
#ifdef DEBUG
if (compiler->opts.disAsmSpilled && regSet.rsNeededSpillReg)
{
compiler->opts.disAsm = true;
}
if (compiler->opts.disAsm)
{
printf("; Assembly listing for method %s\n", compiler->info.compFullName);
printf("; Emitting ");
if (compiler->compCodeOpt() == Compiler::SMALL_CODE)
{
printf("SMALL_CODE");
}
else if (compiler->compCodeOpt() == Compiler::FAST_CODE)
{
printf("FAST_CODE");
}
else
{
printf("BLENDED_CODE");
}
printf(" for ");
if (compiler->info.genCPU == CPU_X86)
{
printf("generic X86 CPU");
}
else if (compiler->info.genCPU == CPU_X86_PENTIUM_4)
{
printf("Pentium 4");
}
else if (compiler->info.genCPU == CPU_X64)
{
if (compiler->canUseAVX())
{
printf("X64 CPU with AVX");
}
else
{
printf("X64 CPU with SSE2");
}
}
else if (compiler->info.genCPU == CPU_ARM)
{
printf("generic ARM CPU");
}
printf("\n");
if ((compiler->opts.compFlags & CLFLG_MAXOPT) == CLFLG_MAXOPT)
{
printf("; optimized code\n");
}
else if (compiler->opts.compDbgCode)
{
printf("; debuggable code\n");
}
else if (compiler->opts.MinOpts())
{
printf("; compiler->opts.MinOpts() is true\n");
}
else
{
printf("; unknown optimization flags\n");
}
#if DOUBLE_ALIGN
if (compiler->genDoubleAlign())
printf("; double-aligned frame\n");
else
#endif
printf("; %s based frame\n", isFramePointerUsed() ? STR_FPBASE : STR_SPBASE);
if (genInterruptible)
{
printf("; fully interruptible\n");
}
else
{
printf("; partially interruptible\n");
}
if (compiler->fgHaveProfileData())
{
printf("; with IBC profile data, edge weights are %s, and fgCalledCount is %u\n",
compiler->fgHaveValidEdgeWeights ? "valid" : "invalid", compiler->fgCalledCount);
}
if (compiler->fgProfileData_ILSizeMismatch)
{
printf("; discarded IBC profile data due to mismatch in ILSize\n");
}
}
#endif // DEBUG
#ifndef LEGACY_BACKEND
// For RyuJIT backend, we compute the final frame layout before code generation. This is because LSRA
// has already computed exactly the maximum concurrent number of spill temps of each type that are
// required during code generation. So, there is nothing left to estimate: we can be precise in the frame
// layout. This helps us generate smaller code, and allocate, after code generation, a smaller amount of
// memory from the VM.
genFinalizeFrame();
unsigned maxTmpSize = compiler->tmpSize; // This is precise after LSRA has pre-allocated the temps.
#else // LEGACY_BACKEND
// Estimate the frame size: first, estimate the number of spill temps needed by taking the register
// predictor spill temp estimates and stress levels into consideration. Then, compute the tentative
// frame layout using conservative callee-save register estimation (namely, guess they'll all be used
// and thus saved on the frame).
// Compute the maximum estimated spill temp size.
unsigned maxTmpSize = sizeof(double) + sizeof(float) + sizeof(__int64) + sizeof(void*);
maxTmpSize += (compiler->tmpDoubleSpillMax * sizeof(double)) + (compiler->tmpIntSpillMax * sizeof(int));
#ifdef DEBUG
/* When StressRegs is >=1, there will be a bunch of spills not predicted by
the predictor (see logic in rsPickReg). It will be very hard to teach
the predictor about the behavior of rsPickReg for StressRegs >= 1, so
instead let's make maxTmpSize large enough so that we won't be wrong.
This means that at StressRegs >= 1, we will not be testing the logic
that sets the maxTmpSize size.
*/
if (regSet.rsStressRegs() >= 1)
{
maxTmpSize += (REG_TMP_ORDER_COUNT * REGSIZE_BYTES);
}
// JIT uses 2 passes when assigning stack variable (i.e. args, temps, and locals) locations in varDsc->lvStkOffs.
// During the 1st pass (in genGenerateCode), it estimates the maximum possible size for stack temps
// and put it in maxTmpSize. Then it calculates the varDsc->lvStkOffs for each variable based on this estimation.
// However during stress mode, we might spill more temps on the stack, which might grow the
// size of the temp area.
// This might cause varDsc->lvStkOffs to change during the 2nd pass (in emitEndCodeGen).
// If the change of varDsc->lvStkOffs crosses the threshold for the instruction size,
// we will then have a mismatched estimated code size (during the 1st pass) and the actual emitted code size
// (during the 2nd pass).
// Also, if STRESS_UNSAFE_BUFFER_CHECKS is turned on, we might reorder the stack variable locations,
// which could cause the mismatch too.
//
// The following code is simply bump the maxTmpSize up to at least BYTE_MAX+1 during the stress mode, so that
// we don't run into code size problem during stress.
if (getJitStressLevel() != 0)
{
if (maxTmpSize < BYTE_MAX + 1)
{
maxTmpSize = BYTE_MAX + 1;
}
}
#endif // DEBUG
/* Estimate the offsets of locals/arguments and size of frame */
unsigned lclSize = compiler->lvaFrameSize(Compiler::TENTATIVE_FRAME_LAYOUT);
#ifdef DEBUG
//
// Display the local frame offsets that we have tentatively decided upon
//
if (verbose)
{
compiler->lvaTableDump();
}
#endif // DEBUG
#endif // LEGACY_BACKEND
getEmitter()->emitBegFN(isFramePointerUsed()
#if defined(DEBUG)
,
(compiler->compCodeOpt() != Compiler::SMALL_CODE) &&
!compiler->opts.jitFlags->IsSet(JitFlags::JIT_FLAG_PREJIT)
#endif
#ifdef LEGACY_BACKEND
,
lclSize
#endif // LEGACY_BACKEND
,
maxTmpSize);
/* Now generate code for the function */
genCodeForBBlist();
#ifndef LEGACY_BACKEND
#ifdef DEBUG
// After code generation, dump the frame layout again. It should be the same as before code generation, if code
// generation hasn't touched it (it shouldn't!).
if (verbose)
{
compiler->lvaTableDump();
}
#endif // DEBUG
#endif // !LEGACY_BACKEND
/* We can now generate the function prolog and epilog */
genGeneratePrologsAndEpilogs();
/* Bind jump distances */
getEmitter()->emitJumpDistBind();
/* The code is now complete and final; it should not change after this. */
/* Compute the size of the code sections that we are going to ask the VM
to allocate. Note that this might not be precisely the size of the
code we emit, though it's fatal if we emit more code than the size we
compute here.
(Note: an example of a case where we emit less code would be useful.)
*/
getEmitter()->emitComputeCodeSizes();
#ifdef DEBUG
// Code to test or stress our ability to run a fallback compile.
// We trigger the fallback here, before asking the VM for any memory,
// because if not, we will leak mem, as the current codebase can't free
// the mem after the emitter asks the VM for it. As this is only a stress
// mode, we only want the functionality, and don't care about the relative
// ugliness of having the failure here.
if (!compiler->jitFallbackCompile)
{
// Use COMPlus_JitNoForceFallback=1 to prevent NOWAY assert testing from happening,
// especially that caused by enabling JIT stress.
if (!JitConfig.JitNoForceFallback())
{
if (JitConfig.JitForceFallback() || compiler->compStressCompile(Compiler::STRESS_GENERIC_VARN, 5))
{
NO_WAY_NOASSERT("Stress failure");
}
}
}
#endif // DEBUG
/* We've finished collecting all the unwind information for the function. Now reserve
space for it from the VM.
*/
compiler->unwindReserve();
#if DISPLAY_SIZES
size_t dataSize = getEmitter()->emitDataSize();
#endif // DISPLAY_SIZES
void* coldCodePtr;
bool trackedStackPtrsContig; // are tracked stk-ptrs contiguous ?
#if defined(_TARGET_AMD64_) || defined(_TARGET_ARM64_)
trackedStackPtrsContig = false;
#elif defined(_TARGET_ARM_)
// On arm due to prespilling of arguments, tracked stk-ptrs may not be contiguous
trackedStackPtrsContig = !compiler->opts.compDbgEnC && !compiler->compIsProfilerHookNeeded();
#else
trackedStackPtrsContig = !compiler->opts.compDbgEnC;
#endif
#ifdef DEBUG
/* We're done generating code for this function */
compiler->compCodeGenDone = true;
#endif
compiler->EndPhase(PHASE_GENERATE_CODE);
codeSize = getEmitter()->emitEndCodeGen(compiler, trackedStackPtrsContig, genInterruptible, genFullPtrRegMap,
(compiler->info.compRetType == TYP_REF), compiler->compHndBBtabCount,
&prologSize, &epilogSize, codePtr, &coldCodePtr, &consPtr);
compiler->EndPhase(PHASE_EMIT_CODE);
#ifdef DEBUG
if (compiler->opts.disAsm)
{
printf("; Total bytes of code %d, prolog size %d for method %s\n", codeSize, prologSize,
compiler->info.compFullName);
printf("; ============================================================\n");
printf(""); // in our logic this causes a flush
}
if (verbose)
{
printf("*************** After end code gen, before unwindEmit()\n");
getEmitter()->emitDispIGlist(true);
}
#endif
#if EMIT_TRACK_STACK_DEPTH
/* Check our max stack level. Needed for fgAddCodeRef().
We need to relax the assert as our estimation won't include code-gen
stack changes (which we know don't affect fgAddCodeRef()) */
{
unsigned maxAllowedStackDepth = compiler->fgPtrArgCntMax + // Max number of pointer-sized stack arguments.
compiler->compHndBBtabCount + // Return address for locally-called finallys
genTypeStSz(TYP_LONG) + // longs/doubles may be transferred via stack, etc
(compiler->compTailCallUsed ? 4 : 0); // CORINFO_HELP_TAILCALL args
#if defined(UNIX_X86_ABI)
maxAllowedStackDepth += maxNestedAlignment;
#endif
noway_assert(getEmitter()->emitMaxStackDepth <= maxAllowedStackDepth);
}
#endif // EMIT_TRACK_STACK_DEPTH
*nativeSizeOfCode = codeSize;
compiler->info.compNativeCodeSize = (UNATIVE_OFFSET)codeSize;
// printf("%6u bytes of code generated for %s.%s\n", codeSize, compiler->info.compFullName);
// Make sure that the x86 alignment and cache prefetch optimization rules
// were obeyed.
// Don't start a method in the last 7 bytes of a 16-byte alignment area
// unless we are generating SMALL_CODE
// noway_assert( (((unsigned)(*codePtr) % 16) <= 8) || (compiler->compCodeOpt() == SMALL_CODE));
/* Now that the code is issued, we can finalize and emit the unwind data */
compiler->unwindEmit(*codePtr, coldCodePtr);
/* Finalize the line # tracking logic after we know the exact block sizes/offsets */
genIPmappingGen();
/* Finalize the Local Var info in terms of generated code */
genSetScopeInfo();
#ifdef LATE_DISASM
unsigned finalHotCodeSize;
unsigned finalColdCodeSize;
if (compiler->fgFirstColdBlock != nullptr)
{
// We did some hot/cold splitting. The hot section is always padded out to the
// size we thought it would be, but the cold section is not.
assert(codeSize <= compiler->info.compTotalHotCodeSize + compiler->info.compTotalColdCodeSize);
assert(compiler->info.compTotalHotCodeSize > 0);
assert(compiler->info.compTotalColdCodeSize > 0);
finalHotCodeSize = compiler->info.compTotalHotCodeSize;
finalColdCodeSize = codeSize - finalHotCodeSize;
}
else
{
// No hot/cold splitting
assert(codeSize <= compiler->info.compTotalHotCodeSize);
assert(compiler->info.compTotalHotCodeSize > 0);
assert(compiler->info.compTotalColdCodeSize == 0);
finalHotCodeSize = codeSize;
finalColdCodeSize = 0;
}
getDisAssembler().disAsmCode((BYTE*)*codePtr, finalHotCodeSize, (BYTE*)coldCodePtr, finalColdCodeSize);
#endif // LATE_DISASM
/* Report any exception handlers to the VM */
genReportEH();
#ifdef JIT32_GCENCODER
#ifdef DEBUG
void* infoPtr =
#endif // DEBUG
#endif
// Create and store the GC info for this method.
genCreateAndStoreGCInfo(codeSize, prologSize, epilogSize DEBUGARG(codePtr));
#ifdef DEBUG
FILE* dmpf = jitstdout;
compiler->opts.dmpHex = false;
if (!strcmp(compiler->info.compMethodName, "<name of method you want the hex dump for"))
{
FILE* codf;
errno_t ec = fopen_s(&codf, "C:\\JIT.COD", "at"); // NOTE: file append mode
if (ec != 0)
{
assert(codf);
dmpf = codf;
compiler->opts.dmpHex = true;
}
}
if (compiler->opts.dmpHex)
{
size_t consSize = getEmitter()->emitDataSize();
size_t infoSize = compiler->compInfoBlkSize;
fprintf(dmpf, "Generated code for %s:\n", compiler->info.compFullName);
fprintf(dmpf, "\n");
if (codeSize)
{
fprintf(dmpf, " Code at %p [%04X bytes]\n", dspPtr(*codePtr), codeSize);
}
if (consSize)
{
fprintf(dmpf, " Const at %p [%04X bytes]\n", dspPtr(consPtr), consSize);
}
#ifdef JIT32_GCENCODER
if (infoSize)
fprintf(dmpf, " Info at %p [%04X bytes]\n", dspPtr(infoPtr), infoSize);
#endif // JIT32_GCENCODER
fprintf(dmpf, "\n");
if (codeSize)
{
hexDump(dmpf, "Code", (BYTE*)*codePtr, codeSize);
}
if (consSize)
{
hexDump(dmpf, "Const", (BYTE*)consPtr, consSize);
}
#ifdef JIT32_GCENCODER
if (infoSize)
hexDump(dmpf, "Info", (BYTE*)infoPtr, infoSize);
#endif // JIT32_GCENCODER
fflush(dmpf);
}
if (dmpf != jitstdout)
{
fclose(dmpf);
}
#endif // DEBUG
/* Tell the emitter that we're done with this function */
getEmitter()->emitEndFN();
/* Shut down the spill logic */
regSet.rsSpillDone();
/* Shut down the temp logic */
compiler->tmpDone();
#if DISPLAY_SIZES
grossVMsize += compiler->info.compILCodeSize;
totalNCsize += codeSize + dataSize + compiler->compInfoBlkSize;
grossNCsize += codeSize + dataSize;
#endif // DISPLAY_SIZES
compiler->EndPhase(PHASE_EMIT_GCEH);
}
/*****************************************************************************
*
* Report EH clauses to the VM
*/
void CodeGen::genReportEH()
{
if (compiler->compHndBBtabCount == 0)
{
return;
}
#ifdef DEBUG
if (compiler->opts.dspEHTable)
{
printf("*************** EH table for %s\n", compiler->info.compFullName);
}
#endif // DEBUG
unsigned XTnum;
EHblkDsc* HBtab;
EHblkDsc* HBtabEnd;
bool isCoreRTABI = compiler->IsTargetAbi(CORINFO_CORERT_ABI);
unsigned EHCount = compiler->compHndBBtabCount;
#if FEATURE_EH_FUNCLETS
// Count duplicated clauses. This uses the same logic as below, where we actually generate them for reporting to the
// VM.
unsigned duplicateClauseCount = 0;
unsigned enclosingTryIndex;
// Duplicate clauses are not used by CoreRT ABI
if (!isCoreRTABI)
{
for (XTnum = 0; XTnum < compiler->compHndBBtabCount; XTnum++)
{
for (enclosingTryIndex = compiler->ehTrueEnclosingTryIndexIL(XTnum); // find the true enclosing try index,
// ignoring 'mutual protect' trys
enclosingTryIndex != EHblkDsc::NO_ENCLOSING_INDEX;
enclosingTryIndex = compiler->ehGetEnclosingTryIndex(enclosingTryIndex))
{
++duplicateClauseCount;
}
}
EHCount += duplicateClauseCount;
}
#if FEATURE_EH_CALLFINALLY_THUNKS
unsigned clonedFinallyCount = 0;
// Duplicate clauses are not used by CoreRT ABI
if (!isCoreRTABI)
{
// We don't keep track of how many cloned finally there are. So, go through and count.
// We do a quick pass first through the EH table to see if there are any try/finally
// clauses. If there aren't, we don't need to look for BBJ_CALLFINALLY.
bool anyFinallys = false;
for (HBtab = compiler->compHndBBtab, HBtabEnd = compiler->compHndBBtab + compiler->compHndBBtabCount;
HBtab < HBtabEnd; HBtab++)
{
if (HBtab->HasFinallyHandler())
{
anyFinallys = true;
break;
}
}
if (anyFinallys)
{
for (BasicBlock* block = compiler->fgFirstBB; block != nullptr; block = block->bbNext)
{
if (block->bbJumpKind == BBJ_CALLFINALLY)
{
++clonedFinallyCount;
}
}
EHCount += clonedFinallyCount;
}
}
#endif // FEATURE_EH_CALLFINALLY_THUNKS
#endif // FEATURE_EH_FUNCLETS
#ifdef DEBUG
if (compiler->opts.dspEHTable)
{
#if FEATURE_EH_FUNCLETS
#if FEATURE_EH_CALLFINALLY_THUNKS
printf("%d EH table entries, %d duplicate clauses, %d cloned finallys, %d total EH entries reported to VM\n",
compiler->compHndBBtabCount, duplicateClauseCount, clonedFinallyCount, EHCount);
assert(compiler->compHndBBtabCount + duplicateClauseCount + clonedFinallyCount == EHCount);
#else // !FEATURE_EH_CALLFINALLY_THUNKS
printf("%d EH table entries, %d duplicate clauses, %d total EH entries reported to VM\n",
compiler->compHndBBtabCount, duplicateClauseCount, EHCount);
assert(compiler->compHndBBtabCount + duplicateClauseCount == EHCount);
#endif // !FEATURE_EH_CALLFINALLY_THUNKS
#else // !FEATURE_EH_FUNCLETS
printf("%d EH table entries, %d total EH entries reported to VM\n", compiler->compHndBBtabCount, EHCount);
assert(compiler->compHndBBtabCount == EHCount);
#endif // !FEATURE_EH_FUNCLETS
}
#endif // DEBUG
// Tell the VM how many EH clauses to expect.
compiler->eeSetEHcount(EHCount);
XTnum = 0; // This is the index we pass to the VM
for (HBtab = compiler->compHndBBtab, HBtabEnd = compiler->compHndBBtab + compiler->compHndBBtabCount;
HBtab < HBtabEnd; HBtab++)
{
UNATIVE_OFFSET tryBeg, tryEnd, hndBeg, hndEnd, hndTyp;
tryBeg = compiler->ehCodeOffset(HBtab->ebdTryBeg);
hndBeg = compiler->ehCodeOffset(HBtab->ebdHndBeg);
tryEnd = (HBtab->ebdTryLast == compiler->fgLastBB) ? compiler->info.compNativeCodeSize
: compiler->ehCodeOffset(HBtab->ebdTryLast->bbNext);
hndEnd = (HBtab->ebdHndLast == compiler->fgLastBB) ? compiler->info.compNativeCodeSize
: compiler->ehCodeOffset(HBtab->ebdHndLast->bbNext);
if (HBtab->HasFilter())
{
hndTyp = compiler->ehCodeOffset(HBtab->ebdFilter);
}
else
{
hndTyp = HBtab->ebdTyp;
}
CORINFO_EH_CLAUSE_FLAGS flags = ToCORINFO_EH_CLAUSE_FLAGS(HBtab->ebdHandlerType);
if (isCoreRTABI && (XTnum > 0))
{
// For CoreRT, CORINFO_EH_CLAUSE_SAMETRY flag means that the current clause covers same
// try block as the previous one. The runtime cannot reliably infer this information from
// native code offsets because of different try blocks can have same offsets. Alternative
// solution to this problem would be inserting extra nops to ensure that different try
// blocks have different offsets.
if (EHblkDsc::ebdIsSameTry(HBtab, HBtab - 1))
{
// The SAMETRY bit should only be set on catch clauses. This is ensured in IL, where only 'catch' is
// allowed to be mutually-protect. E.g., the C# "try {} catch {} catch {} finally {}" actually exists in
// IL as "try { try {} catch {} catch {} } finally {}".
assert(HBtab->HasCatchHandler());
flags = (CORINFO_EH_CLAUSE_FLAGS)(flags | CORINFO_EH_CLAUSE_SAMETRY);
}
}
// Note that we reuse the CORINFO_EH_CLAUSE type, even though the names of
// the fields aren't accurate.
CORINFO_EH_CLAUSE clause;
clause.ClassToken = hndTyp; /* filter offset is passed back here for filter-based exception handlers */
clause.Flags = flags;
clause.TryOffset = tryBeg;
clause.TryLength = tryEnd;
clause.HandlerOffset = hndBeg;
clause.HandlerLength = hndEnd;
assert(XTnum < EHCount);
// Tell the VM about this EH clause.
compiler->eeSetEHinfo(XTnum, &clause);
++XTnum;
}
#if FEATURE_EH_FUNCLETS
// Now output duplicated clauses.
//
// If a funclet has been created by moving a handler out of a try region that it was originally nested
// within, then we need to report a "duplicate" clause representing the fact that an exception in that
// handler can be caught by the 'try' it has been moved out of. This is because the original 'try' region
// descriptor can only specify a single, contiguous protected range, but the funclet we've moved out is
// no longer contiguous with the original 'try' region. The new EH descriptor will have the same handler
// region as the enclosing try region's handler region. This is the sense in which it is duplicated:
// there is now a "duplicate" clause with the same handler region as another, but a different 'try'
// region.
//
// For example, consider this (capital letters represent an unknown code sequence, numbers identify a
// try or handler region):
//
// A
// try (1) {
// B
// try (2) {
// C
// } catch (3) {
// D
// } catch (4) {
// E
// }
// F
// } catch (5) {
// G
// }
// H
//
// Here, we have try region (1) BCDEF protected by catch (5) G, and region (2) C protected
// by catch (3) D and catch (4) E. Note that catch (4) E does *NOT* protect the code "D".
// This is an example of 'mutually protect' regions. First, we move handlers (3) and (4)
// to the end of the code. However, (3) and (4) are nested inside, and protected by, try (1). Again
// note that (3) is not nested inside (4), despite ebdEnclosingTryIndex indicating that.
// The code "D" and "E" won't be contiguous with the protected region for try (1) (which
// will, after moving catch (3) AND (4), be BCF). Thus, we need to add a new EH descriptor
// representing try (1) protecting the new funclets catch (3) and (4).
// The code will be generated as follows:
//
// ABCFH // "main" code
// D // funclet
// E // funclet
// G // funclet
//
// The EH regions are:
//
// C -> D
// C -> E
// BCF -> G
// D -> G // "duplicate" clause
// E -> G // "duplicate" clause
//
// Note that we actually need to generate one of these additional "duplicate" clauses for every
// region the funclet is nested in. Take this example:
//
// A
// try (1) {
// B
// try (2,3) {
// C
// try (4) {
// D
// try (5,6) {
// E
// } catch {
// F
// } catch {
// G
// }
// H
// } catch {
// I
// }
// J
// } catch {
// K
// } catch {
// L
// }
// M
// } catch {
// N
// }
// O
//
// When we pull out funclets, we get the following generated code:
//
// ABCDEHJMO // "main" function
// F // funclet
// G // funclet
// I // funclet
// K // funclet
// L // funclet
// N // funclet
//
// And the EH regions we report to the VM are (in order; main clauses
// first in most-to-least nested order, funclets ("duplicated clauses")
// last, in most-to-least nested) are:
//
// E -> F
// E -> G
// DEH -> I
// CDEHJ -> K
// CDEHJ -> L
// BCDEHJM -> N
// F -> I // funclet clause #1 for F
// F -> K // funclet clause #2 for F
// F -> L // funclet clause #3 for F
// F -> N // funclet clause #4 for F
// G -> I // funclet clause #1 for G
// G -> K // funclet clause #2 for G
// G -> L // funclet clause #3 for G
// G -> N // funclet clause #4 for G
// I -> K // funclet clause #1 for I
// I -> L // funclet clause #2 for I
// I -> N // funclet clause #3 for I
// K -> N // funclet clause #1 for K
// L -> N // funclet clause #1 for L
//
// So whereas the IL had 6 EH clauses, we need to report 19 EH clauses to the VM.
// Note that due to the nature of 'mutually protect' clauses, it would be incorrect
// to add a clause "F -> G" because F is NOT protected by G, but we still have
// both "F -> K" and "F -> L" because F IS protected by both of those handlers.
//
// The overall ordering of the clauses is still the same most-to-least nesting
// after front-to-back start offset. Because we place the funclets at the end
// these new clauses should also go at the end by this ordering.
//
if (duplicateClauseCount > 0)
{
unsigned reportedDuplicateClauseCount = 0; // How many duplicated clauses have we reported?
unsigned XTnum2;
for (XTnum2 = 0, HBtab = compiler->compHndBBtab; XTnum2 < compiler->compHndBBtabCount; XTnum2++, HBtab++)
{
unsigned enclosingTryIndex;
EHblkDsc* fletTab = compiler->ehGetDsc(XTnum2);
for (enclosingTryIndex = compiler->ehTrueEnclosingTryIndexIL(XTnum2); // find the true enclosing try index,
// ignoring 'mutual protect' trys
enclosingTryIndex != EHblkDsc::NO_ENCLOSING_INDEX;
enclosingTryIndex = compiler->ehGetEnclosingTryIndex(enclosingTryIndex))
{
// The funclet we moved out is nested in a try region, so create a new EH descriptor for the funclet
// that will have the enclosing try protecting the funclet.
noway_assert(XTnum2 < enclosingTryIndex); // the enclosing region must be less nested, and hence have a
// greater EH table index
EHblkDsc* encTab = compiler->ehGetDsc(enclosingTryIndex);
// The try region is the handler of the funclet. Note that for filters, we don't protect the
// filter region, only the filter handler region. This is because exceptions in filters never
// escape; the VM swallows them.
BasicBlock* bbTryBeg = fletTab->ebdHndBeg;
BasicBlock* bbTryLast = fletTab->ebdHndLast;
BasicBlock* bbHndBeg = encTab->ebdHndBeg; // The handler region is the same as the enclosing try
BasicBlock* bbHndLast = encTab->ebdHndLast;
UNATIVE_OFFSET tryBeg, tryEnd, hndBeg, hndEnd, hndTyp;
tryBeg = compiler->ehCodeOffset(bbTryBeg);
hndBeg = compiler->ehCodeOffset(bbHndBeg);
tryEnd = (bbTryLast == compiler->fgLastBB) ? compiler->info.compNativeCodeSize
: compiler->ehCodeOffset(bbTryLast->bbNext);
hndEnd = (bbHndLast == compiler->fgLastBB) ? compiler->info.compNativeCodeSize
: compiler->ehCodeOffset(bbHndLast->bbNext);
if (encTab->HasFilter())
{
hndTyp = compiler->ehCodeOffset(encTab->ebdFilter);
}
else
{
hndTyp = encTab->ebdTyp;
}
CORINFO_EH_CLAUSE_FLAGS flags = ToCORINFO_EH_CLAUSE_FLAGS(encTab->ebdHandlerType);
// Tell the VM this is an extra clause caused by moving funclets out of line.
flags = (CORINFO_EH_CLAUSE_FLAGS)(flags | CORINFO_EH_CLAUSE_DUPLICATE);
// Note that the JIT-EE interface reuses the CORINFO_EH_CLAUSE type, even though the names of
// the fields aren't really accurate. For example, we set "TryLength" to the offset of the
// instruction immediately after the 'try' body. So, it really could be more accurately named
// "TryEndOffset".
CORINFO_EH_CLAUSE clause;
clause.ClassToken = hndTyp; /* filter offset is passed back here for filter-based exception handlers */
clause.Flags = flags;
clause.TryOffset = tryBeg;
clause.TryLength = tryEnd;
clause.HandlerOffset = hndBeg;
clause.HandlerLength = hndEnd;
assert(XTnum < EHCount);
// Tell the VM about this EH clause (a duplicated clause).
compiler->eeSetEHinfo(XTnum, &clause);
++XTnum;
++reportedDuplicateClauseCount;
#ifndef DEBUG
if (duplicateClauseCount == reportedDuplicateClauseCount)
{
break; // we've reported all of them; no need to continue looking
}
#endif // !DEBUG
} // for each 'true' enclosing 'try'
} // for each EH table entry
assert(duplicateClauseCount == reportedDuplicateClauseCount);
} // if (duplicateClauseCount > 0)
#if FEATURE_EH_CALLFINALLY_THUNKS
if (clonedFinallyCount > 0)
{
unsigned reportedClonedFinallyCount = 0;
for (BasicBlock* block = compiler->fgFirstBB; block != nullptr; block = block->bbNext)
{
if (block->bbJumpKind == BBJ_CALLFINALLY)
{
UNATIVE_OFFSET hndBeg, hndEnd;
hndBeg = compiler->ehCodeOffset(block);
// How big is it? The BBJ_ALWAYS has a null bbEmitCookie! Look for the block after, which must be
// a label or jump target, since the BBJ_CALLFINALLY doesn't fall through.
BasicBlock* bbLabel = block->bbNext;
if (block->isBBCallAlwaysPair())
{
bbLabel = bbLabel->bbNext; // skip the BBJ_ALWAYS
}
if (bbLabel == nullptr)
{
hndEnd = compiler->info.compNativeCodeSize;
}
else
{
assert(bbLabel->bbEmitCookie != nullptr);
hndEnd = compiler->ehCodeOffset(bbLabel);
}
CORINFO_EH_CLAUSE clause;
clause.ClassToken = 0; // unused
clause.Flags = (CORINFO_EH_CLAUSE_FLAGS)(CORINFO_EH_CLAUSE_FINALLY | CORINFO_EH_CLAUSE_DUPLICATE);
clause.TryOffset = hndBeg;
clause.TryLength = hndBeg;
clause.HandlerOffset = hndBeg;
clause.HandlerLength = hndEnd;
assert(XTnum < EHCount);
// Tell the VM about this EH clause (a cloned finally clause).
compiler->eeSetEHinfo(XTnum, &clause);
++XTnum;
++reportedClonedFinallyCount;
#ifndef DEBUG
if (clonedFinallyCount == reportedClonedFinallyCount)
{
break; // we're done; no need to keep looking
}
#endif // !DEBUG
} // block is BBJ_CALLFINALLY
} // for each block
assert(clonedFinallyCount == reportedClonedFinallyCount);
} // if (clonedFinallyCount > 0)
#endif // FEATURE_EH_CALLFINALLY_THUNKS
#endif // FEATURE_EH_FUNCLETS
assert(XTnum == EHCount);
}
void CodeGen::genGCWriteBarrier(GenTreePtr tgt, GCInfo::WriteBarrierForm wbf)
{
#ifndef LEGACY_BACKEND
noway_assert(tgt->gtOper == GT_STOREIND);
#else // LEGACY_BACKEND
noway_assert(tgt->gtOper == GT_IND || tgt->gtOper == GT_CLS_VAR); // enforced by gcIsWriteBarrierCandidate
#endif // LEGACY_BACKEND
/* Call the proper vm helper */
int helper = CORINFO_HELP_ASSIGN_REF;
#ifdef DEBUG
if (wbf == GCInfo::WBF_NoBarrier_CheckNotHeapInDebug)
{
helper = CORINFO_HELP_ASSIGN_REF_ENSURE_NONHEAP;
}
else
#endif
if (tgt->gtOper != GT_CLS_VAR)
{
if (wbf != GCInfo::WBF_BarrierUnchecked) // This overrides the tests below.
{
if (tgt->gtFlags & GTF_IND_TGTANYWHERE)
{
helper = CORINFO_HELP_CHECKED_ASSIGN_REF;
}
else if (tgt->gtOp.gtOp1->TypeGet() == TYP_I_IMPL)
{
helper = CORINFO_HELP_CHECKED_ASSIGN_REF;
}
}
}
assert(((helper == CORINFO_HELP_ASSIGN_REF_ENSURE_NONHEAP) && (wbf == GCInfo::WBF_NoBarrier_CheckNotHeapInDebug)) ||
((helper == CORINFO_HELP_CHECKED_ASSIGN_REF) &&
(wbf == GCInfo::WBF_BarrierChecked || wbf == GCInfo::WBF_BarrierUnknown)) ||
((helper == CORINFO_HELP_ASSIGN_REF) &&
(wbf == GCInfo::WBF_BarrierUnchecked || wbf == GCInfo::WBF_BarrierUnknown)));
#ifdef FEATURE_COUNT_GC_WRITE_BARRIERS
// We classify the "tgt" trees as follows:
// If "tgt" is of the form (where [ x ] indicates an optional x, and { x1, ..., xn } means "one of the x_i forms"):
// IND [-> ADDR -> IND] -> { GT_LCL_VAR, GT_REG_VAR, ADD({GT_LCL_VAR, GT_REG_VAR}, X), ADD(X, (GT_LCL_VAR,
// GT_REG_VAR)) }
// then let "v" be the GT_LCL_VAR or GT_REG_VAR.
// * If "v" is the return buffer argument, classify as CWBKind_RetBuf.
// * If "v" is another by-ref argument, classify as CWBKind_ByRefArg.
// * Otherwise, classify as CWBKind_OtherByRefLocal.
// If "tgt" is of the form IND -> ADDR -> GT_LCL_VAR, clasify as CWBKind_AddrOfLocal.
// Otherwise, classify as CWBKind_Unclassified.
CheckedWriteBarrierKinds wbKind = CWBKind_Unclassified;
if (tgt->gtOper == GT_IND)
{
GenTreePtr lcl = NULL;
GenTreePtr indArg = tgt->gtOp.gtOp1;
if (indArg->gtOper == GT_ADDR && indArg->gtOp.gtOp1->gtOper == GT_IND)
{
indArg = indArg->gtOp.gtOp1->gtOp.gtOp1;
}
if (indArg->gtOper == GT_LCL_VAR || indArg->gtOper == GT_REG_VAR)
{
lcl = indArg;
}
else if (indArg->gtOper == GT_ADD)
{
if (indArg->gtOp.gtOp1->gtOper == GT_LCL_VAR || indArg->gtOp.gtOp1->gtOper == GT_REG_VAR)
{
lcl = indArg->gtOp.gtOp1;
}
else if (indArg->gtOp.gtOp2->gtOper == GT_LCL_VAR || indArg->gtOp.gtOp2->gtOper == GT_REG_VAR)
{
lcl = indArg->gtOp.gtOp2;
}
}
if (lcl != NULL)
{
wbKind = CWBKind_OtherByRefLocal; // Unclassified local variable.
unsigned lclNum = 0;
if (lcl->gtOper == GT_LCL_VAR)
lclNum = lcl->gtLclVarCommon.gtLclNum;
else
{
assert(lcl->gtOper == GT_REG_VAR);
lclNum = lcl->gtRegVar.gtLclNum;
}
if (lclNum == compiler->info.compRetBuffArg)
{
wbKind = CWBKind_RetBuf; // Ret buff. Can happen if the struct exceeds the size limit.
}
else
{
LclVarDsc* varDsc = &compiler->lvaTable[lclNum];
if (varDsc->lvIsParam && varDsc->lvType == TYP_BYREF)
{
wbKind = CWBKind_ByRefArg; // Out (or in/out) arg
}
}
}
else
{
// We should have eliminated the barrier for this case.
assert(!(indArg->gtOper == GT_ADDR && indArg->gtOp.gtOp1->gtOper == GT_LCL_VAR));
}
}
if (helper == CORINFO_HELP_CHECKED_ASSIGN_REF)
{
#if 0
#ifdef DEBUG
// Enable this to sample the unclassified trees.
static int unclassifiedBarrierSite = 0;
if (wbKind == CWBKind_Unclassified)
{
unclassifiedBarrierSite++;
printf("unclassifiedBarrierSite = %d:\n", unclassifiedBarrierSite); compiler->gtDispTree(tgt); printf(""); printf("\n");
}
#endif // DEBUG
#endif // 0
AddStackLevel(4);
inst_IV(INS_push, wbKind);
genEmitHelperCall(helper,
4, // argSize
EA_PTRSIZE); // retSize
SubtractStackLevel(4);
}
else
{
genEmitHelperCall(helper,
0, // argSize
EA_PTRSIZE); // retSize
}
#else // !FEATURE_COUNT_GC_WRITE_BARRIERS
genEmitHelperCall(helper,
0, // argSize
EA_PTRSIZE); // retSize
#endif // !FEATURE_COUNT_GC_WRITE_BARRIERS
}
/*
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX XX
XX Prolog / Epilog XX
XX XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
*/
/*****************************************************************************
*
* Generates code for moving incoming register arguments to their
* assigned location, in the function prolog.
*/
#ifdef _PREFAST_
#pragma warning(push)
#pragma warning(disable : 21000) // Suppress PREFast warning about overly large function
#endif
void CodeGen::genFnPrologCalleeRegArgs(regNumber xtraReg, bool* pXtraRegClobbered, RegState* regState)
{
#ifdef DEBUG
if (verbose)
{
printf("*************** In genFnPrologCalleeRegArgs() for %s regs\n", regState->rsIsFloat ? "float" : "int");
}
#endif
#ifdef _TARGET_ARM64_
if (compiler->info.compIsVarArgs)
{
// We've already saved all int registers at the top of stack in the prolog.
// No need further action.
return;
}
#endif
unsigned argMax; // maximum argNum value plus 1, (including the RetBuffArg)
unsigned argNum; // current argNum, always in [0..argMax-1]
unsigned fixedRetBufIndex; // argNum value used by the fixed return buffer argument (ARM64)
unsigned regArgNum; // index into the regArgTab[] table
regMaskTP regArgMaskLive = regState->rsCalleeRegArgMaskLiveIn;
bool doingFloat = regState->rsIsFloat;
// We should be generating the prolog block when we are called
assert(compiler->compGeneratingProlog);
// We expect to have some registers of the type we are doing, that are LiveIn, otherwise we don't need to be called.
noway_assert(regArgMaskLive != 0);
// If a method has 3 args (and no fixed return buffer) then argMax is 3 and valid indexes are 0,1,2
// If a method has a fixed return buffer (on ARM64) then argMax gets set to 9 and valid index are 0-8
//
// The regArgTab can always have unused entries,
// for example if an architecture always increments the arg register number but uses either
// an integer register or a floating point register to hold the next argument
// then with a mix of float and integer args you could have:
//
// sampleMethod(int i, float x, int j, float y, int k, float z);
// r0, r2 and r4 as valid integer arguments with argMax as 5
// and f1, f3 and f5 and valid floating point arguments with argMax as 6
// The first one is doingFloat==false and the second one is doingFloat==true
//
// If a fixed return buffer (in r8) was also present then the first one would become:
// r0, r2, r4 and r8 as valid integer arguments with argMax as 9
//
argMax = regState->rsCalleeRegArgCount;
fixedRetBufIndex = (unsigned)-1; // Invalid value
// If necessary we will select a correct xtraReg for circular floating point args later.
if (doingFloat)
{
xtraReg = REG_NA;
noway_assert(argMax <= MAX_FLOAT_REG_ARG);
}
else // we are doing the integer registers
{
noway_assert(argMax <= MAX_REG_ARG);
if (hasFixedRetBuffReg())
{
fixedRetBufIndex = theFixedRetBuffArgNum();
// We have an additional integer register argument when hasFixedRetBuffReg() is true
argMax = fixedRetBufIndex + 1;
assert(argMax == (MAX_REG_ARG + 1));
}
}
//
// Construct a table with the register arguments, for detecting circular and
// non-circular dependencies between the register arguments. A dependency is when
// an argument register Rn needs to be moved to register Rm that is also an argument
// register. The table is constructed in the order the arguments are passed in
// registers: the first register argument is in regArgTab[0], the second in
// regArgTab[1], etc. Note that on ARM, a TYP_DOUBLE takes two entries, starting
// at an even index. The regArgTab is indexed from 0 to argMax - 1.
// Note that due to an extra argument register for ARM64 (i.e theFixedRetBuffReg())
// we have increased the allocated size of the regArgTab[] by one.
//
struct regArgElem
{
unsigned varNum; // index into compiler->lvaTable[] for this register argument
#if defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)
var_types type; // the Jit type of this regArgTab entry
#endif // defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)
unsigned trashBy; // index into this regArgTab[] table of the register that will be copied to this register.
// That is, for regArgTab[x].trashBy = y, argument register number 'y' will be copied to
// argument register number 'x'. Only used when circular = true.
char slot; // 0 means the register is not used for a register argument
// 1 means the first part of a register argument
// 2, 3 or 4 means the second,third or fourth part of a multireg argument
bool stackArg; // true if the argument gets homed to the stack
bool processed; // true after we've processed the argument (and it is in its final location)
bool circular; // true if this register participates in a circular dependency loop.
#ifdef FEATURE_UNIX_AMD64_STRUCT_PASSING
// For UNIX AMD64 struct passing, the type of the register argument slot can differ from
// the type of the lclVar in ways that are not ascertainable from lvType.
// So, for that case we retain the type of the register in the regArgTab.
var_types getRegType(Compiler* compiler)
{
return type; // UNIX_AMD64 implementation
}
#else // !FEATURE_UNIX_AMD64_STRUCT_PASSING
// In other cases, we simply use the type of the lclVar to determine the type of the register.
var_types getRegType(Compiler* compiler)
{
LclVarDsc varDsc = compiler->lvaTable[varNum];
// Check if this is an HFA register arg and return the HFA type
if (varDsc.lvIsHfaRegArg())
{
return varDsc.GetHfaType();
}
return varDsc.lvType;
}
#endif // !FEATURE_UNIX_AMD64_STRUCT_PASSING
} regArgTab[max(MAX_REG_ARG + 1, MAX_FLOAT_REG_ARG)] = {};
unsigned varNum;
LclVarDsc* varDsc;
for (varNum = 0, varDsc = compiler->lvaTable; varNum < compiler->lvaCount; varNum++, varDsc++)
{
// Is this variable a register arg?
if (!varDsc->lvIsParam)
{
continue;
}
if (!varDsc->lvIsRegArg)
{
continue;
}
// When we have a promoted struct we have two possible LclVars that can represent the incoming argument
// in the regArgTab[], either the original TYP_STRUCT argument or the introduced lvStructField.
// We will use the lvStructField if we have a TYPE_INDEPENDENT promoted struct field otherwise
// use the the original TYP_STRUCT argument.
//
if (varDsc->lvPromoted || varDsc->lvIsStructField)
{
LclVarDsc* parentVarDsc = varDsc;
if (varDsc->lvIsStructField)
{
assert(!varDsc->lvPromoted);
parentVarDsc = &compiler->lvaTable[varDsc->lvParentLcl];
}
Compiler::lvaPromotionType promotionType = compiler->lvaGetPromotionType(parentVarDsc);
if (promotionType == Compiler::PROMOTION_TYPE_INDEPENDENT)
{
noway_assert(parentVarDsc->lvFieldCnt == 1); // We only handle one field here
// For register arguments that are independent promoted structs we put the promoted field varNum in the
// regArgTab[]
if (varDsc->lvPromoted)
{
continue;
}
}
else
{
// For register arguments that are not independent promoted structs we put the parent struct varNum in
// the regArgTab[]
if (varDsc->lvIsStructField)
{
continue;
}
}
}
var_types regType = varDsc->TypeGet();
// Change regType to the HFA type when we have a HFA argument
if (varDsc->lvIsHfaRegArg())
{
regType = varDsc->GetHfaType();
}
#if defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)
if (!varTypeIsStruct(regType))
#endif // defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)
{
// A struct might be passed partially in XMM register for System V calls.
// So a single arg might use both register files.
if (isFloatRegType(regType) != doingFloat)
{
continue;
}
}
int slots = 0;
#if defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)
if (varTypeIsStruct(varDsc))
{
CORINFO_CLASS_HANDLE typeHnd = varDsc->lvVerTypeInfo.GetClassHandle();
assert(typeHnd != nullptr);
SYSTEMV_AMD64_CORINFO_STRUCT_REG_PASSING_DESCRIPTOR structDesc;
compiler->eeGetSystemVAmd64PassStructInRegisterDescriptor(typeHnd, &structDesc);
if (!structDesc.passedInRegisters)
{
// The var is not passed in registers.
continue;
}
unsigned firstRegSlot = 0;
for (unsigned slotCounter = 0; slotCounter < structDesc.eightByteCount; slotCounter++)
{
regNumber regNum = varDsc->lvRegNumForSlot(slotCounter);
var_types regType;
#ifdef FEATURE_SIMD
// Assumption 1:
// RyuJit backend depends on the assumption that on 64-Bit targets Vector3 size is rounded off
// to TARGET_POINTER_SIZE and hence Vector3 locals on stack can be treated as TYP_SIMD16 for
// reading and writing purposes. Hence while homing a Vector3 type arg on stack we should
// home entire 16-bytes so that the upper-most 4-bytes will be zeroed when written to stack.
//
// Assumption 2:
// RyuJit backend is making another implicit assumption that Vector3 type args when passed in
// registers or on stack, the upper most 4-bytes will be zero.
//
// For P/Invoke return and Reverse P/Invoke argument passing, native compiler doesn't guarantee
// that upper 4-bytes of a Vector3 type struct is zero initialized and hence assumption 2 is
// invalid.
//
// RyuJIT x64 Windows: arguments are treated as passed by ref and hence read/written just 12
// bytes. In case of Vector3 returns, Caller allocates a zero initialized Vector3 local and
// passes it retBuf arg and Callee method writes only 12 bytes to retBuf. For this reason,
// there is no need to clear upper 4-bytes of Vector3 type args.
//
// RyuJIT x64 Unix: arguments are treated as passed by value and read/writen as if TYP_SIMD16.
// Vector3 return values are returned two return registers and Caller assembles them into a
// single xmm reg. Hence RyuJIT explicitly generates code to clears upper 4-bytes of Vector3
// type args in prolog and Vector3 type return value of a call
if (varDsc->lvType == TYP_SIMD12)
{
regType = TYP_DOUBLE;
}
else
#endif
{
regType = compiler->GetEightByteType(structDesc, slotCounter);
}
regArgNum = genMapRegNumToRegArgNum(regNum, regType);
if ((!doingFloat && (structDesc.IsIntegralSlot(slotCounter))) ||
(doingFloat && (structDesc.IsSseSlot(slotCounter))))
{
// Store the reg for the first slot.
if (slots == 0)
{
firstRegSlot = regArgNum;
}
// Bingo - add it to our table
noway_assert(regArgNum < argMax);
noway_assert(regArgTab[regArgNum].slot == 0); // we better not have added it already (there better
// not be multiple vars representing this argument
// register)
regArgTab[regArgNum].varNum = varNum;
regArgTab[regArgNum].slot = (char)(slotCounter + 1);
regArgTab[regArgNum].type = regType;
slots++;
}
}
if (slots == 0)
{
continue; // Nothing to do for this regState set.
}
regArgNum = firstRegSlot;
}
else
#endif // defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)
{
// Bingo - add it to our table
regArgNum = genMapRegNumToRegArgNum(varDsc->lvArgReg, regType);
noway_assert(regArgNum < argMax);
// We better not have added it already (there better not be multiple vars representing this argument
// register)
noway_assert(regArgTab[regArgNum].slot == 0);
#if defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)
// Set the register type.
regArgTab[regArgNum].type = regType;
#endif // defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)
regArgTab[regArgNum].varNum = varNum;
regArgTab[regArgNum].slot = 1;
slots = 1;
#if FEATURE_MULTIREG_ARGS
if (compiler->lvaIsMultiregStruct(varDsc))
{
if (varDsc->lvIsHfaRegArg())
{
// We have an HFA argument, set slots to the number of registers used
slots = varDsc->lvHfaSlots();
}
else
{
// Currently all non-HFA multireg structs are two registers in size (i.e. two slots)
assert(varDsc->lvSize() == (2 * TARGET_POINTER_SIZE));
// We have a non-HFA multireg argument, set slots to two
slots = 2;
}
// Note that regArgNum+1 represents an argument index not an actual argument register.
// see genMapRegArgNumToRegNum(unsigned argNum, var_types type)
// This is the setup for the rest of a multireg struct arg
for (int i = 1; i < slots; i++)
{
noway_assert((regArgNum + i) < argMax);
// We better not have added it already (there better not be multiple vars representing this argument
// register)
noway_assert(regArgTab[regArgNum + i].slot == 0);
regArgTab[regArgNum + i].varNum = varNum;
regArgTab[regArgNum + i].slot = (char)(i + 1);
}
}
#endif // FEATURE_MULTIREG_ARGS
}
#ifdef _TARGET_ARM_
int lclSize = compiler->lvaLclSize(varNum);
if (lclSize > REGSIZE_BYTES)
{
unsigned maxRegArgNum = doingFloat ? MAX_FLOAT_REG_ARG : MAX_REG_ARG;
slots = lclSize / REGSIZE_BYTES;
if (regArgNum + slots > maxRegArgNum)
{
slots = maxRegArgNum - regArgNum;
}
}
C_ASSERT((char)MAX_REG_ARG == MAX_REG_ARG);
assert(slots < INT8_MAX);
for (char i = 1; i < slots; i++)
{
regArgTab[regArgNum + i].varNum = varNum;
regArgTab[regArgNum + i].slot = i + 1;
}
#endif // _TARGET_ARM_
for (int i = 0; i < slots; i++)
{
regType = regArgTab[regArgNum + i].getRegType(compiler);
regNumber regNum = genMapRegArgNumToRegNum(regArgNum + i, regType);
#if !defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)
// lvArgReg could be INT or FLOAT reg. So the following assertion doesn't hold.
// The type of the register depends on the classification of the first eightbyte
// of the struct. For information on classification refer to the System V x86_64 ABI at:
// http://www.x86-64.org/documentation/abi.pdf
assert((i > 0) || (regNum == varDsc->lvArgReg));
#endif // defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)
// Is the arg dead on entry to the method ?
if ((regArgMaskLive & genRegMask(regNum)) == 0)
{
if (varDsc->lvTrackedNonStruct())
{
noway_assert(!VarSetOps::IsMember(compiler, compiler->fgFirstBB->bbLiveIn, varDsc->lvVarIndex));
}
else
{
#ifdef _TARGET_X86_
noway_assert(varDsc->lvType == TYP_STRUCT);
#else // !_TARGET_X86_
#ifndef LEGACY_BACKEND
// For LSRA, it may not be in regArgMaskLive if it has a zero
// refcnt. This is in contrast with the non-LSRA case in which all
// non-tracked args are assumed live on entry.
noway_assert((varDsc->lvRefCnt == 0) || (varDsc->lvType == TYP_STRUCT) ||
(varDsc->lvAddrExposed && compiler->info.compIsVarArgs));
#else // LEGACY_BACKEND
noway_assert(
varDsc->lvType == TYP_STRUCT ||
(varDsc->lvAddrExposed && (compiler->info.compIsVarArgs || compiler->opts.compUseSoftFP)));
#endif // LEGACY_BACKEND
#endif // !_TARGET_X86_
}
// Mark it as processed and be done with it
regArgTab[regArgNum + i].processed = true;
goto NON_DEP;
}
#ifdef _TARGET_ARM_
// On the ARM when the varDsc is a struct arg (or pre-spilled due to varargs) the initReg/xtraReg
// could be equal to lvArgReg. The pre-spilled registers are also not considered live either since
// they've already been spilled.
//
if ((regSet.rsMaskPreSpillRegs(false) & genRegMask(regNum)) == 0)
#endif // _TARGET_ARM_
{
#if !defined(UNIX_AMD64_ABI)
noway_assert(xtraReg != (varDsc->lvArgReg + i));
#endif
noway_assert(regArgMaskLive & genRegMask(regNum));
}
regArgTab[regArgNum + i].processed = false;
/* mark stack arguments since we will take care of those first */
regArgTab[regArgNum + i].stackArg = (varDsc->lvIsInReg()) ? false : true;
/* If it goes on the stack or in a register that doesn't hold
* an argument anymore -> CANNOT form a circular dependency */
if (varDsc->lvIsInReg() && (genRegMask(regNum) & regArgMaskLive))
{
/* will trash another argument -> possible dependency
* We may need several passes after the table is constructed
* to decide on that */
/* Maybe the argument stays in the register (IDEAL) */
if ((i == 0) && (varDsc->lvRegNum == regNum))
{
goto NON_DEP;
}
#if !defined(_TARGET_64BIT_)
if ((i == 1) && varTypeIsStruct(varDsc) && (varDsc->lvOtherReg == regNum))
{
goto NON_DEP;
}
if ((i == 1) && (genActualType(varDsc->TypeGet()) == TYP_LONG) && (varDsc->lvOtherReg == regNum))
{
goto NON_DEP;
}
if ((i == 1) && (genActualType(varDsc->TypeGet()) == TYP_DOUBLE) &&
(REG_NEXT(varDsc->lvRegNum) == regNum))
{
goto NON_DEP;
}
#endif // !defined(_TARGET_64BIT_)
regArgTab[regArgNum + i].circular = true;
}
else
{
NON_DEP:
regArgTab[regArgNum + i].circular = false;
/* mark the argument register as free */
regArgMaskLive &= ~genRegMask(regNum);
}
}
}
/* Find the circular dependencies for the argument registers, if any.
* A circular dependency is a set of registers R1, R2, ..., Rn
* such that R1->R2 (that is, R1 needs to be moved to R2), R2->R3, ..., Rn->R1 */
bool change = true;
if (regArgMaskLive)
{
/* Possible circular dependencies still exist; the previous pass was not enough
* to filter them out. Use a "sieve" strategy to find all circular dependencies. */
while (change)
{
change = false;
for (argNum = 0; argNum < argMax; argNum++)
{
// If we already marked the argument as non-circular then continue
if (!regArgTab[argNum].circular)
{
continue;
}
if (regArgTab[argNum].slot == 0) // Not a register argument
{
continue;
}
varNum = regArgTab[argNum].varNum;
noway_assert(varNum < compiler->lvaCount);
varDsc = compiler->lvaTable + varNum;
noway_assert(varDsc->lvIsParam && varDsc->lvIsRegArg);
/* cannot possibly have stack arguments */
noway_assert(varDsc->lvIsInReg());
noway_assert(!regArgTab[argNum].stackArg);
var_types regType = regArgTab[argNum].getRegType(compiler);
regNumber regNum = genMapRegArgNumToRegNum(argNum, regType);
regNumber destRegNum = REG_NA;
if (regArgTab[argNum].slot == 1)
{
destRegNum = varDsc->lvRegNum;
}
#if FEATURE_MULTIREG_ARGS && defined(FEATURE_SIMD) && defined(_TARGET_AMD64_)
else
{
assert(regArgTab[argNum].slot == 2);
assert(argNum > 0);
assert(regArgTab[argNum - 1].slot == 1);
assert(regArgTab[argNum - 1].varNum == varNum);
assert((varDsc->lvType == TYP_SIMD12) || (varDsc->lvType == TYP_SIMD16));
regArgMaskLive &= ~genRegMask(regNum);
regArgTab[argNum].circular = false;
change = true;
continue;
}
#elif !defined(_TARGET_64BIT_)
else if (regArgTab[argNum].slot == 2 && genActualType(varDsc->TypeGet()) == TYP_LONG)
{
destRegNum = varDsc->lvOtherReg;
}
else
{
assert(regArgTab[argNum].slot == 2);
assert(varDsc->TypeGet() == TYP_DOUBLE);
destRegNum = REG_NEXT(varDsc->lvRegNum);
}
#endif // !defined(_TARGET_64BIT_)
noway_assert(destRegNum != REG_NA);
if (genRegMask(destRegNum) & regArgMaskLive)
{
/* we are trashing a live argument register - record it */
unsigned destRegArgNum = genMapRegNumToRegArgNum(destRegNum, regType);
noway_assert(destRegArgNum < argMax);
regArgTab[destRegArgNum].trashBy = argNum;
}
else
{
/* argument goes to a free register */
regArgTab[argNum].circular = false;
change = true;
/* mark the argument register as free */
regArgMaskLive &= ~genRegMask(regNum);
}
}
}
}
/* At this point, everything that has the "circular" flag
* set to "true" forms a circular dependency */
CLANG_FORMAT_COMMENT_ANCHOR;
#ifdef DEBUG
if (regArgMaskLive)
{
if (verbose)
{
printf("Circular dependencies found while home-ing the incoming arguments.\n");
}
}
#endif
// LSRA allocates registers to incoming parameters in order and will not overwrite
// a register still holding a live parameter.
CLANG_FORMAT_COMMENT_ANCHOR;
#ifndef LEGACY_BACKEND
noway_assert(((regArgMaskLive & RBM_FLTARG_REGS) == 0) &&
"Homing of float argument registers with circular dependencies not implemented.");
#endif // LEGACY_BACKEND
/* Now move the arguments to their locations.
* First consider ones that go on the stack since they may
* free some registers. */
regArgMaskLive = regState->rsCalleeRegArgMaskLiveIn; // reset the live in to what it was at the start
for (argNum = 0; argNum < argMax; argNum++)
{
emitAttr size;
#if defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)
// If this is the wrong register file, just continue.
if (regArgTab[argNum].type == TYP_UNDEF)
{
// This could happen if the reg in regArgTab[argNum] is of the other register file -
// for System V register passed structs where the first reg is GPR and the second an XMM reg.
// The next register file processing will process it.
continue;
}
#endif // defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)
// If the arg is dead on entry to the method, skip it
if (regArgTab[argNum].processed)
{
continue;
}
if (regArgTab[argNum].slot == 0) // Not a register argument
{
continue;
}
varNum = regArgTab[argNum].varNum;
noway_assert(varNum < compiler->lvaCount);
varDsc = compiler->lvaTable + varNum;
#ifndef _TARGET_64BIT_
// If not a stack arg go to the next one
if (varDsc->lvType == TYP_LONG)
{
if (regArgTab[argNum].slot == 1 && !regArgTab[argNum].stackArg)
{
continue;
}
else if (varDsc->lvOtherReg != REG_STK)
{
continue;
}
}
else
#endif // !_TARGET_64BIT_
{
// If not a stack arg go to the next one
if (!regArgTab[argNum].stackArg)
{
continue;
}
}
#if defined(_TARGET_ARM_)
if (varDsc->lvType == TYP_DOUBLE)
{
if (regArgTab[argNum].slot == 2)
{
// We handled the entire double when processing the first half (slot == 1)
continue;
}
}
#endif
noway_assert(regArgTab[argNum].circular == false);
noway_assert(varDsc->lvIsParam);
noway_assert(varDsc->lvIsRegArg);
noway_assert(varDsc->lvIsInReg() == false ||
(varDsc->lvType == TYP_LONG && varDsc->lvOtherReg == REG_STK && regArgTab[argNum].slot == 2));
var_types storeType = TYP_UNDEF;
unsigned slotSize = TARGET_POINTER_SIZE;
if (varTypeIsStruct(varDsc))
{
storeType = TYP_I_IMPL; // Default store type for a struct type is a pointer sized integer
#if FEATURE_MULTIREG_ARGS
// Must be <= MAX_PASS_MULTIREG_BYTES or else it wouldn't be passed in registers
noway_assert(varDsc->lvSize() <= MAX_PASS_MULTIREG_BYTES);
#endif // FEATURE_MULTIREG_ARGS
#ifdef FEATURE_UNIX_AMD64_STRUCT_PASSING
storeType = regArgTab[argNum].type;
#endif // !FEATURE_UNIX_AMD64_STRUCT_PASSING
if (varDsc->lvIsHfaRegArg())
{
#ifdef _TARGET_ARM_
// On ARM32 the storeType for HFA args is always TYP_FLOAT
storeType = TYP_FLOAT;
slotSize = (unsigned)emitActualTypeSize(storeType);
#else // _TARGET_ARM64_
storeType = genActualType(varDsc->GetHfaType());
slotSize = (unsigned)emitActualTypeSize(storeType);
#endif // _TARGET_ARM64_
}
}
else // Not a struct type
{
storeType = genActualType(varDsc->TypeGet());
}
size = emitActualTypeSize(storeType);
#ifdef _TARGET_X86_
noway_assert(genTypeSize(storeType) == TARGET_POINTER_SIZE);
#endif //_TARGET_X86_
regNumber srcRegNum = genMapRegArgNumToRegNum(argNum, storeType);
// Stack argument - if the ref count is 0 don't care about it
if (!varDsc->lvOnFrame)
{
noway_assert(varDsc->lvRefCnt == 0);
}
else
{
// Since slot is typically 1, baseOffset is typically 0
int baseOffset = (regArgTab[argNum].slot - 1) * slotSize;
getEmitter()->emitIns_S_R(ins_Store(storeType), size, srcRegNum, varNum, baseOffset);
#ifndef FEATURE_UNIX_AMD64_STRUCT_PASSING
// Check if we are writing past the end of the struct
if (varTypeIsStruct(varDsc))
{
assert(varDsc->lvSize() >= baseOffset + (unsigned)size);
}
#endif // !FEATURE_UNIX_AMD64_STRUCT_PASSING
if (regArgTab[argNum].slot == 1)
{
psiMoveToStack(varNum);
}
}
/* mark the argument as processed */
regArgTab[argNum].processed = true;
regArgMaskLive &= ~genRegMask(srcRegNum);
#if defined(_TARGET_ARM_)
if (storeType == TYP_DOUBLE)
{
regArgTab[argNum + 1].processed = true;
regArgMaskLive &= ~genRegMask(REG_NEXT(srcRegNum));
}
#endif
}
/* Process any circular dependencies */
if (regArgMaskLive)
{
unsigned begReg, destReg, srcReg;
unsigned varNumDest, varNumSrc;
LclVarDsc* varDscDest;
LclVarDsc* varDscSrc;
instruction insCopy = INS_mov;
if (doingFloat)
{
#if defined(FEATURE_HFA) || defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)
insCopy = ins_Copy(TYP_DOUBLE);
// Compute xtraReg here when we have a float argument
assert(xtraReg == REG_NA);
regMaskTP fpAvailMask;
fpAvailMask = RBM_FLT_CALLEE_TRASH & ~regArgMaskLive;
#if defined(FEATURE_HFA)
fpAvailMask &= RBM_ALLDOUBLE;
#else
#if !defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)
#error Error. Wrong architecture.
#endif // !defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)
#endif // defined(FEATURE_HFA)
if (fpAvailMask == RBM_NONE)
{
fpAvailMask = RBM_ALLFLOAT & ~regArgMaskLive;
#if defined(FEATURE_HFA)
fpAvailMask &= RBM_ALLDOUBLE;
#else
#if !defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)
#error Error. Wrong architecture.
#endif // !defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)
#endif // defined(FEATURE_HFA)
}
assert(fpAvailMask != RBM_NONE);
// We pick the lowest avail register number
regMaskTP tempMask = genFindLowestBit(fpAvailMask);
xtraReg = genRegNumFromMask(tempMask);
#elif defined(_TARGET_X86_)
// This case shouldn't occur on x86 since NYI gets converted to an assert
NYI("Homing circular FP registers via xtraReg");
#endif
}
for (argNum = 0; argNum < argMax; argNum++)
{
// If not a circular dependency then continue
if (!regArgTab[argNum].circular)
{
continue;
}
// If already processed the dependency then continue
if (regArgTab[argNum].processed)
{
continue;
}
if (regArgTab[argNum].slot == 0) // Not a register argument
{
continue;
}
destReg = begReg = argNum;
srcReg = regArgTab[argNum].trashBy;
varNumDest = regArgTab[destReg].varNum;
noway_assert(varNumDest < compiler->lvaCount);
varDscDest = compiler->lvaTable + varNumDest;
noway_assert(varDscDest->lvIsParam && varDscDest->lvIsRegArg);
noway_assert(srcReg < argMax);
varNumSrc = regArgTab[srcReg].varNum;
noway_assert(varNumSrc < compiler->lvaCount);
varDscSrc = compiler->lvaTable + varNumSrc;
noway_assert(varDscSrc->lvIsParam && varDscSrc->lvIsRegArg);
emitAttr size = EA_PTRSIZE;
#ifdef _TARGET_XARCH_
//
// The following code relies upon the target architecture having an
// 'xchg' instruction which directly swaps the values held in two registers.
// On the ARM architecture we do not have such an instruction.
//
if (destReg == regArgTab[srcReg].trashBy)
{
/* only 2 registers form the circular dependency - use "xchg" */
varNum = regArgTab[argNum].varNum;
noway_assert(varNum < compiler->lvaCount);
varDsc = compiler->lvaTable + varNum;
noway_assert(varDsc->lvIsParam && varDsc->lvIsRegArg);
noway_assert(genTypeSize(genActualType(varDscSrc->TypeGet())) <= REGSIZE_BYTES);
/* Set "size" to indicate GC if one and only one of
* the operands is a pointer
* RATIONALE: If both are pointers, nothing changes in
* the GC pointer tracking. If only one is a pointer we
* have to "swap" the registers in the GC reg pointer mask
*/
if (varTypeGCtype(varDscSrc->TypeGet()) != varTypeGCtype(varDscDest->TypeGet()))
{
size = EA_GCREF;
}
noway_assert(varDscDest->lvArgReg == varDscSrc->lvRegNum);
getEmitter()->emitIns_R_R(INS_xchg, size, varDscSrc->lvRegNum, varDscSrc->lvArgReg);
regTracker.rsTrackRegTrash(varDscSrc->lvRegNum);
regTracker.rsTrackRegTrash(varDscSrc->lvArgReg);
/* mark both arguments as processed */
regArgTab[destReg].processed = true;
regArgTab[srcReg].processed = true;
regArgMaskLive &= ~genRegMask(varDscSrc->lvArgReg);
regArgMaskLive &= ~genRegMask(varDscDest->lvArgReg);
psiMoveToReg(varNumSrc);
psiMoveToReg(varNumDest);
}
else
#endif // _TARGET_XARCH_
{
var_types destMemType = varDscDest->TypeGet();
#ifdef _TARGET_ARM_
bool cycleAllDouble = true; // assume the best
unsigned iter = begReg;
do
{
if (compiler->lvaTable[regArgTab[iter].varNum].TypeGet() != TYP_DOUBLE)
{
cycleAllDouble = false;
break;
}
iter = regArgTab[iter].trashBy;
} while (iter != begReg);
// We may treat doubles as floats for ARM because we could have partial circular
// dependencies of a float with a lo/hi part of the double. We mark the
// trashBy values for each slot of the double, so let the circular dependency
// logic work its way out for floats rather than doubles. If a cycle has all
// doubles, then optimize so that instead of two vmov.f32's to move a double,
// we can use one vmov.f64.
//
if (!cycleAllDouble && destMemType == TYP_DOUBLE)
{
destMemType = TYP_FLOAT;
}
#endif // _TARGET_ARM_
if (destMemType == TYP_REF)
{
size = EA_GCREF;
}
else if (destMemType == TYP_BYREF)
{
size = EA_BYREF;
}
else if (destMemType == TYP_DOUBLE)
{
size = EA_8BYTE;
}
else if (destMemType == TYP_FLOAT)
{
size = EA_4BYTE;
}
/* move the dest reg (begReg) in the extra reg */
assert(xtraReg != REG_NA);
regNumber begRegNum = genMapRegArgNumToRegNum(begReg, destMemType);
getEmitter()->emitIns_R_R(insCopy, size, xtraReg, begRegNum);
regTracker.rsTrackRegCopy(xtraReg, begRegNum);
*pXtraRegClobbered = true;
psiMoveToReg(varNumDest, xtraReg);
/* start moving everything to its right place */
while (srcReg != begReg)
{
/* mov dest, src */
regNumber destRegNum = genMapRegArgNumToRegNum(destReg, destMemType);
regNumber srcRegNum = genMapRegArgNumToRegNum(srcReg, destMemType);
getEmitter()->emitIns_R_R(insCopy, size, destRegNum, srcRegNum);
regTracker.rsTrackRegCopy(destRegNum, srcRegNum);
/* mark 'src' as processed */
noway_assert(srcReg < argMax);
regArgTab[srcReg].processed = true;
#ifdef _TARGET_ARM_
if (size == EA_8BYTE)
regArgTab[srcReg + 1].processed = true;
#endif
regArgMaskLive &= ~genMapArgNumToRegMask(srcReg, destMemType);
/* move to the next pair */
destReg = srcReg;
srcReg = regArgTab[srcReg].trashBy;
varDscDest = varDscSrc;
destMemType = varDscDest->TypeGet();
#ifdef _TARGET_ARM_
if (!cycleAllDouble && destMemType == TYP_DOUBLE)
{
destMemType = TYP_FLOAT;
}
#endif
varNumSrc = regArgTab[srcReg].varNum;
noway_assert(varNumSrc < compiler->lvaCount);
varDscSrc = compiler->lvaTable + varNumSrc;
noway_assert(varDscSrc->lvIsParam && varDscSrc->lvIsRegArg);
if (destMemType == TYP_REF)
{
size = EA_GCREF;
}
else if (destMemType == TYP_DOUBLE)
{
size = EA_8BYTE;
}
else
{
size = EA_4BYTE;
}
}
/* take care of the beginning register */
noway_assert(srcReg == begReg);
/* move the dest reg (begReg) in the extra reg */
regNumber destRegNum = genMapRegArgNumToRegNum(destReg, destMemType);
getEmitter()->emitIns_R_R(insCopy, size, destRegNum, xtraReg);
regTracker.rsTrackRegCopy(destRegNum, xtraReg);
psiMoveToReg(varNumSrc);
/* mark the beginning register as processed */
regArgTab[srcReg].processed = true;
#ifdef _TARGET_ARM_
if (size == EA_8BYTE)
regArgTab[srcReg + 1].processed = true;
#endif
regArgMaskLive &= ~genMapArgNumToRegMask(srcReg, destMemType);
}
}
}
/* Finally take care of the remaining arguments that must be enregistered */
while (regArgMaskLive)
{
regMaskTP regArgMaskLiveSave = regArgMaskLive;
for (argNum = 0; argNum < argMax; argNum++)
{
/* If already processed go to the next one */
if (regArgTab[argNum].processed)
{
continue;
}
if (regArgTab[argNum].slot == 0)
{ // Not a register argument
continue;
}
varNum = regArgTab[argNum].varNum;
noway_assert(varNum < compiler->lvaCount);
varDsc = compiler->lvaTable + varNum;
var_types regType = regArgTab[argNum].getRegType(compiler);
regNumber regNum = genMapRegArgNumToRegNum(argNum, regType);
#if defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)
if (regType == TYP_UNDEF)
{
// This could happen if the reg in regArgTab[argNum] is of the other register file -
// for System V register passed structs where the first reg is GPR and the second an XMM reg.
// The next register file processing will process it.
regArgMaskLive &= ~genRegMask(regNum);
continue;
}
#endif // defined(FEATURE_UNIX_AMD64_STRUCT_PASSING)
noway_assert(varDsc->lvIsParam && varDsc->lvIsRegArg);
#ifndef _TARGET_64BIT_
#ifndef _TARGET_ARM_
// Right now we think that incoming arguments are not pointer sized. When we eventually
// understand the calling convention, this still won't be true. But maybe we'll have a better
// idea of how to ignore it.
// On Arm, a long can be passed in register
noway_assert(genTypeSize(genActualType(varDsc->TypeGet())) == sizeof(void*));
#endif
#endif //_TARGET_64BIT_
noway_assert(varDsc->lvIsInReg() && !regArgTab[argNum].circular);
/* Register argument - hopefully it stays in the same register */
regNumber destRegNum = REG_NA;
var_types destMemType = varDsc->TypeGet();
if (regArgTab[argNum].slot == 1)
{
destRegNum = varDsc->lvRegNum;
#ifdef _TARGET_ARM_
if (genActualType(destMemType) == TYP_DOUBLE && regArgTab[argNum + 1].processed)
{
// The second half of the double has already been processed! Treat this as a single.
destMemType = TYP_FLOAT;
}
#endif // _TARGET_ARM_
}
#ifndef _TARGET_64BIT_
else if (regArgTab[argNum].slot == 2 && genActualType(destMemType) == TYP_LONG)
{
#ifndef LEGACY_BACKEND
assert(genActualType(varDsc->TypeGet()) == TYP_LONG || genActualType(varDsc->TypeGet()) == TYP_DOUBLE);
if (genActualType(varDsc->TypeGet()) == TYP_DOUBLE)
{
destRegNum = regNum;
}
else
#endif // !LEGACY_BACKEND
destRegNum = varDsc->lvOtherReg;
assert(destRegNum != REG_STK);
}
else
{
assert(regArgTab[argNum].slot == 2);
assert(destMemType == TYP_DOUBLE);
// For doubles, we move the entire double using the argNum representing
// the first half of the double. There are two things we won't do:
// (1) move the double when the 1st half of the destination is free but the
// 2nd half is occupied, and (2) move the double when the 2nd half of the
// destination is free but the 1st half is occupied. Here we consider the
// case where the first half can't be moved initially because its target is
// still busy, but the second half can be moved. We wait until the entire
// double can be moved, if possible. For example, we have F0/F1 double moving to F2/F3,
// and F2 single moving to F16. When we process F0, its target F2 is busy,
// so we skip it on the first pass. When we process F1, its target F3 is
// available. However, we want to move F0/F1 all at once, so we skip it here.
// We process F2, which frees up F2. The next pass through, we process F0 and
// F2/F3 are empty, so we move it. Note that if half of a double is involved
// in a circularity with a single, then we will have already moved that half
// above, so we go ahead and move the remaining half as a single.
// Because there are no circularities left, we are guaranteed to terminate.
assert(argNum > 0);
assert(regArgTab[argNum - 1].slot == 1);
if (!regArgTab[argNum - 1].processed)
{
// The first half of the double hasn't been processed; try to be processed at the same time
continue;
}
// The first half of the double has been processed but the second half hasn't!
// This could happen for double F2/F3 moving to F0/F1, and single F0 moving to F2.
// In that case, there is a F0/F2 loop that is not a double-only loop. The circular
// dependency logic above will move them as singles, leaving just F3 to move. Treat
// it as a single to finish the shuffling.
destMemType = TYP_FLOAT;
destRegNum = REG_NEXT(varDsc->lvRegNum);
}
#endif // !_TARGET_64BIT_
#if defined(FEATURE_UNIX_AMD64_STRUCT_PASSING) && defined(FEATURE_SIMD)
else
{
assert(regArgTab[argNum].slot == 2);
assert(argNum > 0);
assert(regArgTab[argNum - 1].slot == 1);
assert((varDsc->lvType == TYP_SIMD12) || (varDsc->lvType == TYP_SIMD16));
destRegNum = varDsc->lvRegNum;
noway_assert(regNum != destRegNum);
continue;
}
#endif // defined(FEATURE_UNIX_AMD64_STRUCT_PASSING) && defined(FEATURE_SIMD)
noway_assert(destRegNum != REG_NA);
if (destRegNum != regNum)
{
/* Cannot trash a currently live register argument.
* Skip this one until its target will be free
* which is guaranteed to happen since we have no circular dependencies. */
regMaskTP destMask = genRegMask(destRegNum);
#ifdef _TARGET_ARM_
// Don't process the double until both halves of the destination are clear.
if (genActualType(destMemType) == TYP_DOUBLE)
{
assert((destMask & RBM_DBL_REGS) != 0);
destMask |= genRegMask(REG_NEXT(destRegNum));
}
#endif
if (destMask & regArgMaskLive)
{
continue;
}
/* Move it to the new register */
emitAttr size = emitActualTypeSize(destMemType);
getEmitter()->emitIns_R_R(ins_Copy(destMemType), size, destRegNum, regNum);
psiMoveToReg(varNum);
}
/* mark the argument as processed */
assert(!regArgTab[argNum].processed);
regArgTab[argNum].processed = true;
regArgMaskLive &= ~genRegMask(regNum);
#if FEATURE_MULTIREG_ARGS
int argRegCount = 1;
#ifdef _TARGET_ARM_
if (genActualType(destMemType) == TYP_DOUBLE)
{
argRegCount = 2;
}
#endif
#if defined(FEATURE_UNIX_AMD64_STRUCT_PASSING) && defined(FEATURE_SIMD)
if (varTypeIsStruct(varDsc) && argNum < (argMax - 1) && regArgTab[argNum + 1].slot == 2)
{
argRegCount = 2;
int nextArgNum = argNum + 1;
regNumber nextRegNum = genMapRegArgNumToRegNum(nextArgNum, regArgTab[nextArgNum].getRegType(compiler));
noway_assert(regArgTab[nextArgNum].varNum == varNum);
// Emit a shufpd with a 0 immediate, which preserves the 0th element of the dest reg
// and moves the 0th element of the src reg into the 1st element of the dest reg.
getEmitter()->emitIns_R_R_I(INS_shufpd, emitActualTypeSize(varDsc->lvType), destRegNum, nextRegNum, 0);
// Set destRegNum to regNum so that we skip the setting of the register below,
// but mark argNum as processed and clear regNum from the live mask.
destRegNum = regNum;
}
#endif // defined(FEATURE_UNIX_AMD64_STRUCT_PASSING) && defined(FEATURE_SIMD)
// Mark the rest of the argument registers corresponding to this multi-reg type as
// being processed and no longer live.
for (int regSlot = 1; regSlot < argRegCount; regSlot++)
{
int nextArgNum = argNum + regSlot;
assert(!regArgTab[nextArgNum].processed);
regArgTab[nextArgNum].processed = true;
regNumber nextRegNum = genMapRegArgNumToRegNum(nextArgNum, regArgTab[nextArgNum].getRegType(compiler));
regArgMaskLive &= ~genRegMask(nextRegNum);
}
#endif // FEATURE_MULTIREG_ARGS
}
noway_assert(regArgMaskLiveSave != regArgMaskLive); // if it doesn't change, we have an infinite loop
}
}
#ifdef _PREFAST_
#pragma warning(pop)
#endif
/*****************************************************************************
* If any incoming stack arguments live in registers, load them.
*/
void CodeGen::genEnregisterIncomingStackArgs()
{
#ifdef DEBUG
if (verbose)
{
printf("*************** In genEnregisterIncomingStackArgs()\n");
}
#endif
assert(compiler->compGeneratingProlog);
unsigned varNum = 0;
for (LclVarDsc *varDsc = compiler->lvaTable; varNum < compiler->lvaCount; varNum++, varDsc++)
{
/* Is this variable a parameter? */
if (!varDsc->lvIsParam)
{
continue;
}
/* If it's a register argument then it's already been taken care of.
But, on Arm when under a profiler, we would have prespilled a register argument
and hence here we need to load it from its prespilled location.
*/
bool isPrespilledForProfiling = false;
#if defined(_TARGET_ARM_) && defined(PROFILING_SUPPORTED)
isPrespilledForProfiling =
compiler->compIsProfilerHookNeeded() && compiler->lvaIsPreSpilled(varNum, regSet.rsMaskPreSpillRegs(false));
#endif
if (varDsc->lvIsRegArg && !isPrespilledForProfiling)
{
continue;
}
/* Has the parameter been assigned to a register? */
if (!varDsc->lvIsInReg())
{
continue;
}
var_types type = genActualType(varDsc->TypeGet());
#if FEATURE_STACK_FP_X87
// Floating point locals are loaded onto the x86-FPU in the next section
if (varTypeIsFloating(type))
continue;
#endif
/* Is the variable dead on entry */
if (!VarSetOps::IsMember(compiler, compiler->fgFirstBB->bbLiveIn, varDsc->lvVarIndex))
{
continue;
}
/* Load the incoming parameter into the register */
/* Figure out the home offset of the incoming argument */
regNumber regNum;
regNumber otherReg;
#ifndef LEGACY_BACKEND
#ifdef _TARGET_ARM_
if (type == TYP_LONG)
{
regPairNo regPair = varDsc->lvArgInitRegPair;
regNum = genRegPairLo(regPair);
otherReg = genRegPairHi(regPair);
}
else
#endif // _TARGET_ARM
{
regNum = varDsc->lvArgInitReg;
otherReg = REG_NA;
}
#else // LEGACY_BACKEND
regNum = varDsc->lvRegNum;
if (type == TYP_LONG)
{
otherReg = varDsc->lvOtherReg;
}
else
{
otherReg = REG_NA;
}
#endif // LEGACY_BACKEND
assert(regNum != REG_STK);
#ifndef _TARGET_64BIT_
if (type == TYP_LONG)
{
/* long - at least the low half must be enregistered */
getEmitter()->emitIns_R_S(ins_Load(TYP_INT), EA_4BYTE, regNum, varNum, 0);
regTracker.rsTrackRegTrash(regNum);
/* Is the upper half also enregistered? */
if (otherReg != REG_STK)
{
getEmitter()->emitIns_R_S(ins_Load(TYP_INT), EA_4BYTE, otherReg, varNum, sizeof(int));
regTracker.rsTrackRegTrash(otherReg);
}
}
else
#endif // _TARGET_64BIT_
{
/* Loading a single register - this is the easy/common case */
getEmitter()->emitIns_R_S(ins_Load(type), emitTypeSize(type), regNum, varNum, 0);
regTracker.rsTrackRegTrash(regNum);
}
psiMoveToReg(varNum);
}
}
/*-------------------------------------------------------------------------
*
* We have to decide whether we're going to use block initialization
* in the prolog before we assign final stack offsets. This is because
* when using block initialization we may need additional callee-saved
* registers which need to be saved on the frame, thus increasing the
* frame size.
*
* We'll count the number of locals we have to initialize,
* and if there are lots of them we'll use block initialization.
* Thus, the local variable table must have accurate register location
* information for enregistered locals for their register state on entry
* to the function.
*
* At the same time we set lvMustInit for locals (enregistered or on stack)
* that must be initialized (e.g. initialize memory (comInitMem),
* untracked pointers or disable DFA)
*/
void CodeGen::genCheckUseBlockInit()
{
#ifndef LEGACY_BACKEND // this is called before codegen in RyuJIT backend
assert(!compiler->compGeneratingProlog);
#else // LEGACY_BACKEND
assert(compiler->compGeneratingProlog);
#endif // LEGACY_BACKEND
unsigned initStkLclCnt = 0; // The number of int-sized stack local variables that need to be initialized (variables
// larger than int count for more than 1).
unsigned largeGcStructs = 0; // The number of "large" structs with GC pointers. Used as part of the heuristic to
// determine whether to use block init.
unsigned varNum;
LclVarDsc* varDsc;
for (varNum = 0, varDsc = compiler->lvaTable; varNum < compiler->lvaCount; varNum++, varDsc++)
{
if (varDsc->lvIsParam)
{
continue;
}
if (!varDsc->lvIsInReg() && !varDsc->lvOnFrame)
{
noway_assert(varDsc->lvRefCnt == 0);
continue;
}
if (varNum == compiler->lvaInlinedPInvokeFrameVar || varNum == compiler->lvaStubArgumentVar)
{
continue;
}
#if FEATURE_FIXED_OUT_ARGS
if (varNum == compiler->lvaPInvokeFrameRegSaveVar)
{
continue;
}
if (varNum == compiler->lvaOutgoingArgSpaceVar)
{
continue;
}
#endif
#if FEATURE_EH_FUNCLETS
// There's no need to force 0-initialization of the PSPSym, it will be
// initialized with a real value in the prolog
if (varNum == compiler->lvaPSPSym)
{
continue;
}
#endif
if (compiler->lvaIsFieldOfDependentlyPromotedStruct(varDsc))
{
// For Compiler::PROMOTION_TYPE_DEPENDENT type of promotion, the whole struct should have been
// initialized by the parent struct. No need to set the lvMustInit bit in the
// field locals.
continue;
}
if (compiler->info.compInitMem || varTypeIsGC(varDsc->TypeGet()) || (varDsc->lvStructGcCount > 0) ||
varDsc->lvMustInit)
{
if (varDsc->lvTracked)
{
/* For uninitialized use of tracked variables, the liveness
* will bubble to the top (compiler->fgFirstBB) in fgInterBlockLocalVarLiveness()
*/
if (varDsc->lvMustInit ||
VarSetOps::IsMember(compiler, compiler->fgFirstBB->bbLiveIn, varDsc->lvVarIndex))
{
/* This var must be initialized */
varDsc->lvMustInit = 1;
/* See if the variable is on the stack will be initialized
* using rep stos - compute the total size to be zero-ed */
if (varDsc->lvOnFrame)
{
if (!varDsc->lvRegister)
{
#ifndef LEGACY_BACKEND
if (!varDsc->lvIsInReg())
#endif // !LEGACY_BACKEND
{
// Var is completely on the stack, in the legacy JIT case, or
// on the stack at entry, in the RyuJIT case.
initStkLclCnt += (unsigned)roundUp(compiler->lvaLclSize(varNum)) / sizeof(int);
}
}
else
{
// Var is partially enregistered
noway_assert(genTypeSize(varDsc->TypeGet()) > sizeof(int) && varDsc->lvOtherReg == REG_STK);
initStkLclCnt += genTypeStSz(TYP_INT);
}
}
}
}
/* With compInitMem, all untracked vars will have to be init'ed */
/* VSW 102460 - Do not force initialization of compiler generated temps,
unless they are untracked GC type or structs that contain GC pointers */
CLANG_FORMAT_COMMENT_ANCHOR;
#if FEATURE_SIMD
// TODO-1stClassStructs
// This is here to duplicate previous behavior, where TYP_SIMD8 locals
// were not being re-typed correctly.
if ((!varDsc->lvTracked || (varDsc->lvType == TYP_STRUCT) || (varDsc->lvType == TYP_SIMD8)) &&
#else // !FEATURE_SIMD
if ((!varDsc->lvTracked || (varDsc->lvType == TYP_STRUCT)) &&
#endif // !FEATURE_SIMD
varDsc->lvOnFrame &&
(!varDsc->lvIsTemp || varTypeIsGC(varDsc->TypeGet()) || (varDsc->lvStructGcCount > 0)))
{
varDsc->lvMustInit = true;
initStkLclCnt += (unsigned)roundUp(compiler->lvaLclSize(varNum)) / sizeof(int);
}
continue;
}
/* Ignore if not a pointer variable or value class with a GC field */
if (!compiler->lvaTypeIsGC(varNum))
{
continue;
}
/* If we don't know lifetimes of variables, must be conservative */
if (!compiler->backendRequiresLocalVarLifetimes())
{
varDsc->lvMustInit = true;
noway_assert(!varDsc->lvRegister);
}
else
{
if (!varDsc->lvTracked)
{
varDsc->lvMustInit = true;
}
}
/* Is this a 'must-init' stack pointer local? */
if (varDsc->lvMustInit && varDsc->lvOnFrame)
{
initStkLclCnt += varDsc->lvStructGcCount;
}
if ((compiler->lvaLclSize(varNum) > (3 * sizeof(void*))) && (largeGcStructs <= 4))
{
largeGcStructs++;
}
}
/* Don't forget about spill temps that hold pointers */
if (!TRACK_GC_TEMP_LIFETIMES)
{
assert(compiler->tmpAllFree());
for (TempDsc* tempThis = compiler->tmpListBeg(); tempThis != nullptr; tempThis = compiler->tmpListNxt(tempThis))
{
if (varTypeIsGC(tempThis->tdTempType()))
{
initStkLclCnt++;
}
}
}
// After debugging this further it was found that this logic is incorrect:
// it incorrectly assumes the stack slots are always 4 bytes (not necessarily the case)
// and this also double counts variables (we saw this in the debugger) around line 4829.
// Even though this doesn't pose a problem with correctness it will improperly decide to
// zero init the stack using a block operation instead of a 'case by case' basis.
genInitStkLclCnt = initStkLclCnt;
/* If we have more than 4 untracked locals, use block initialization */
/* TODO-Review: If we have large structs, bias toward not using block initialization since
we waste all the other slots. Really need to compute the correct
and compare that against zeroing the slots individually */
genUseBlockInit = (genInitStkLclCnt > (largeGcStructs + 4));
if (genUseBlockInit)
{
regMaskTP maskCalleeRegArgMask = intRegState.rsCalleeRegArgMaskLiveIn;
// If there is a secret stub param, don't count it, as it will no longer
// be live when we do block init.
if (compiler->info.compPublishStubParam)
{
maskCalleeRegArgMask &= ~RBM_SECRET_STUB_PARAM;
}
#ifdef _TARGET_XARCH_
// If we're going to use "REP STOS", remember that we will trash EDI
// For fastcall we will have to save ECX, EAX
// so reserve two extra callee saved
// This is better than pushing eax, ecx, because we in the later
// we will mess up already computed offsets on the stack (for ESP frames)
regSet.rsSetRegsModified(RBM_EDI);
#ifdef UNIX_AMD64_ABI
// For register arguments we may have to save ECX (and RDI on Amd64 System V OSes.)
// In such case use R12 and R13 registers.
if (maskCalleeRegArgMask & RBM_RCX)
{
regSet.rsSetRegsModified(RBM_R12);
}
if (maskCalleeRegArgMask & RBM_RDI)
{
regSet.rsSetRegsModified(RBM_R13);
}
#else // !UNIX_AMD64_ABI
if (maskCalleeRegArgMask & RBM_ECX)
{
regSet.rsSetRegsModified(RBM_ESI);
}
#endif // !UNIX_AMD64_ABI
if (maskCalleeRegArgMask & RBM_EAX)
{
regSet.rsSetRegsModified(RBM_EBX);
}
#endif // _TARGET_XARCH_
#ifdef _TARGET_ARM_
//
// On the Arm if we are using a block init to initialize, then we
// must force spill R4/R5/R6 so that we can use them during
// zero-initialization process.
//
int forceSpillRegCount = genCountBits(maskCalleeRegArgMask & ~regSet.rsMaskPreSpillRegs(false)) - 1;
if (forceSpillRegCount > 0)
regSet.rsSetRegsModified(RBM_R4);
if (forceSpillRegCount > 1)
regSet.rsSetRegsModified(RBM_R5);
if (forceSpillRegCount > 2)
regSet.rsSetRegsModified(RBM_R6);
#endif // _TARGET_ARM_
}
}
/*-----------------------------------------------------------------------------
*
* Push any callee-saved registers we have used
*/
#if defined(_TARGET_ARM64_)
void CodeGen::genPushCalleeSavedRegisters(regNumber initReg, bool* pInitRegZeroed)
#else
void CodeGen::genPushCalleeSavedRegisters()
#endif
{
assert(compiler->compGeneratingProlog);
#if defined(_TARGET_XARCH_) && !FEATURE_STACK_FP_X87
// x86/x64 doesn't support push of xmm/ymm regs, therefore consider only integer registers for pushing onto stack
// here. Space for float registers to be preserved is stack allocated and saved as part of prolog sequence and not
// here.
regMaskTP rsPushRegs = regSet.rsGetModifiedRegsMask() & RBM_INT_CALLEE_SAVED;
#else // !defined(_TARGET_XARCH_) || FEATURE_STACK_FP_X87
regMaskTP rsPushRegs = regSet.rsGetModifiedRegsMask() & RBM_CALLEE_SAVED;
#endif
#if ETW_EBP_FRAMED
if (!isFramePointerUsed() && regSet.rsRegsModified(RBM_FPBASE))
{
noway_assert(!"Used register RBM_FPBASE as a scratch register!");
}
#endif
#ifdef _TARGET_XARCH_
// On X86/X64 we have already pushed the FP (frame-pointer) prior to calling this method
if (isFramePointerUsed())
{
rsPushRegs &= ~RBM_FPBASE;
}
#endif
#ifdef _TARGET_ARMARCH_
// On ARM we push the FP (frame-pointer) here along with all other callee saved registers
if (isFramePointerUsed())
rsPushRegs |= RBM_FPBASE;
//
// It may be possible to skip pushing/popping lr for leaf methods. However, such optimization would require
// changes in GC suspension architecture.
//
// We would need to guarantee that a tight loop calling a virtual leaf method can be suspended for GC. Today, we
// generate partially interruptible code for both the method that contains the tight loop with the call and the leaf
// method. GC suspension depends on return address hijacking in this case. Return address hijacking depends
// on the return address to be saved on the stack. If we skipped pushing/popping lr, the return address would never
// be saved on the stack and the GC suspension would time out.
//
// So if we wanted to skip pushing pushing/popping lr for leaf frames, we would also need to do one of
// the following to make GC suspension work in the above scenario:
// - Make return address hijacking work even when lr is not saved on the stack.
// - Generate fully interruptible code for loops that contains calls
// - Generate fully interruptible code for leaf methods
//
// Given the limited benefit from this optimization (<10k for mscorlib NGen image), the extra complexity
// is not worth it.
//
rsPushRegs |= RBM_LR; // We must save the return address (in the LR register)
regSet.rsMaskCalleeSaved = rsPushRegs;
#endif // _TARGET_ARMARCH_
#ifdef DEBUG
if (compiler->compCalleeRegsPushed != genCountBits(rsPushRegs))
{
printf("Error: unexpected number of callee-saved registers to push. Expected: %d. Got: %d ",
compiler->compCalleeRegsPushed, genCountBits(rsPushRegs));
dspRegMask(rsPushRegs);
printf("\n");
assert(compiler->compCalleeRegsPushed == genCountBits(rsPushRegs));
}
#endif // DEBUG
#if defined(_TARGET_ARM_)
regMaskTP maskPushRegsFloat = rsPushRegs & RBM_ALLFLOAT;
regMaskTP maskPushRegsInt = rsPushRegs & ~maskPushRegsFloat;
maskPushRegsInt |= genStackAllocRegisterMask(compiler->compLclFrameSize, maskPushRegsFloat);
assert(FitsIn<int>(maskPushRegsInt));
inst_IV(INS_push, (int)maskPushRegsInt);
compiler->unwindPushMaskInt(maskPushRegsInt);
if (maskPushRegsFloat != 0)
{
genPushFltRegs(maskPushRegsFloat);
compiler->unwindPushMaskFloat(maskPushRegsFloat);
}
#elif defined(_TARGET_ARM64_)
// See the document "ARM64 JIT Frame Layout" and/or "ARM64 Exception Data" for more details or requirements and
// options. Case numbers in comments here refer to this document.
//
// For most frames, generate, e.g.:
// stp fp, lr, [sp,-0x80]! // predecrement SP with full frame size, and store FP/LR pair. Store pair
// // ensures stack stays aligned.
// stp r19, r20, [sp, 0x60] // store at positive offset from SP established above, into callee-saved area
// // at top of frame (highest addresses).
// stp r21, r22, [sp, 0x70]
//
// Notes:
// 1. We don't always need to save FP. If FP isn't saved, then LR is saved with the other callee-saved registers
// at the top of the frame.
// 2. If we save FP, then the first store is FP, LR.
// 3. General-purpose registers are 8 bytes, floating-point registers are 16 bytes, but FP/SIMD registers only
// preserve their lower 8 bytes, by calling convention.
// 4. For frames with varargs, we spill the integer register arguments to the stack, so all the arguments are
// consecutive.
// 5. We allocate the frame here; no further changes to SP are allowed (except in the body, for localloc).
int totalFrameSize = genTotalFrameSize();
int offset; // This will be the starting place for saving the callee-saved registers, in increasing order.
regMaskTP maskSaveRegsFloat = rsPushRegs & RBM_ALLFLOAT;
regMaskTP maskSaveRegsInt = rsPushRegs & ~maskSaveRegsFloat;
if (compiler->info.compIsVarArgs)
{
assert(maskSaveRegsFloat == RBM_NONE);
}
int frameType = 0; // This number is arbitrary, is defined below, and corresponds to one of the frame styles we
// generate based on various sizes.
int calleeSaveSPDelta = 0;
int calleeSaveSPDeltaUnaligned = 0;
if (isFramePointerUsed())
{
// We need to save both FP and LR.
assert((maskSaveRegsInt & RBM_FP) != 0);
assert((maskSaveRegsInt & RBM_LR) != 0);
if ((compiler->lvaOutgoingArgSpaceSize == 0) && (totalFrameSize < 512))
{
// Case #1.
//
// Generate:
// stp fp,lr,[sp,#-framesz]!
//
// The (totalFrameSize < 512) condition ensures that both the predecrement
// and the postincrement of SP can occur with STP.
//
// After saving callee-saved registers, we establish the frame pointer with:
// mov fp,sp
// We do this *after* saving callee-saved registers, so the prolog/epilog unwind codes mostly match.
frameType = 1;
getEmitter()->emitIns_R_R_R_I(INS_stp, EA_PTRSIZE, REG_FP, REG_LR, REG_SPBASE, -totalFrameSize,
INS_OPTS_PRE_INDEX);
compiler->unwindSaveRegPairPreindexed(REG_FP, REG_LR, -totalFrameSize);
maskSaveRegsInt &= ~(RBM_FP | RBM_LR); // We've already saved FP/LR
offset = (int)compiler->compLclFrameSize + 2 * REGSIZE_BYTES; // 2 for FP/LR
}
else if (totalFrameSize <= 512)
{
// Case #2.
//
// Generate:
// sub sp,sp,#framesz
// stp fp,lr,[sp,#outsz] // note that by necessity, #outsz <= #framesz - 16, so #outsz <= 496.
//
// The (totalFrameSize <= 512) condition ensures the callee-saved registers can all be saved using STP with
// signed offset encoding.
//
// After saving callee-saved registers, we establish the frame pointer with:
// add fp,sp,#outsz
// We do this *after* saving callee-saved registers, so the prolog/epilog unwind codes mostly match.
frameType = 2;
assert(compiler->lvaOutgoingArgSpaceSize + 2 * REGSIZE_BYTES <= (unsigned)totalFrameSize);
getEmitter()->emitIns_R_R_I(INS_sub, EA_PTRSIZE, REG_SPBASE, REG_SPBASE, totalFrameSize);
compiler->unwindAllocStack(totalFrameSize);
getEmitter()->emitIns_R_R_R_I(INS_stp, EA_PTRSIZE, REG_FP, REG_LR, REG_SPBASE,
compiler->lvaOutgoingArgSpaceSize);
compiler->unwindSaveRegPair(REG_FP, REG_LR, compiler->lvaOutgoingArgSpaceSize);
maskSaveRegsInt &= ~(RBM_FP | RBM_LR); // We've already saved FP/LR
offset = (int)compiler->compLclFrameSize + 2 * REGSIZE_BYTES; // 2 for FP/LR
}
else
{
// Case 5 or 6.
//
// First, the callee-saved registers will be saved, and the callee-saved register code must use pre-index
// to subtract from SP as the first instruction. It must also leave space for varargs registers to be
// stored. For example:
// stp r19,r20,[sp,#-96]!
// stp d8,d9,[sp,#16]
// ... save varargs incoming integer registers ...
// Note that all SP alterations must be 16-byte aligned. We have already calculated any alignment to be
// lower on the stack than the callee-saved registers (see lvaAlignFrame() for how we calculate alignment).
// So, if there is an odd number of callee-saved registers, we use (for example, with just one saved
// register):
// sub sp,sp,#16
// str r19,[sp,#8]
// This is one additional instruction, but it centralizes the aligned space. Otherwise, it might be
// possible to have two 8-byte alignment padding words, one below the callee-saved registers, and one
// above them. If that is preferable, we could implement it.
// Note that any varargs saved space will always be 16-byte aligned, since there are 8 argument registers.
//
// Then, define #remainingFrameSz = #framesz - (callee-saved size + varargs space + possible alignment
// padding from above).
// Note that #remainingFrameSz must not be zero, since we still need to save FP,SP.
//
// Generate:
// sub sp,sp,#remainingFrameSz
// or, for large frames:
// mov rX, #remainingFrameSz // maybe multiple instructions
// sub sp,sp,rX
//
// followed by:
// stp fp,lr,[sp,#outsz]
// add fp,sp,#outsz
//
// However, we need to handle the case where #outsz is larger than the constant signed offset encoding can
// handle. And, once again, we might need to deal with #outsz that is not aligned to 16-bytes (i.e.,
// STACK_ALIGN). So, in the case of large #outsz we will have an additional SP adjustment, using one of the
// following sequences:
//
// Define #remainingFrameSz2 = #remainingFrameSz - #outsz.
//
// sub sp,sp,#remainingFrameSz2 // if #remainingFrameSz2 is 16-byte aligned
// stp fp,lr,[sp]
// mov fp,sp
// sub sp,sp,#outsz // in this case, #outsz must also be 16-byte aligned
//
// Or:
//
// sub sp,sp,roundUp(#remainingFrameSz2,16) // if #remainingFrameSz2 is not 16-byte aligned (it is
// // always guaranteed to be 8 byte aligned).
// stp fp,lr,[sp,#8] // it will always be #8 in the unaligned case
// add fp,sp,#8
// sub sp,sp,#outsz - #8
//
// (As usual, for a large constant "#outsz - #8", we might need multiple instructions:
// mov rX, #outsz - #8 // maybe multiple instructions
// sub sp,sp,rX
// )
frameType = 3;
calleeSaveSPDeltaUnaligned =
totalFrameSize - compiler->compLclFrameSize - 2 * REGSIZE_BYTES; // 2 for FP, LR which we'll save later.
assert(calleeSaveSPDeltaUnaligned >= 0);
assert((calleeSaveSPDeltaUnaligned % 8) == 0); // It better at least be 8 byte aligned.
calleeSaveSPDelta = AlignUp((UINT)calleeSaveSPDeltaUnaligned, STACK_ALIGN);
offset = calleeSaveSPDelta - calleeSaveSPDeltaUnaligned;
assert((offset == 0) || (offset == REGSIZE_BYTES)); // At most one alignment slot between SP and where we
// store the callee-saved registers.
// We'll take care of these later, but callee-saved regs code shouldn't see them.
maskSaveRegsInt &= ~(RBM_FP | RBM_LR);
}
}
else
{
// No frame pointer (no chaining).
assert((maskSaveRegsInt & RBM_FP) == 0);
assert((maskSaveRegsInt & RBM_LR) != 0);
// Note that there is no pre-indexed save_lrpair unwind code variant, so we can't allocate the frame using 'stp'
// if we only have one callee-saved register plus LR to save.
NYI("Frame without frame pointer");
offset = 0;
}
assert(frameType != 0);
genSaveCalleeSavedRegistersHelp(maskSaveRegsInt | maskSaveRegsFloat, offset, -calleeSaveSPDelta);
offset += genCountBits(maskSaveRegsInt | maskSaveRegsFloat) * REGSIZE_BYTES;
// For varargs, home the incoming arg registers last. Note that there is nothing to unwind here,
// so we just report "NOP" unwind codes. If there's no more frame setup after this, we don't
// need to add codes at all.
if (compiler->info.compIsVarArgs)
{
// There are 8 general-purpose registers to home, thus 'offset' must be 16-byte aligned here.
assert((offset % 16) == 0);
for (regNumber reg1 = REG_ARG_FIRST; reg1 < REG_ARG_LAST; reg1 = REG_NEXT(REG_NEXT(reg1)))
{
regNumber reg2 = REG_NEXT(reg1);
// stp REG, REG + 1, [SP, #offset]
getEmitter()->emitIns_R_R_R_I(INS_stp, EA_PTRSIZE, reg1, reg2, REG_SPBASE, offset);
compiler->unwindNop();
offset += 2 * REGSIZE_BYTES;
}
}
if (frameType == 1)
{
getEmitter()->emitIns_R_R(INS_mov, EA_PTRSIZE, REG_FPBASE, REG_SPBASE);
compiler->unwindSetFrameReg(REG_FPBASE, 0);
}
else if (frameType == 2)
{
getEmitter()->emitIns_R_R_I(INS_add, EA_PTRSIZE, REG_FPBASE, REG_SPBASE, compiler->lvaOutgoingArgSpaceSize);
compiler->unwindSetFrameReg(REG_FPBASE, compiler->lvaOutgoingArgSpaceSize);
}
else if (frameType == 3)
{
int remainingFrameSz = totalFrameSize - calleeSaveSPDelta;
assert(remainingFrameSz > 0);
assert((remainingFrameSz % 16) == 0); // this is guaranteed to be 16-byte aligned because each component --
// totalFrameSize and calleeSaveSPDelta -- is 16-byte aligned.
if (compiler->lvaOutgoingArgSpaceSize >= 504)
{
// We can't do "stp fp,lr,[sp,#outsz]" because #outsz is too big.
// If compiler->lvaOutgoingArgSpaceSize is not aligned, we need to align the SP adjustment.
assert(remainingFrameSz > (int)compiler->lvaOutgoingArgSpaceSize);
int spAdjustment2Unaligned = remainingFrameSz - compiler->lvaOutgoingArgSpaceSize;
int spAdjustment2 = (int)roundUp((size_t)spAdjustment2Unaligned, STACK_ALIGN);
int alignmentAdjustment2 = spAdjustment2 - spAdjustment2Unaligned;
assert((alignmentAdjustment2 == 0) || (alignmentAdjustment2 == 8));
genPrologSaveRegPair(REG_FP, REG_LR, alignmentAdjustment2, -spAdjustment2, false, initReg, pInitRegZeroed);
offset += spAdjustment2;
// Now subtract off the #outsz (or the rest of the #outsz if it was unaligned, and the above "sub" included
// some of it)
int spAdjustment3 = compiler->lvaOutgoingArgSpaceSize - alignmentAdjustment2;
assert(spAdjustment3 > 0);
assert((spAdjustment3 % 16) == 0);
getEmitter()->emitIns_R_R_I(INS_add, EA_PTRSIZE, REG_FPBASE, REG_SPBASE, alignmentAdjustment2);
compiler->unwindSetFrameReg(REG_FPBASE, alignmentAdjustment2);
genStackPointerAdjustment(-spAdjustment3, initReg, pInitRegZeroed);
offset += spAdjustment3;
}
else
{
genPrologSaveRegPair(REG_FP, REG_LR, compiler->lvaOutgoingArgSpaceSize, -remainingFrameSz, false, initReg,
pInitRegZeroed);
offset += remainingFrameSz;
getEmitter()->emitIns_R_R_I(INS_add, EA_PTRSIZE, REG_FPBASE, REG_SPBASE, compiler->lvaOutgoingArgSpaceSize);
compiler->unwindSetFrameReg(REG_FPBASE, compiler->lvaOutgoingArgSpaceSize);
}
}
assert(offset == totalFrameSize);
#elif defined(_TARGET_XARCH_)
// Push backwards so we match the order we will pop them in the epilog
// and all the other code that expects it to be in this order.
for (regNumber reg = REG_INT_LAST; rsPushRegs != RBM_NONE; reg = REG_PREV(reg))
{
regMaskTP regBit = genRegMask(reg);
if ((regBit & rsPushRegs) != 0)
{
inst_RV(INS_push, reg, TYP_REF);
compiler->unwindPush(reg);
if (!doubleAlignOrFramePointerUsed())
{
psiAdjustStackLevel(REGSIZE_BYTES);
}
rsPushRegs &= ~regBit;
}
}
#else
assert(!"Unknown TARGET");
#endif // _TARGET_*
}
/*-----------------------------------------------------------------------------
*
* Probe the stack and allocate the local stack frame: subtract from SP.
* On ARM64, this only does the probing; allocating the frame is done when callee-saved registers are saved.
*/
void CodeGen::genAllocLclFrame(unsigned frameSize, regNumber initReg, bool* pInitRegZeroed, regMaskTP maskArgRegsLiveIn)
{
assert(compiler->compGeneratingProlog);
if (frameSize == 0)
{
return;
}
const size_t pageSize = compiler->eeGetPageSize();
#ifdef _TARGET_ARM_
assert(!compiler->info.compPublishStubParam || (REG_SECRET_STUB_PARAM != initReg));
#endif // _TARGET_ARM_
#ifdef _TARGET_XARCH_
if (frameSize == REGSIZE_BYTES)
{
// Frame size is the same as register size.
inst_RV(INS_push, REG_EAX, TYP_I_IMPL);
}
else
#endif // _TARGET_XARCH_
if (frameSize < pageSize)
{
#ifndef _TARGET_ARM64_
// Frame size is (0x0008..0x1000)
inst_RV_IV(INS_sub, REG_SPBASE, frameSize, EA_PTRSIZE);
#endif // !_TARGET_ARM64_
}
else if (frameSize < compiler->getVeryLargeFrameSize())
{
// Frame size is (0x1000..0x3000)
CLANG_FORMAT_COMMENT_ANCHOR;
#if CPU_LOAD_STORE_ARCH
instGen_Set_Reg_To_Imm(EA_PTRSIZE, initReg, -(ssize_t)pageSize);
getEmitter()->emitIns_R_R_R(INS_ldr, EA_4BYTE, initReg, REG_SPBASE, initReg);
regTracker.rsTrackRegTrash(initReg);
*pInitRegZeroed = false; // The initReg does not contain zero
#else
getEmitter()->emitIns_AR_R(INS_TEST, EA_PTRSIZE, REG_EAX, REG_SPBASE, -(int)pageSize);
#endif
if (frameSize >= 0x2000)
{
#if CPU_LOAD_STORE_ARCH
instGen_Set_Reg_To_Imm(EA_PTRSIZE, initReg, -2 * (ssize_t)pageSize);
getEmitter()->emitIns_R_R_R(INS_ldr, EA_4BYTE, initReg, REG_SPBASE, initReg);
regTracker.rsTrackRegTrash(initReg);
#else
getEmitter()->emitIns_AR_R(INS_TEST, EA_PTRSIZE, REG_EAX, REG_SPBASE, -2 * (int)pageSize);
#endif
}
#ifdef _TARGET_ARM64_
compiler->unwindPadding();
#else // !_TARGET_ARM64_
#if CPU_LOAD_STORE_ARCH
instGen_Set_Reg_To_Imm(EA_PTRSIZE, initReg, frameSize);
compiler->unwindPadding();
getEmitter()->emitIns_R_R_R(INS_sub, EA_4BYTE, REG_SPBASE, REG_SPBASE, initReg);
#else
inst_RV_IV(INS_sub, REG_SPBASE, frameSize, EA_PTRSIZE);
#endif
#endif // !_TARGET_ARM64_
}
else
{
// Frame size >= 0x3000
assert(frameSize >= compiler->getVeryLargeFrameSize());
// Emit the following sequence to 'tickle' the pages.
// Note it is important that stack pointer not change until this is
// complete since the tickles could cause a stack overflow, and we
// need to be able to crawl the stack afterward (which means the
// stack pointer needs to be known).
CLANG_FORMAT_COMMENT_ANCHOR;
#ifdef _TARGET_XARCH_
bool pushedStubParam = false;
if (compiler->info.compPublishStubParam && (REG_SECRET_STUB_PARAM == initReg))
{
// push register containing the StubParam
inst_RV(INS_push, REG_SECRET_STUB_PARAM, TYP_I_IMPL);
pushedStubParam = true;
}
#endif // !_TARGET_XARCH_
#if CPU_LOAD_STORE_ARCH
instGen_Set_Reg_To_Zero(EA_PTRSIZE, initReg);
#endif // CPU_LOAD_STORE_ARCH
//
// Can't have a label inside the ReJIT padding area
//
genPrologPadForReJit();
#if CPU_LOAD_STORE_ARCH
// TODO-ARM64-Bug?: set the availMask properly!
regMaskTP availMask =
(regSet.rsGetModifiedRegsMask() & RBM_ALLINT) | RBM_R12 | RBM_LR; // Set of available registers
availMask &= ~maskArgRegsLiveIn; // Remove all of the incoming argument registers as they are currently live
availMask &= ~genRegMask(initReg); // Remove the pre-calculated initReg
regNumber rOffset = initReg;
regNumber rLimit;
regNumber rTemp;
regMaskTP tempMask;
// We pick the next lowest register number for rTemp
noway_assert(availMask != RBM_NONE);
tempMask = genFindLowestBit(availMask);
rTemp = genRegNumFromMask(tempMask);
availMask &= ~tempMask;
// We pick the next lowest register number for rLimit
noway_assert(availMask != RBM_NONE);
tempMask = genFindLowestBit(availMask);
rLimit = genRegNumFromMask(tempMask);
availMask &= ~tempMask;
// TODO-LdStArch-Bug?: review this. The first time we load from [sp+0] which will always succeed. That doesn't
// make sense.
// TODO-ARM64-CQ: we could probably use ZR on ARM64 instead of rTemp.
//
// mov rLimit, -frameSize
// loop:
// ldr rTemp, [sp+rOffset]
// sub rOffset, 0x1000 // Note that 0x1000 on ARM32 uses the funky Thumb immediate encoding
// cmp rOffset, rLimit
// jge loop
noway_assert((ssize_t)(int)frameSize == (ssize_t)frameSize); // make sure framesize safely fits within an int
instGen_Set_Reg_To_Imm(EA_PTRSIZE, rLimit, -(int)frameSize);
getEmitter()->emitIns_R_R_R(INS_ldr, EA_4BYTE, rTemp, REG_SPBASE, rOffset);
regTracker.rsTrackRegTrash(rTemp);
#if defined(_TARGET_ARM_)
getEmitter()->emitIns_R_I(INS_sub, EA_PTRSIZE, rOffset, pageSize);
#elif defined(_TARGET_ARM64_)
getEmitter()->emitIns_R_R_I(INS_sub, EA_PTRSIZE, rOffset, rOffset, pageSize);
#endif // _TARGET_ARM64_
getEmitter()->emitIns_R_R(INS_cmp, EA_PTRSIZE, rOffset, rLimit);
getEmitter()->emitIns_J(INS_bhi, NULL, -4);
#else // !CPU_LOAD_STORE_ARCH
// Code size for each instruction. We need this because the
// backward branch is hard-coded with the number of bytes to branch.
// The encoding differs based on the architecture and what register is
// used (namely, using RAX has a smaller encoding).
//
// For x86
// lea eax, [esp - frameSize]
// loop:
// lea esp, [esp - pageSize] 7
// test [esp], eax 3
// cmp esp, eax 2
// jge loop 2
// lea rsp, [rbp + frameSize]
//
// For AMD64 using RAX
// lea rax, [rsp - frameSize]
// loop:
// lea rsp, [rsp - pageSize] 8
// test [rsp], rax 4
// cmp rsp, rax 3
// jge loop 2
// lea rsp, [rax + frameSize]
//
// For AMD64 using RBP
// lea rbp, [rsp - frameSize]
// loop:
// lea rsp, [rsp - pageSize] 8
// test [rsp], rbp 4
// cmp rsp, rbp 3
// jge loop 2
// lea rsp, [rbp + frameSize]
int sPageSize = (int)pageSize;
getEmitter()->emitIns_R_AR(INS_lea, EA_PTRSIZE, initReg, REG_SPBASE, -((ssize_t)frameSize)); // get frame border
getEmitter()->emitIns_R_AR(INS_lea, EA_PTRSIZE, REG_SPBASE, REG_SPBASE, -sPageSize);
getEmitter()->emitIns_R_AR(INS_TEST, EA_PTRSIZE, initReg, REG_SPBASE, 0);
inst_RV_RV(INS_cmp, REG_SPBASE, initReg);
int bytesForBackwardJump;
#ifdef _TARGET_AMD64_
assert((initReg == REG_EAX) || (initReg == REG_EBP)); // We use RBP as initReg for EH funclets.
bytesForBackwardJump = -17;
#else // !_TARGET_AMD64_
assert(initReg == REG_EAX);
bytesForBackwardJump = -14;
#endif // !_TARGET_AMD64_
inst_IV(INS_jge, bytesForBackwardJump); // Branch backwards to start of loop
getEmitter()->emitIns_R_AR(INS_lea, EA_PTRSIZE, REG_SPBASE, initReg, frameSize); // restore stack pointer
#endif // !CPU_LOAD_STORE_ARCH
*pInitRegZeroed = false; // The initReg does not contain zero
#ifdef _TARGET_XARCH_
if (pushedStubParam)
{
// pop eax
inst_RV(INS_pop, REG_SECRET_STUB_PARAM, TYP_I_IMPL);
regTracker.rsTrackRegTrash(REG_SECRET_STUB_PARAM);
}
#endif // _TARGET_XARCH_
#if CPU_LOAD_STORE_ARCH
compiler->unwindPadding();
#endif
#if CPU_LOAD_STORE_ARCH
#ifndef _TARGET_ARM64_
inst_RV_RV(INS_add, REG_SPBASE, rLimit, TYP_I_IMPL);
#endif // !_TARGET_ARM64_
#else
// sub esp, frameSize 6
inst_RV_IV(INS_sub, REG_SPBASE, frameSize, EA_PTRSIZE);
#endif
}
#ifndef _TARGET_ARM64_
compiler->unwindAllocStack(frameSize);
if (!doubleAlignOrFramePointerUsed())
{
psiAdjustStackLevel(frameSize);
}
#endif // !_TARGET_ARM64_
}
#if defined(_TARGET_ARM_)
void CodeGen::genPushFltRegs(regMaskTP regMask)
{
assert(regMask != 0); // Don't call uness we have some registers to push
assert((regMask & RBM_ALLFLOAT) == regMask); // Only floasting point registers should be in regMask
regNumber lowReg = genRegNumFromMask(genFindLowestBit(regMask));
int slots = genCountBits(regMask);
// regMask should be contiguously set
regMaskTP tmpMask = ((regMask >> lowReg) + 1); // tmpMask should have a single bit set
assert((tmpMask & (tmpMask - 1)) == 0);
assert(lowReg == REG_F16); // Currently we expect to start at F16 in the unwind codes
// Our calling convention requires that we only use vpush for TYP_DOUBLE registers
noway_assert(floatRegCanHoldType(lowReg, TYP_DOUBLE));
noway_assert((slots % 2) == 0);
getEmitter()->emitIns_R_I(INS_vpush, EA_8BYTE, lowReg, slots / 2);
}
void CodeGen::genPopFltRegs(regMaskTP regMask)
{
assert(regMask != 0); // Don't call uness we have some registers to pop
assert((regMask & RBM_ALLFLOAT) == regMask); // Only floasting point registers should be in regMask
regNumber lowReg = genRegNumFromMask(genFindLowestBit(regMask));
int slots = genCountBits(regMask);
// regMask should be contiguously set
regMaskTP tmpMask = ((regMask >> lowReg) + 1); // tmpMask should have a single bit set
assert((tmpMask & (tmpMask - 1)) == 0);
// Our calling convention requires that we only use vpop for TYP_DOUBLE registers
noway_assert(floatRegCanHoldType(lowReg, TYP_DOUBLE));
noway_assert((slots % 2) == 0);
getEmitter()->emitIns_R_I(INS_vpop, EA_8BYTE, lowReg, slots / 2);
}
/*-----------------------------------------------------------------------------
*
* If we have a jmp call, then the argument registers cannot be used in the
* epilog. So return the current call's argument registers as the argument
* registers for the jmp call.
*/
regMaskTP CodeGen::genJmpCallArgMask()
{
assert(compiler->compGeneratingEpilog);
regMaskTP argMask = RBM_NONE;
for (unsigned varNum = 0; varNum < compiler->info.compArgsCount; ++varNum)
{
const LclVarDsc& desc = compiler->lvaTable[varNum];
if (desc.lvIsRegArg)
{
argMask |= genRegMask(desc.lvArgReg);
}
}
return argMask;
}
/*-----------------------------------------------------------------------------
*
* Free the local stack frame: add to SP.
* If epilog unwind hasn't been started, and we generate code, we start unwind
* and set *pUnwindStarted = true.
*/
void CodeGen::genFreeLclFrame(unsigned frameSize, /* IN OUT */ bool* pUnwindStarted, bool jmpEpilog)
{
assert(compiler->compGeneratingEpilog);
if (frameSize == 0)
return;
// Add 'frameSize' to SP.
//
// Unfortunately, we can't just use:
//
// inst_RV_IV(INS_add, REG_SPBASE, frameSize, EA_PTRSIZE);
//
// because we need to generate proper unwind codes for each instruction generated,
// and large frame sizes might generate a temp register load which might
// need an unwind code. We don't want to generate a "NOP" code for this
// temp register load; we want the unwind codes to start after that.
if (arm_Valid_Imm_For_Instr(INS_add, frameSize, INS_FLAGS_DONT_CARE))
{
if (!*pUnwindStarted)
{
compiler->unwindBegEpilog();
*pUnwindStarted = true;
}
getEmitter()->emitIns_R_I(INS_add, EA_PTRSIZE, REG_SPBASE, frameSize, INS_FLAGS_DONT_CARE);
}
else
{
regMaskTP grabMask = RBM_INT_CALLEE_TRASH;
if (jmpEpilog)
{
// Do not use argument registers as scratch registers in the jmp epilog.
grabMask &= ~genJmpCallArgMask();
}
#ifndef LEGACY_BACKEND
regNumber tmpReg;
tmpReg = REG_TMP_0;
#else // LEGACY_BACKEND
regNumber tmpReg = regSet.rsGrabReg(grabMask);
#endif // LEGACY_BACKEND
instGen_Set_Reg_To_Imm(EA_PTRSIZE, tmpReg, frameSize);
if (*pUnwindStarted)
{
compiler->unwindPadding();
}
// We're going to generate an unwindable instruction, so check again if
// we need to start the unwind codes.
if (!*pUnwindStarted)
{
compiler->unwindBegEpilog();
*pUnwindStarted = true;
}
getEmitter()->emitIns_R_R(INS_add, EA_PTRSIZE, REG_SPBASE, tmpReg, INS_FLAGS_DONT_CARE);
}
compiler->unwindAllocStack(frameSize);
}
/*-----------------------------------------------------------------------------
*
* Move of relocatable displacement value to register
*/
void CodeGen::genMov32RelocatableDisplacement(BasicBlock* block, regNumber reg)
{
getEmitter()->emitIns_R_L(INS_movw, EA_4BYTE_DSP_RELOC, block, reg);
getEmitter()->emitIns_R_L(INS_movt, EA_4BYTE_DSP_RELOC, block, reg);
if (compiler->opts.jitFlags->IsSet(JitFlags::JIT_FLAG_RELATIVE_CODE_RELOCS))
{
getEmitter()->emitIns_R_R_R(INS_add, EA_4BYTE_DSP_RELOC, reg, reg, REG_PC);
}
}
/*-----------------------------------------------------------------------------
*
* Move of relocatable data-label to register
*/
void CodeGen::genMov32RelocatableDataLabel(unsigned value, regNumber reg)
{
getEmitter()->emitIns_R_D(INS_movw, EA_HANDLE_CNS_RELOC, value, reg);
getEmitter()->emitIns_R_D(INS_movt, EA_HANDLE_CNS_RELOC, value, reg);
if (compiler->opts.jitFlags->IsSet(JitFlags::JIT_FLAG_RELATIVE_CODE_RELOCS))
{
getEmitter()->emitIns_R_R_R(INS_add, EA_HANDLE_CNS_RELOC, reg, reg, REG_PC);
}
}
/*-----------------------------------------------------------------------------
*
* Move of relocatable immediate to register
*/
void CodeGen::genMov32RelocatableImmediate(emitAttr size, unsigned value, regNumber reg)
{
_ASSERTE(EA_IS_RELOC(size));
getEmitter()->emitIns_R_I(INS_movw, size, reg, value);
getEmitter()->emitIns_R_I(INS_movt, size, reg, value);
if (compiler->opts.jitFlags->IsSet(JitFlags::JIT_FLAG_RELATIVE_CODE_RELOCS))
{
getEmitter()->emitIns_R_R_R(INS_add, size, reg, reg, REG_PC);
}
}
/*-----------------------------------------------------------------------------
*
* Returns register mask to push/pop to allocate a small stack frame,
* instead of using "sub sp" / "add sp". Returns RBM_NONE if either frame size
* is zero, or if we should use "sub sp" / "add sp" instead of push/pop.
*/
regMaskTP CodeGen::genStackAllocRegisterMask(unsigned frameSize, regMaskTP maskCalleeSavedFloat)
{
assert(compiler->compGeneratingProlog || compiler->compGeneratingEpilog);
// We can't do this optimization with callee saved floating point registers because
// the stack would be allocated in a wrong spot.
if (maskCalleeSavedFloat != RBM_NONE)
return RBM_NONE;
// Allocate space for small frames by pushing extra registers. It generates smaller and faster code
// that extra sub sp,XXX/add sp,XXX.
// R0 and R1 may be used by return value. Keep things simple and just skip the optimization
// for the 3*REGSIZE_BYTES and 4*REGSIZE_BYTES cases. They are less common and they have more
// significant negative side-effects (more memory bus traffic).
switch (frameSize)
{
case REGSIZE_BYTES:
return RBM_R3;
case 2 * REGSIZE_BYTES:
return RBM_R2 | RBM_R3;
default:
return RBM_NONE;
}
}
#endif // _TARGET_ARM_
#if !FEATURE_STACK_FP_X87
/*****************************************************************************
*
* initFltRegs -- The mask of float regs to be zeroed.
* initDblRegs -- The mask of double regs to be zeroed.
* initReg -- A zero initialized integer reg to copy from.
*
* Does best effort to move between VFP/xmm regs if one is already
* initialized to 0. (Arm Only) Else copies from the integer register which
* is slower.
*/
void CodeGen::genZeroInitFltRegs(const regMaskTP& initFltRegs, const regMaskTP& initDblRegs, const regNumber& initReg)
{
assert(compiler->compGeneratingProlog);
// The first float/double reg that is initialized to 0. So they can be used to
// initialize the remaining registers.
regNumber fltInitReg = REG_NA;
regNumber dblInitReg = REG_NA;
// Iterate through float/double registers and initialize them to 0 or
// copy from already initialized register of the same type.
regMaskTP regMask = genRegMask(REG_FP_FIRST);
for (regNumber reg = REG_FP_FIRST; reg <= REG_FP_LAST; reg = REG_NEXT(reg), regMask <<= 1)
{
if (regMask & initFltRegs)
{
// Do we have a float register already set to 0?
if (fltInitReg != REG_NA)
{
// Copy from float.
inst_RV_RV(ins_Copy(TYP_FLOAT), reg, fltInitReg, TYP_FLOAT);
}
else
{
#ifdef _TARGET_ARM_
// Do we have a double register initialized to 0?
if (dblInitReg != REG_NA)
{
// Copy from double.
inst_RV_RV(INS_vcvt_d2f, reg, dblInitReg, TYP_FLOAT);
}
else
{
// Copy from int.
inst_RV_RV(INS_vmov_i2f, reg, initReg, TYP_FLOAT, EA_4BYTE);
}
#elif defined(_TARGET_XARCH_)
// Xorpd xmmreg, xmmreg is the fastest way to initialize a float register to
// zero instead of moving constant 0.0f. Though we just need to initialize just the 32-bits
// we will use xorpd to initialize 64-bits of the xmm register so that it can be
// used to zero initialize xmm registers that hold double values.
inst_RV_RV(INS_xorpd, reg, reg, TYP_DOUBLE);
dblInitReg = reg;
#elif defined(_TARGET_ARM64_)
NYI("Initialize floating-point register to zero");
#else // _TARGET_*
#error Unsupported or unset target architecture
#endif
fltInitReg = reg;
}
}
else if (regMask & initDblRegs)
{
// Do we have a double register already set to 0?
if (dblInitReg != REG_NA)
{
// Copy from double.
inst_RV_RV(ins_Copy(TYP_DOUBLE), reg, dblInitReg, TYP_DOUBLE);
}
else
{
#ifdef _TARGET_ARM_
// Do we have a float register initialized to 0?
if (fltInitReg != REG_NA)
{
// Copy from float.
inst_RV_RV(INS_vcvt_f2d, reg, fltInitReg, TYP_DOUBLE);
}
else
{
// Copy from int.
inst_RV_RV_RV(INS_vmov_i2d, reg, initReg, initReg, EA_8BYTE);
}
#elif defined(_TARGET_XARCH_)
// Xorpd xmmreg, xmmreg is the fastest way to initialize a double register to
// zero than moving constant 0.0d. We can also use lower 32-bits of 'reg'
// for zero initializing xmm registers subsequently that contain float values.
inst_RV_RV(INS_xorpd, reg, reg, TYP_DOUBLE);
fltInitReg = reg;
#elif defined(_TARGET_ARM64_)
// We will just zero out the entire vector register. This sets it to a double zero value
getEmitter()->emitIns_R_I(INS_movi, EA_16BYTE, reg, 0x00, INS_OPTS_16B);
#else // _TARGET_*
#error Unsupported or unset target architecture
#endif
dblInitReg = reg;
}
}
}
}
#endif // !FEATURE_STACK_FP_X87
/*-----------------------------------------------------------------------------
*
* Restore any callee-saved registers we have used
*/
#if defined(_TARGET_ARM_)
bool CodeGen::genCanUsePopToReturn(regMaskTP maskPopRegsInt, bool jmpEpilog)
{
assert(compiler->compGeneratingEpilog);
if (!jmpEpilog && regSet.rsMaskPreSpillRegs(true) == RBM_NONE)
return true;
else
return false;
}
void CodeGen::genPopCalleeSavedRegisters(bool jmpEpilog)
{
assert(compiler->compGeneratingEpilog);
regMaskTP maskPopRegs = regSet.rsGetModifiedRegsMask() & RBM_CALLEE_SAVED;
regMaskTP maskPopRegsFloat = maskPopRegs & RBM_ALLFLOAT;
regMaskTP maskPopRegsInt = maskPopRegs & ~maskPopRegsFloat;
// First, pop float registers
if (maskPopRegsFloat != RBM_NONE)
{
genPopFltRegs(maskPopRegsFloat);
compiler->unwindPopMaskFloat(maskPopRegsFloat);
}
// Next, pop integer registers
if (!jmpEpilog)
{
regMaskTP maskStackAlloc = genStackAllocRegisterMask(compiler->compLclFrameSize, maskPopRegsFloat);
maskPopRegsInt |= maskStackAlloc;
}
if (isFramePointerUsed())
{
assert(!regSet.rsRegsModified(RBM_FPBASE));
maskPopRegsInt |= RBM_FPBASE;
}
if (genCanUsePopToReturn(maskPopRegsInt, jmpEpilog))
{
maskPopRegsInt |= RBM_PC;
// Record the fact that we use a pop to the PC to perform the return
genUsedPopToReturn = true;
}
else
{
maskPopRegsInt |= RBM_LR;
// Record the fact that we did not use a pop to the PC to perform the return
genUsedPopToReturn = false;
}
assert(FitsIn<int>(maskPopRegsInt));
inst_IV(INS_pop, (int)maskPopRegsInt);
compiler->unwindPopMaskInt(maskPopRegsInt);
}
#elif defined(_TARGET_ARM64_)
void CodeGen::genPopCalleeSavedRegistersAndFreeLclFrame(bool jmpEpilog)
{
assert(compiler->compGeneratingEpilog);
regMaskTP rsRestoreRegs = regSet.rsGetModifiedRegsMask() & RBM_CALLEE_SAVED;
if (isFramePointerUsed())
{
rsRestoreRegs |= RBM_FPBASE;
}
rsRestoreRegs |= RBM_LR; // We must save/restore the return address (in the LR register)
regMaskTP regsToRestoreMask = rsRestoreRegs;
int totalFrameSize = genTotalFrameSize();
int calleeSaveSPOffset; // This will be the starting place for restoring the callee-saved registers, in decreasing
// order.
int frameType = 0; // An indicator of what type of frame we are popping.
int calleeSaveSPDelta = 0;
int calleeSaveSPDeltaUnaligned = 0;
if (isFramePointerUsed())
{
if ((compiler->lvaOutgoingArgSpaceSize == 0) && (totalFrameSize < 512))
{
frameType = 1;
if (compiler->compLocallocUsed)
{
// Restore sp from fp
// mov sp, fp
inst_RV_RV(INS_mov, REG_SPBASE, REG_FPBASE);
compiler->unwindSetFrameReg(REG_FPBASE, 0);
}
regsToRestoreMask &= ~(RBM_FP | RBM_LR); // We'll restore FP/LR at the end, and post-index SP.
// Compute callee save SP offset which is at the top of local frame while the FP/LR is saved at the bottom
// of stack.
calleeSaveSPOffset = compiler->compLclFrameSize + 2 * REGSIZE_BYTES;
}
else if (totalFrameSize <= 512)
{
frameType = 2;
if (compiler->compLocallocUsed)
{
// Restore sp from fp
// sub sp, fp, #outsz
getEmitter()->emitIns_R_R_I(INS_sub, EA_PTRSIZE, REG_SPBASE, REG_FPBASE,
compiler->lvaOutgoingArgSpaceSize);
compiler->unwindSetFrameReg(REG_FPBASE, compiler->lvaOutgoingArgSpaceSize);
}
regsToRestoreMask &= ~(RBM_FP | RBM_LR); // We'll restore FP/LR at the end, and post-index SP.
// Compute callee save SP offset which is at the top of local frame while the FP/LR is saved at the bottom
// of stack.
calleeSaveSPOffset = compiler->compLclFrameSize + 2 * REGSIZE_BYTES;
}
else
{
frameType = 3;
calleeSaveSPDeltaUnaligned = totalFrameSize - compiler->compLclFrameSize -
2 * REGSIZE_BYTES; // 2 for FP, LR which we'll restore later.
assert(calleeSaveSPDeltaUnaligned >= 0);
assert((calleeSaveSPDeltaUnaligned % 8) == 0); // It better at least be 8 byte aligned.
calleeSaveSPDelta = AlignUp((UINT)calleeSaveSPDeltaUnaligned, STACK_ALIGN);
regsToRestoreMask &= ~(RBM_FP | RBM_LR); // We'll restore FP/LR at the end, and (hopefully) post-index SP.
int remainingFrameSz = totalFrameSize - calleeSaveSPDelta;
assert(remainingFrameSz > 0);
if (compiler->lvaOutgoingArgSpaceSize >= 504)
{
// We can't do "ldp fp,lr,[sp,#outsz]" because #outsz is too big.
// If compiler->lvaOutgoingArgSpaceSize is not aligned, we need to align the SP adjustment.
assert(remainingFrameSz > (int)compiler->lvaOutgoingArgSpaceSize);
int spAdjustment2Unaligned = remainingFrameSz - compiler->lvaOutgoingArgSpaceSize;
int spAdjustment2 = (int)roundUp((size_t)spAdjustment2Unaligned, STACK_ALIGN);
int alignmentAdjustment2 = spAdjustment2 - spAdjustment2Unaligned;
assert((alignmentAdjustment2 == 0) || (alignmentAdjustment2 == REGSIZE_BYTES));
if (compiler->compLocallocUsed)
{
// Restore sp from fp. No need to update sp after this since we've set up fp before adjusting sp in
// prolog.
// sub sp, fp, #alignmentAdjustment2
getEmitter()->emitIns_R_R_I(INS_sub, EA_PTRSIZE, REG_SPBASE, REG_FPBASE, alignmentAdjustment2);
compiler->unwindSetFrameReg(REG_FPBASE, alignmentAdjustment2);
}
else
{
// Generate:
// add sp,sp,#outsz ; if #outsz is not 16-byte aligned, we need to be more
// ; careful
int spAdjustment3 = compiler->lvaOutgoingArgSpaceSize - alignmentAdjustment2;
assert(spAdjustment3 > 0);
assert((spAdjustment3 % 16) == 0);
genStackPointerAdjustment(spAdjustment3, REG_IP0, nullptr);
}
// Generate:
// ldp fp,lr,[sp]
// add sp,sp,#remainingFrameSz
genEpilogRestoreRegPair(REG_FP, REG_LR, alignmentAdjustment2, spAdjustment2, REG_IP0, nullptr);
}
else
{
if (compiler->compLocallocUsed)
{
// Restore sp from fp
// sub sp, fp, #outsz
getEmitter()->emitIns_R_R_I(INS_sub, EA_PTRSIZE, REG_SPBASE, REG_FPBASE,
compiler->lvaOutgoingArgSpaceSize);
compiler->unwindSetFrameReg(REG_FPBASE, compiler->lvaOutgoingArgSpaceSize);
}
// Generate:
// ldp fp,lr,[sp,#outsz]
// add sp,sp,#remainingFrameSz ; might need to load this constant in a scratch register if
// ; it's large
genEpilogRestoreRegPair(REG_FP, REG_LR, compiler->lvaOutgoingArgSpaceSize, remainingFrameSz, REG_IP0,
nullptr);
}
// Unlike frameType=1 or frameType=2 that restore SP at the end,
// frameType=3 already adjusted SP above to delete local frame.
// There is at most one alignment slot between SP and where we store the callee-saved registers.
calleeSaveSPOffset = calleeSaveSPDelta - calleeSaveSPDeltaUnaligned;
assert((calleeSaveSPOffset == 0) || (calleeSaveSPOffset == REGSIZE_BYTES));
}
}
else
{
// No frame pointer (no chaining).
NYI("Frame without frame pointer");
calleeSaveSPOffset = 0;
}
genRestoreCalleeSavedRegistersHelp(regsToRestoreMask, calleeSaveSPOffset, calleeSaveSPDelta);
if (frameType == 1)
{
// Generate:
// ldp fp,lr,[sp],#framesz
getEmitter()->emitIns_R_R_R_I(INS_ldp, EA_PTRSIZE, REG_FP, REG_LR, REG_SPBASE, totalFrameSize,
INS_OPTS_POST_INDEX);
compiler->unwindSaveRegPairPreindexed(REG_FP, REG_LR, -totalFrameSize);
}
else if (frameType == 2)
{
// Generate:
// ldr fp,lr,[sp,#outsz]
// add sp,sp,#framesz
getEmitter()->emitIns_R_R_R_I(INS_ldp, EA_PTRSIZE, REG_FP, REG_LR, REG_SPBASE,
compiler->lvaOutgoingArgSpaceSize);
compiler->unwindSaveRegPair(REG_FP, REG_LR, compiler->lvaOutgoingArgSpaceSize);
getEmitter()->emitIns_R_R_I(INS_add, EA_PTRSIZE, REG_SPBASE, REG_SPBASE, totalFrameSize);
compiler->unwindAllocStack(totalFrameSize);
}
else if (frameType == 3)
{
// Nothing to do after restoring callee-saved registers.
}
else
{
unreached();
}
}
#elif defined(_TARGET_XARCH_) && !FEATURE_STACK_FP_X87
void CodeGen::genPopCalleeSavedRegisters(bool jmpEpilog)
{
assert(compiler->compGeneratingEpilog);
unsigned popCount = 0;
if (regSet.rsRegsModified(RBM_EBX))
{
popCount++;
inst_RV(INS_pop, REG_EBX, TYP_I_IMPL);
}
if (regSet.rsRegsModified(RBM_FPBASE))
{
// EBP cannot be directly modified for EBP frame and double-aligned frames
assert(!doubleAlignOrFramePointerUsed());
popCount++;
inst_RV(INS_pop, REG_EBP, TYP_I_IMPL);
}
#ifndef UNIX_AMD64_ABI
// For System V AMD64 calling convention ESI and EDI are volatile registers.
if (regSet.rsRegsModified(RBM_ESI))
{
popCount++;
inst_RV(INS_pop, REG_ESI, TYP_I_IMPL);
}
if (regSet.rsRegsModified(RBM_EDI))
{
popCount++;
inst_RV(INS_pop, REG_EDI, TYP_I_IMPL);
}
#endif // !defined(UNIX_AMD64_ABI)
#ifdef _TARGET_AMD64_
if (regSet.rsRegsModified(RBM_R12))
{
popCount++;
inst_RV(INS_pop, REG_R12, TYP_I_IMPL);
}
if (regSet.rsRegsModified(RBM_R13))
{
popCount++;
inst_RV(INS_pop, REG_R13, TYP_I_IMPL);
}
if (regSet.rsRegsModified(RBM_R14))
{
popCount++;
inst_RV(INS_pop, REG_R14, TYP_I_IMPL);
}
if (regSet.rsRegsModified(RBM_R15))
{
popCount++;
inst_RV(INS_pop, REG_R15, TYP_I_IMPL);
}
#endif // _TARGET_AMD64_
// Amd64/x86 doesn't support push/pop of xmm registers.
// These will get saved to stack separately after allocating
// space on stack in prolog sequence. PopCount is essentially
// tracking the count of integer registers pushed.
noway_assert(compiler->compCalleeRegsPushed == popCount);
}
#elif defined(_TARGET_X86_)
void CodeGen::genPopCalleeSavedRegisters(bool jmpEpilog)
{
assert(compiler->compGeneratingEpilog);
unsigned popCount = 0;
/* NOTE: The EBP-less frame code below depends on the fact that
all of the pops are generated right at the start and
each takes one byte of machine code.
*/
if (regSet.rsRegsModified(RBM_FPBASE))
{
// EBP cannot be directly modified for EBP frame and double-aligned frames
noway_assert(!doubleAlignOrFramePointerUsed());
inst_RV(INS_pop, REG_EBP, TYP_I_IMPL);
popCount++;
}
if (regSet.rsRegsModified(RBM_EBX))
{
popCount++;
inst_RV(INS_pop, REG_EBX, TYP_I_IMPL);
}
if (regSet.rsRegsModified(RBM_ESI))
{
popCount++;
inst_RV(INS_pop, REG_ESI, TYP_I_IMPL);
}
if (regSet.rsRegsModified(RBM_EDI))
{
popCount++;
inst_RV(INS_pop, REG_EDI, TYP_I_IMPL);
}
noway_assert(compiler->compCalleeRegsPushed == popCount);
}
#endif // _TARGET_*
// We need a register with value zero. Zero the initReg, if necessary, and set *pInitRegZeroed if so.
// Return the register to use. On ARM64, we never touch the initReg, and always just return REG_ZR.
regNumber CodeGen::genGetZeroReg(regNumber initReg, bool* pInitRegZeroed)
{
#ifdef _TARGET_ARM64_
return REG_ZR;
#else // !_TARGET_ARM64_
if (*pInitRegZeroed == false)
{
instGen_Set_Reg_To_Zero(EA_PTRSIZE, initReg);
*pInitRegZeroed = true;
}
return initReg;
#endif // !_TARGET_ARM64_
}
/*-----------------------------------------------------------------------------
*
* Do we have any untracked pointer locals at all,
* or do we need to initialize memory for locspace?
*
* untrLclHi - (Untracked locals High-Offset) The upper bound offset at which the zero init code will end
* initializing memory (not inclusive).
* untrLclLo - (Untracked locals Low-Offset) The lower bound at which the zero init code will start zero
* initializing memory.
* initReg - A scratch register (that gets set to zero on some platforms).
* pInitRegZeroed - Sets a flag that tells the callee whether or not the initReg register got zeroed.
*/
void CodeGen::genZeroInitFrame(int untrLclHi, int untrLclLo, regNumber initReg, bool* pInitRegZeroed)
{
assert(compiler->compGeneratingProlog);
if (genUseBlockInit)
{
assert(untrLclHi > untrLclLo);
#ifdef _TARGET_ARMARCH_
/*
Generate the following code:
For cnt less than 10
mov rZero1, 0
mov rZero2, 0
mov rCnt, <cnt>
stm <rZero1,rZero2>,[rAddr!]
<optional> stm <rZero1,rZero2>,[rAddr!]
<optional> stm <rZero1,rZero2>,[rAddr!]
<optional> stm <rZero1,rZero2>,[rAddr!]
<optional> str rZero1,[rAddr]
For rCnt greater than or equal to 10
mov rZero1, 0
mov rZero2, 0
mov rCnt, <cnt/2>
sub rAddr, sp, OFFS
loop:
stm <rZero1,rZero2>,[rAddr!]
sub rCnt,rCnt,1
jnz loop
<optional> str rZero1,[rAddr] // When cnt is odd
NOTE: for ARM64, the instruction is stp, not stm. And we can use ZR instead of allocating registers.
*/
regNumber rAddr;
regNumber rCnt = REG_NA; // Invalid
regMaskTP regMask;
regMaskTP availMask = regSet.rsGetModifiedRegsMask() | RBM_INT_CALLEE_TRASH; // Set of available registers
availMask &= ~intRegState.rsCalleeRegArgMaskLiveIn; // Remove all of the incoming argument registers as they are
// currently live
availMask &= ~genRegMask(initReg); // Remove the pre-calculated initReg as we will zero it and maybe use it for
// a large constant.
#if defined(_TARGET_ARM_)
if (compiler->compLocallocUsed)
{
availMask &= ~RBM_SAVED_LOCALLOC_SP; // Remove the register reserved when we have a localloc frame
}
regNumber rZero1; // We're going to use initReg for rZero1
regNumber rZero2;
// We pick the next lowest register number for rZero2
noway_assert(availMask != RBM_NONE);
regMask = genFindLowestBit(availMask);
rZero2 = genRegNumFromMask(regMask);
availMask &= ~regMask;
assert((genRegMask(rZero2) & intRegState.rsCalleeRegArgMaskLiveIn) ==
0); // rZero2 is not a live incoming argument reg
// We pick the next lowest register number for rAddr
noway_assert(availMask != RBM_NONE);
regMask = genFindLowestBit(availMask);
rAddr = genRegNumFromMask(regMask);
availMask &= ~regMask;
#else // !define(_TARGET_ARM_)
regNumber rZero1 = REG_ZR;
rAddr = initReg;
*pInitRegZeroed = false;
#endif // !defined(_TARGET_ARM_)
bool useLoop = false;
unsigned uCntBytes = untrLclHi - untrLclLo;
assert((uCntBytes % sizeof(int)) == 0); // The smallest stack slot is always 4 bytes.
unsigned uCntSlots = uCntBytes / REGSIZE_BYTES; // How many register sized stack slots we're going to use.
// When uCntSlots is 9 or less, we will emit a sequence of stm/stp instructions inline.
// When it is 10 or greater, we will emit a loop containing a stm/stp instruction.
// In both of these cases the stm/stp instruction will write two zeros to memory
// and we will use a single str instruction at the end whenever we have an odd count.
if (uCntSlots >= 10)
useLoop = true;
if (useLoop)
{
// We pick the next lowest register number for rCnt
noway_assert(availMask != RBM_NONE);
regMask = genFindLowestBit(availMask);
rCnt = genRegNumFromMask(regMask);
availMask &= ~regMask;
}
assert((genRegMask(rAddr) & intRegState.rsCalleeRegArgMaskLiveIn) ==
0); // rAddr is not a live incoming argument reg
#if defined(_TARGET_ARM_)
if (arm_Valid_Imm_For_Add(untrLclLo, INS_FLAGS_DONT_CARE))
#else // !_TARGET_ARM_
if (emitter::emitIns_valid_imm_for_add(untrLclLo, EA_PTRSIZE))
#endif // !_TARGET_ARM_
{
getEmitter()->emitIns_R_R_I(INS_add, EA_PTRSIZE, rAddr, genFramePointerReg(), untrLclLo);
}
else
{
// Load immediate into the InitReg register
instGen_Set_Reg_To_Imm(EA_PTRSIZE, initReg, (ssize_t)untrLclLo);
getEmitter()->emitIns_R_R_R(INS_add, EA_PTRSIZE, rAddr, genFramePointerReg(), initReg);
*pInitRegZeroed = false;
}
if (useLoop)
{
noway_assert(uCntSlots >= 2);
assert((genRegMask(rCnt) & intRegState.rsCalleeRegArgMaskLiveIn) ==
0); // rCnt is not a live incoming argument reg
instGen_Set_Reg_To_Imm(EA_PTRSIZE, rCnt, (ssize_t)uCntSlots / 2);
}
#if defined(_TARGET_ARM_)
rZero1 = genGetZeroReg(initReg, pInitRegZeroed);
instGen_Set_Reg_To_Zero(EA_PTRSIZE, rZero2);
ssize_t stmImm = (ssize_t)(genRegMask(rZero1) | genRegMask(rZero2));
#endif // _TARGET_ARM_
if (!useLoop)
{
while (uCntBytes >= REGSIZE_BYTES * 2)
{
#ifdef _TARGET_ARM_
getEmitter()->emitIns_R_I(INS_stm, EA_PTRSIZE, rAddr, stmImm);
#else // !_TARGET_ARM_
getEmitter()->emitIns_R_R_R_I(INS_stp, EA_PTRSIZE, REG_ZR, REG_ZR, rAddr, 2 * REGSIZE_BYTES,
INS_OPTS_POST_INDEX);
#endif // !_TARGET_ARM_
uCntBytes -= REGSIZE_BYTES * 2;
}
}
else // useLoop is true
{
#ifdef _TARGET_ARM_
getEmitter()->emitIns_R_I(INS_stm, EA_PTRSIZE, rAddr, stmImm); // zero stack slots
getEmitter()->emitIns_R_I(INS_sub, EA_PTRSIZE, rCnt, 1, INS_FLAGS_SET);
#else // !_TARGET_ARM_
getEmitter()->emitIns_R_R_R_I(INS_stp, EA_PTRSIZE, REG_ZR, REG_ZR, rAddr, 2 * REGSIZE_BYTES,
INS_OPTS_POST_INDEX); // zero stack slots
getEmitter()->emitIns_R_R_I(INS_subs, EA_PTRSIZE, rCnt, rCnt, 1);
#endif // !_TARGET_ARM_
getEmitter()->emitIns_J(INS_bhi, NULL, -3);
uCntBytes %= REGSIZE_BYTES * 2;
}
if (uCntBytes >= REGSIZE_BYTES) // check and zero the last register-sized stack slot (odd number)
{
#ifdef _TARGET_ARM_
getEmitter()->emitIns_R_R_I(INS_str, EA_PTRSIZE, rZero1, rAddr, 0);
#else // _TARGET_ARM_
if ((uCntBytes - REGSIZE_BYTES) == 0)
{
getEmitter()->emitIns_R_R_I(INS_str, EA_PTRSIZE, REG_ZR, rAddr, 0);
}
else
{
getEmitter()->emitIns_R_R_I(INS_str, EA_PTRSIZE, REG_ZR, rAddr, REGSIZE_BYTES, INS_OPTS_POST_INDEX);
}
#endif // !_TARGET_ARM_
uCntBytes -= REGSIZE_BYTES;
}
#ifdef _TARGET_ARM64_
if (uCntBytes > 0)
{
assert(uCntBytes == sizeof(int));
getEmitter()->emitIns_R_R_I(INS_str, EA_4BYTE, REG_ZR, rAddr, 0);
uCntBytes -= sizeof(int);
}
#endif // _TARGET_ARM64_
noway_assert(uCntBytes == 0);
#elif defined(_TARGET_XARCH_)
/*
Generate the following code:
lea edi, [ebp/esp-OFFS]
mov ecx, <size>
xor eax, eax
rep stosd
*/
noway_assert(regSet.rsRegsModified(RBM_EDI));
#ifdef UNIX_AMD64_ABI
// For register arguments we may have to save ECX and RDI on Amd64 System V OSes
if (intRegState.rsCalleeRegArgMaskLiveIn & RBM_RCX)
{
noway_assert(regSet.rsRegsModified(RBM_R12));
inst_RV_RV(INS_mov, REG_R12, REG_RCX);
regTracker.rsTrackRegTrash(REG_R12);
}
if (intRegState.rsCalleeRegArgMaskLiveIn & RBM_RDI)
{
noway_assert(regSet.rsRegsModified(RBM_R13));
inst_RV_RV(INS_mov, REG_R13, REG_RDI);
regTracker.rsTrackRegTrash(REG_R13);
}
#else // !UNIX_AMD64_ABI
// For register arguments we may have to save ECX
if (intRegState.rsCalleeRegArgMaskLiveIn & RBM_ECX)
{
noway_assert(regSet.rsRegsModified(RBM_ESI));
inst_RV_RV(INS_mov, REG_ESI, REG_ECX);
regTracker.rsTrackRegTrash(REG_ESI);
}
#endif // !UNIX_AMD64_ABI
noway_assert((intRegState.rsCalleeRegArgMaskLiveIn & RBM_EAX) == 0);
getEmitter()->emitIns_R_AR(INS_lea, EA_PTRSIZE, REG_EDI, genFramePointerReg(), untrLclLo);
regTracker.rsTrackRegTrash(REG_EDI);
inst_RV_IV(INS_mov, REG_ECX, (untrLclHi - untrLclLo) / sizeof(int), EA_4BYTE);
instGen_Set_Reg_To_Zero(EA_PTRSIZE, REG_EAX);
instGen(INS_r_stosd);
#ifdef UNIX_AMD64_ABI
// Move back the argument registers
if (intRegState.rsCalleeRegArgMaskLiveIn & RBM_RCX)
{
inst_RV_RV(INS_mov, REG_RCX, REG_R12);
}
if (intRegState.rsCalleeRegArgMaskLiveIn & RBM_RDI)
{
inst_RV_RV(INS_mov, REG_RDI, REG_R13);
}
#else // !UNIX_AMD64_ABI
// Move back the argument registers
if (intRegState.rsCalleeRegArgMaskLiveIn & RBM_ECX)
{
inst_RV_RV(INS_mov, REG_ECX, REG_ESI);
}
#endif // !UNIX_AMD64_ABI
#else // _TARGET_*
#error Unsupported or unset target architecture
#endif // _TARGET_*
}
else if (genInitStkLclCnt > 0)
{
assert((genRegMask(initReg) & intRegState.rsCalleeRegArgMaskLiveIn) ==
0); // initReg is not a live incoming argument reg
/* Initialize any lvMustInit vars on the stack */
LclVarDsc* varDsc;
unsigned varNum;
for (varNum = 0, varDsc = compiler->lvaTable; varNum < compiler->lvaCount; varNum++, varDsc++)
{
if (!varDsc->lvMustInit)
{
continue;
}
// TODO-Review: I'm not sure that we're correctly handling the mustInit case for
// partially-enregistered vars in the case where we don't use a block init.
noway_assert(varDsc->lvIsInReg() || varDsc->lvOnFrame);
// lvMustInit can only be set for GC types or TYP_STRUCT types
// or when compInitMem is true
// or when in debug code
noway_assert(varTypeIsGC(varDsc->TypeGet()) || (varDsc->TypeGet() == TYP_STRUCT) ||
compiler->info.compInitMem || compiler->opts.compDbgCode);
#ifndef LEGACY_BACKEND
if (!varDsc->lvOnFrame)
{
continue;
}
#else // LEGACY_BACKEND
if (varDsc->lvRegister)
{
if (varDsc->lvOnFrame)
{
/* This is a partially enregistered TYP_LONG var */
noway_assert(varDsc->lvOtherReg == REG_STK);
noway_assert(varDsc->lvType == TYP_LONG);
noway_assert(compiler->info.compInitMem);
getEmitter()->emitIns_S_R(ins_Store(TYP_INT), EA_4BYTE, genGetZeroReg(initReg, pInitRegZeroed),
varNum, sizeof(int));
}
continue;
}
#endif // LEGACY_BACKEND
if ((varDsc->TypeGet() == TYP_STRUCT) && !compiler->info.compInitMem &&
(varDsc->lvExactSize >= TARGET_POINTER_SIZE))
{
// We only initialize the GC variables in the TYP_STRUCT
const unsigned slots = (unsigned)compiler->lvaLclSize(varNum) / REGSIZE_BYTES;
const BYTE* gcPtrs = compiler->lvaGetGcLayout(varNum);
for (unsigned i = 0; i < slots; i++)
{
if (gcPtrs[i] != TYPE_GC_NONE)
{
getEmitter()->emitIns_S_R(ins_Store(TYP_I_IMPL), EA_PTRSIZE,
genGetZeroReg(initReg, pInitRegZeroed), varNum, i * REGSIZE_BYTES);
}
}
}
else
{
regNumber zeroReg = genGetZeroReg(initReg, pInitRegZeroed);
// zero out the whole thing rounded up to a single stack slot size
unsigned lclSize = (unsigned)roundUp(compiler->lvaLclSize(varNum), sizeof(int));
unsigned i;
for (i = 0; i + REGSIZE_BYTES <= lclSize; i += REGSIZE_BYTES)
{
getEmitter()->emitIns_S_R(ins_Store(TYP_I_IMPL), EA_PTRSIZE, zeroReg, varNum, i);
}
#ifdef _TARGET_64BIT_
assert(i == lclSize || (i + sizeof(int) == lclSize));
if (i != lclSize)
{
getEmitter()->emitIns_S_R(ins_Store(TYP_INT), EA_4BYTE, zeroReg, varNum, i);
i += sizeof(int);
}
#endif // _TARGET_64BIT_
assert(i == lclSize);
}
}
if (!TRACK_GC_TEMP_LIFETIMES)
{
assert(compiler->tmpAllFree());
for (TempDsc* tempThis = compiler->tmpListBeg(); tempThis != nullptr;
tempThis = compiler->tmpListNxt(tempThis))
{
if (!varTypeIsGC(tempThis->tdTempType()))
{
continue;
}
// printf("initialize untracked spillTmp [EBP-%04X]\n", stkOffs);
inst_ST_RV(ins_Store(TYP_I_IMPL), tempThis, 0, genGetZeroReg(initReg, pInitRegZeroed), TYP_I_IMPL);
}
}
}
}
/*-----------------------------------------------------------------------------
*
* Save the generic context argument.
*
* We need to do this within the "prolog" in case anyone tries to inspect
* the param-type-arg/this (which can be done after the prolog) using
* ICodeManager::GetParamTypeArg().
*/
void CodeGen::genReportGenericContextArg(regNumber initReg, bool* pInitRegZeroed)
{
assert(compiler->compGeneratingProlog);
bool reportArg = compiler->lvaReportParamTypeArg();
// We should report either generic context arg or "this" when used so.
if (!reportArg)
{
#ifndef JIT32_GCENCODER
if (!compiler->lvaKeepAliveAndReportThis())
#endif
{
return;
}
}
// For JIT32_GCENCODER, we won't be here if reportArg is false.
unsigned contextArg = reportArg ? compiler->info.compTypeCtxtArg : compiler->info.compThisArg;
noway_assert(contextArg != BAD_VAR_NUM);
LclVarDsc* varDsc = &compiler->lvaTable[contextArg];
// We are still in the prolog and compiler->info.compTypeCtxtArg has not been
// moved to its final home location. So we need to use it from the
// incoming location.
regNumber reg;
bool isPrespilledForProfiling = false;
#if defined(_TARGET_ARM_) && defined(PROFILING_SUPPORTED)
isPrespilledForProfiling =
compiler->compIsProfilerHookNeeded() && compiler->lvaIsPreSpilled(contextArg, regSet.rsMaskPreSpillRegs(false));
#endif
// Load from the argument register only if it is not prespilled.
if (compiler->lvaIsRegArgument(contextArg) && !isPrespilledForProfiling)
{
reg = varDsc->lvArgReg;
}
else
{
if (isFramePointerUsed())
{
#if defined(_TARGET_ARM_)
// lvStkOffs is always valid for incoming stack-arguments, even if the argument
// will become enregistered.
// On Arm compiler->compArgSize doesn't include r11 and lr sizes and hence we need to add 2*REGSIZE_BYTES
noway_assert((2 * REGSIZE_BYTES <= varDsc->lvStkOffs) &&
(size_t(varDsc->lvStkOffs) < compiler->compArgSize + 2 * REGSIZE_BYTES));
#else
// lvStkOffs is always valid for incoming stack-arguments, even if the argument
// will become enregistered.
noway_assert((0 < varDsc->lvStkOffs) && (size_t(varDsc->lvStkOffs) < compiler->compArgSize));
#endif
}
// We will just use the initReg since it is an available register
// and we are probably done using it anyway...
reg = initReg;
*pInitRegZeroed = false;
// mov reg, [compiler->info.compTypeCtxtArg]
getEmitter()->emitIns_R_AR(ins_Load(TYP_I_IMPL), EA_PTRSIZE, reg, genFramePointerReg(), varDsc->lvStkOffs);
regTracker.rsTrackRegTrash(reg);
}
#if CPU_LOAD_STORE_ARCH
getEmitter()->emitIns_R_R_I(ins_Store(TYP_I_IMPL), EA_PTRSIZE, reg, genFramePointerReg(),
compiler->lvaCachedGenericContextArgOffset());
#else // CPU_LOAD_STORE_ARCH
// mov [ebp-lvaCachedGenericContextArgOffset()], reg
getEmitter()->emitIns_AR_R(ins_Store(TYP_I_IMPL), EA_PTRSIZE, reg, genFramePointerReg(),
compiler->lvaCachedGenericContextArgOffset());
#endif // !CPU_LOAD_STORE_ARCH
}
/*-----------------------------------------------------------------------------
*
* Set the "GS" security cookie in the prolog.
*/
void CodeGen::genSetGSSecurityCookie(regNumber initReg, bool* pInitRegZeroed)
{
assert(compiler->compGeneratingProlog);
if (!compiler->getNeedsGSSecurityCookie())
{
return;
}
noway_assert(compiler->gsGlobalSecurityCookieAddr || compiler->gsGlobalSecurityCookieVal);
if (compiler->gsGlobalSecurityCookieAddr == nullptr)
{
#ifdef _TARGET_AMD64_
// eax = #GlobalSecurityCookieVal64; [frame.GSSecurityCookie] = eax
getEmitter()->emitIns_R_I(INS_mov, EA_PTRSIZE, REG_RAX, compiler->gsGlobalSecurityCookieVal);
getEmitter()->emitIns_S_R(ins_Store(TYP_I_IMPL), EA_PTRSIZE, REG_RAX, compiler->lvaGSSecurityCookie, 0);
#else
// mov dword ptr [frame.GSSecurityCookie], #GlobalSecurityCookieVal
instGen_Store_Imm_Into_Lcl(TYP_I_IMPL, EA_PTRSIZE, compiler->gsGlobalSecurityCookieVal,
compiler->lvaGSSecurityCookie, 0, initReg);
#endif
}
else
{
regNumber reg;
#ifdef _TARGET_XARCH_
// Always use EAX on x86 and x64
// On x64, if we're not moving into RAX, and the address isn't RIP relative, we can't encode it.
reg = REG_EAX;
#else
// We will just use the initReg since it is an available register
reg = initReg;
#endif
*pInitRegZeroed = false;
#if CPU_LOAD_STORE_ARCH
instGen_Set_Reg_To_Imm(EA_PTR_DSP_RELOC, reg, (ssize_t)compiler->gsGlobalSecurityCookieAddr);
getEmitter()->emitIns_R_R_I(ins_Load(TYP_I_IMPL), EA_PTRSIZE, reg, reg, 0);
regTracker.rsTrackRegTrash(reg);
#else
// mov reg, dword ptr [compiler->gsGlobalSecurityCookieAddr]
// mov dword ptr [frame.GSSecurityCookie], reg
getEmitter()->emitIns_R_AI(INS_mov, EA_PTR_DSP_RELOC, reg, (ssize_t)compiler->gsGlobalSecurityCookieAddr);
regTracker.rsTrackRegTrash(reg);
#endif
getEmitter()->emitIns_S_R(ins_Store(TYP_I_IMPL), EA_PTRSIZE, reg, compiler->lvaGSSecurityCookie, 0);
}
}
#ifdef PROFILING_SUPPORTED
//-----------------------------------------------------------------------------------
// genProfilingEnterCallback: Generate the profiling function enter callback.
//
// Arguments:
// initReg - register to use as scratch register
// pInitRegZeroed - OUT parameter. *pInitRegZeroed set to 'false' if 'initReg' is
// not zero after this call.
//
// Return Value:
// None
//
// Notes:
// The x86 profile enter helper has the following requirements (see ProfileEnterNaked in
// VM\i386\asmhelpers.asm for details):
// 1. The calling sequence for calling the helper is:
// push FunctionIDOrClientID
// call ProfileEnterHelper
// 2. The calling function has an EBP frame.
// 3. EBP points to the saved ESP which is the first thing saved in the function. Thus,
// the following prolog is assumed:
// push ESP
// mov EBP, ESP
// 4. All registers are preserved.
// 5. The helper pops the FunctionIDOrClientID argument from the stack.
//
void CodeGen::genProfilingEnterCallback(regNumber initReg, bool* pInitRegZeroed)
{
assert(compiler->compGeneratingProlog);
// Give profiler a chance to back out of hooking this method
if (!compiler->compIsProfilerHookNeeded())
{
return;
}
#if defined(_TARGET_AMD64_)
#if !defined(UNIX_AMD64_ABI)
unsigned varNum;
LclVarDsc* varDsc;
// Since the method needs to make a profiler callback, it should have out-going arg space allocated.
noway_assert(compiler->lvaOutgoingArgSpaceVar != BAD_VAR_NUM);
noway_assert(compiler->lvaOutgoingArgSpaceSize >= (4 * REGSIZE_BYTES));
// Home all arguments passed in arg registers (RCX, RDX, R8 and R9).
// In case of vararg methods, arg regs are already homed.
//
// Note: Here we don't need to worry about updating gc'info since enter
// callback is generated as part of prolog which is non-gc interruptible.
// Moreover GC cannot kick while executing inside profiler callback which is a
// profiler requirement so it can examine arguments which could be obj refs.
if (!compiler->info.compIsVarArgs)
{
for (varNum = 0, varDsc = compiler->lvaTable; varNum < compiler->info.compArgsCount; varNum++, varDsc++)
{
noway_assert(varDsc->lvIsParam);
if (!varDsc->lvIsRegArg)
{
continue;
}
var_types storeType = varDsc->lvaArgType();
regNumber argReg = varDsc->lvArgReg;
instruction store_ins = ins_Store(storeType);
#ifdef FEATURE_SIMD
if ((storeType == TYP_SIMD8) && genIsValidIntReg(argReg))
{
store_ins = INS_mov;
}
#endif // FEATURE_SIMD
getEmitter()->emitIns_S_R(store_ins, emitTypeSize(storeType), argReg, varNum, 0);
}
}
// Emit profiler EnterCallback(ProfilerMethHnd, caller's SP)
// RCX = ProfilerMethHnd
if (compiler->compProfilerMethHndIndirected)
{
// Profiler hooks enabled during Ngen time.
// Profiler handle needs to be accessed through an indirection of a pointer.
getEmitter()->emitIns_R_AI(INS_mov, EA_PTR_DSP_RELOC, REG_ARG_0, (ssize_t)compiler->compProfilerMethHnd);
}
else
{
// No need to record relocations, if we are generating ELT hooks under the influence
// of COMPlus_JitELTHookEnabled=1
if (compiler->opts.compJitELTHookEnabled)
{
genSetRegToIcon(REG_ARG_0, (ssize_t)compiler->compProfilerMethHnd, TYP_I_IMPL);
}
else
{
instGen_Set_Reg_To_Imm(EA_8BYTE, REG_ARG_0, (ssize_t)compiler->compProfilerMethHnd);
}
}
// RDX = caller's SP
// Notes
// 1) Here we can query caller's SP offset since prolog will be generated after final frame layout.
// 2) caller's SP relative offset to FramePointer will be negative. We need to add absolute value
// of that offset to FramePointer to obtain caller's SP value.
assert(compiler->lvaOutgoingArgSpaceVar != BAD_VAR_NUM);
int callerSPOffset = compiler->lvaToCallerSPRelativeOffset(0, isFramePointerUsed());
getEmitter()->emitIns_R_AR(INS_lea, EA_PTRSIZE, REG_ARG_1, genFramePointerReg(), -callerSPOffset);
// Can't have a call until we have enough padding for rejit
genPrologPadForReJit();
// This will emit either
// "call ip-relative 32-bit offset" or
// "mov rax, helper addr; call rax"
genEmitHelperCall(CORINFO_HELP_PROF_FCN_ENTER, 0, EA_UNKNOWN);
// TODO-AMD64-CQ: Rather than reloading, see if this could be optimized by combining with prolog
// generation logic that moves args around as required by first BB entry point conditions
// computed by LSRA. Code pointers for investigating this further: genFnPrologCalleeRegArgs()
// and genEnregisterIncomingStackArgs().
//
// Now reload arg registers from home locations.
// Vararg methods:
// - we need to reload only known (i.e. fixed) reg args.
// - if floating point type, also reload it into corresponding integer reg
for (varNum = 0, varDsc = compiler->lvaTable; varNum < compiler->info.compArgsCount; varNum++, varDsc++)
{
noway_assert(varDsc->lvIsParam);
if (!varDsc->lvIsRegArg)
{
continue;
}
var_types loadType = varDsc->lvaArgType();
regNumber argReg = varDsc->lvArgReg;
instruction load_ins = ins_Load(loadType);
#ifdef FEATURE_SIMD
if ((loadType == TYP_SIMD8) && genIsValidIntReg(argReg))
{
load_ins = INS_mov;
}
#endif // FEATURE_SIMD
getEmitter()->emitIns_R_S(load_ins, emitTypeSize(loadType), argReg, varNum, 0);
#if FEATURE_VARARG
if (compiler->info.compIsVarArgs && varTypeIsFloating(loadType))
{
regNumber intArgReg = compiler->getCallArgIntRegister(argReg);
instruction ins = ins_CopyFloatToInt(loadType, TYP_LONG);
inst_RV_RV(ins, argReg, intArgReg, loadType);
}
#endif // FEATURE_VARARG
}
// If initReg is one of RBM_CALLEE_TRASH, then it needs to be zero'ed before using.
if ((RBM_CALLEE_TRASH & genRegMask(initReg)) != 0)
{
*pInitRegZeroed = false;
}
#else // !defined(UNIX_AMD64_ABI)
// Emit profiler EnterCallback(ProfilerMethHnd, caller's SP)
// R14 = ProfilerMethHnd
if (compiler->compProfilerMethHndIndirected)
{
// Profiler hooks enabled during Ngen time.
// Profiler handle needs to be accessed through an indirection of a pointer.
getEmitter()->emitIns_R_AI(INS_mov, EA_PTR_DSP_RELOC, REG_PROFILER_ENTER_ARG_0,
(ssize_t)compiler->compProfilerMethHnd);
}
else
{
// No need to record relocations, if we are generating ELT hooks under the influence
// of COMPlus_JitELTHookEnabled=1
if (compiler->opts.compJitELTHookEnabled)
{
genSetRegToIcon(REG_PROFILER_ENTER_ARG_0, (ssize_t)compiler->compProfilerMethHnd, TYP_I_IMPL);
}
else
{
instGen_Set_Reg_To_Imm(EA_8BYTE, REG_PROFILER_ENTER_ARG_0, (ssize_t)compiler->compProfilerMethHnd);
}
}
// R15 = caller's SP
// Notes
// 1) Here we can query caller's SP offset since prolog will be generated after final frame layout.
// 2) caller's SP relative offset to FramePointer will be negative. We need to add absolute value
// of that offset to FramePointer to obtain caller's SP value.
assert(compiler->lvaOutgoingArgSpaceVar != BAD_VAR_NUM);
int callerSPOffset = compiler->lvaToCallerSPRelativeOffset(0, isFramePointerUsed());
getEmitter()->emitIns_R_AR(INS_lea, EA_PTRSIZE, REG_PROFILER_ENTER_ARG_1, genFramePointerReg(), -callerSPOffset);
// Can't have a call until we have enough padding for rejit
genPrologPadForReJit();
// We can use any callee trash register (other than RAX, RDI, RSI) for call target.
// We use R11 here. This will emit either
// "call ip-relative 32-bit offset" or
// "mov r11, helper addr; call r11"
genEmitHelperCall(CORINFO_HELP_PROF_FCN_ENTER, 0, EA_UNKNOWN, REG_DEFAULT_PROFILER_CALL_TARGET);
// If initReg is one of RBM_CALLEE_TRASH, then it needs to be zero'ed before using.
if ((RBM_CALLEE_TRASH & genRegMask(initReg)) != 0)
{
*pInitRegZeroed = false;
}
#endif // !defined(UNIX_AMD64_ABI)
#elif defined(_TARGET_X86_) || (defined(_TARGET_ARM_) && defined(LEGACY_BACKEND))
unsigned saveStackLvl2 = genStackLevel;
#if defined(_TARGET_X86_)
// Important note: when you change enter probe layout, you must also update SKIP_ENTER_PROF_CALLBACK()
// for x86 stack unwinding
// Push the profilerHandle
if (compiler->compProfilerMethHndIndirected)
{
getEmitter()->emitIns_AR_R(INS_push, EA_PTR_DSP_RELOC, REG_NA, REG_NA, (ssize_t)compiler->compProfilerMethHnd);
}
else
{
inst_IV(INS_push, (size_t)compiler->compProfilerMethHnd);
}
#elif defined(_TARGET_ARM_)
// On Arm arguments are prespilled on stack, which frees r0-r3.
// For generating Enter callout we would need two registers and one of them has to be r0 to pass profiler handle.
// The call target register could be any free register.
regNumber argReg = regSet.rsGrabReg(RBM_PROFILER_ENTER_ARG);
noway_assert(argReg == REG_PROFILER_ENTER_ARG);
regSet.rsLockReg(RBM_PROFILER_ENTER_ARG);
if (compiler->compProfilerMethHndIndirected)
{
getEmitter()->emitIns_R_AI(INS_ldr, EA_PTR_DSP_RELOC, argReg, (ssize_t)compiler->compProfilerMethHnd);
regTracker.rsTrackRegTrash(argReg);
}
else
{
instGen_Set_Reg_To_Imm(EA_4BYTE, argReg, (ssize_t)compiler->compProfilerMethHnd);
}
#else // _TARGET_*
NYI("Pushing the profilerHandle & caller's sp for the profiler callout and locking registers");
#endif // _TARGET_*
//
// Can't have a call until we have enough padding for rejit
//
genPrologPadForReJit();
// This will emit either
// "call ip-relative 32-bit offset" or
// "mov rax, helper addr; call rax"
genEmitHelperCall(CORINFO_HELP_PROF_FCN_ENTER,
0, // argSize. Again, we have to lie about it
EA_UNKNOWN); // retSize
#if defined(_TARGET_X86_)
//
// Adjust the number of stack slots used by this managed method if necessary.
//
if (compiler->fgPtrArgCntMax < 1)
{
JITDUMP("Upping fgPtrArgCntMax from %d to 1\n", compiler->fgPtrArgCntMax);
compiler->fgPtrArgCntMax = 1;
}
#elif defined(_TARGET_ARM_)
// Unlock registers
regSet.rsUnlockReg(RBM_PROFILER_ENTER_ARG);
if (initReg == argReg)
{
*pInitRegZeroed = false;
}
#else // _TARGET_*
NYI("Pushing the profilerHandle & caller's sp for the profiler callout and locking registers");
#endif // _TARGET_*
/* Restore the stack level */
SetStackLevel(saveStackLvl2);
#else // target
NYI("Emit Profiler Enter callback");
#endif // target
}
//-----------------------------------------------------------------------------------
// genProfilingLeaveCallback: Generate the profiling function leave or tailcall callback.
// Technically, this is not part of the epilog; it is called when we are generating code for a GT_RETURN node.
//
// Arguments:
// helper - which helper to call. Either CORINFO_HELP_PROF_FCN_LEAVE or CORINFO_HELP_PROF_FCN_TAILCALL
//
// Return Value:
// None
//
// Notes:
// The x86 profile leave/tailcall helper has the following requirements (see ProfileLeaveNaked and
// ProfileTailcallNaked in VM\i386\asmhelpers.asm for details):
// 1. The calling sequence for calling the helper is:
// push FunctionIDOrClientID
// call ProfileLeaveHelper or ProfileTailcallHelper
// 2. The calling function has an EBP frame.
// 3. EBP points to the saved ESP which is the first thing saved in the function. Thus,
// the following prolog is assumed:
// push ESP
// mov EBP, ESP
// 4. helper == CORINFO_HELP_PROF_FCN_LEAVE: All registers are preserved.
// helper == CORINFO_HELP_PROF_FCN_TAILCALL: Only argument registers are preserved.
// 5. The helper pops the FunctionIDOrClientID argument from the stack.
//
void CodeGen::genProfilingLeaveCallback(unsigned helper /*= CORINFO_HELP_PROF_FCN_LEAVE*/)
{
assert((helper == CORINFO_HELP_PROF_FCN_LEAVE) || (helper == CORINFO_HELP_PROF_FCN_TAILCALL));
// Only hook if profiler says it's okay.
if (!compiler->compIsProfilerHookNeeded())
{
return;
}
compiler->info.compProfilerCallback = true;
// Need to save on to the stack level, since the helper call will pop the argument
unsigned saveStackLvl2 = genStackLevel;
#if defined(_TARGET_AMD64_)
#if !defined(UNIX_AMD64_ABI)
// Since the method needs to make a profiler callback, it should have out-going arg space allocated.
noway_assert(compiler->lvaOutgoingArgSpaceVar != BAD_VAR_NUM);
noway_assert(compiler->lvaOutgoingArgSpaceSize >= (4 * REGSIZE_BYTES));
// If thisPtr needs to be kept alive and reported, it cannot be one of the callee trash
// registers that profiler callback kills.
if (compiler->lvaKeepAliveAndReportThis() && compiler->lvaTable[compiler->info.compThisArg].lvIsInReg())
{
regMaskTP thisPtrMask = genRegMask(compiler->lvaTable[compiler->info.compThisArg].lvRegNum);
noway_assert((RBM_PROFILER_LEAVE_TRASH & thisPtrMask) == 0);
}
// At this point return value is computed and stored in RAX or XMM0.
// On Amd64, Leave callback preserves the return register. We keep
// RAX alive by not reporting as trashed by helper call. Also note
// that GC cannot kick-in while executing inside profiler callback,
// which is a requirement of profiler as well since it needs to examine
// return value which could be an obj ref.
// RCX = ProfilerMethHnd
if (compiler->compProfilerMethHndIndirected)
{
// Profiler hooks enabled during Ngen time.
// Profiler handle needs to be accessed through an indirection of an address.
getEmitter()->emitIns_R_AI(INS_mov, EA_PTR_DSP_RELOC, REG_ARG_0, (ssize_t)compiler->compProfilerMethHnd);
}
else
{
// Don't record relocations, if we are generating ELT hooks under the influence
// of COMPlus_JitELTHookEnabled=1
if (compiler->opts.compJitELTHookEnabled)
{
genSetRegToIcon(REG_ARG_0, (ssize_t)compiler->compProfilerMethHnd, TYP_I_IMPL);
}
else
{
instGen_Set_Reg_To_Imm(EA_8BYTE, REG_ARG_0, (ssize_t)compiler->compProfilerMethHnd);
}
}
// RDX = caller's SP
// TODO-AMD64-Cleanup: Once we start doing codegen after final frame layout, retain the "if" portion
// of the stmnts to execute unconditionally and clean-up rest.
if (compiler->lvaDoneFrameLayout == Compiler::FINAL_FRAME_LAYOUT)
{
// Caller's SP relative offset to FramePointer will be negative. We need to add absolute
// value of that offset to FramePointer to obtain caller's SP value.
int callerSPOffset = compiler->lvaToCallerSPRelativeOffset(0, isFramePointerUsed());
getEmitter()->emitIns_R_AR(INS_lea, EA_PTRSIZE, REG_ARG_1, genFramePointerReg(), -callerSPOffset);
}
else
{
// If we are here means that it is a tentative frame layout during which we
// cannot use caller's SP offset since it is an estimate. For now we require the
// method to have at least a single arg so that we can use it to obtain caller's
// SP.
LclVarDsc* varDsc = compiler->lvaTable;
NYI_IF((varDsc == nullptr) || !varDsc->lvIsParam, "Profiler ELT callback for a method without any params");
// lea rdx, [FramePointer + Arg0's offset]
getEmitter()->emitIns_R_S(INS_lea, EA_PTRSIZE, REG_ARG_1, 0, 0);
}
// We can use any callee trash register (other than RAX, RCX, RDX) for call target.
// We use R8 here. This will emit either
// "call ip-relative 32-bit offset" or
// "mov r8, helper addr; call r8"
genEmitHelperCall(helper, 0, EA_UNKNOWN, REG_ARG_2);
#else // !defined(UNIX_AMD64_ABI)
// RDI = ProfilerMethHnd
if (compiler->compProfilerMethHndIndirected)
{
getEmitter()->emitIns_R_AI(INS_mov, EA_PTR_DSP_RELOC, REG_ARG_0, (ssize_t)compiler->compProfilerMethHnd);
}
else
{
if (compiler->opts.compJitELTHookEnabled)
{
genSetRegToIcon(REG_ARG_0, (ssize_t)compiler->compProfilerMethHnd, TYP_I_IMPL);
}
else
{
instGen_Set_Reg_To_Imm(EA_8BYTE, REG_ARG_0, (ssize_t)compiler->compProfilerMethHnd);
}
}
// RSI = caller's SP
if (compiler->lvaDoneFrameLayout == Compiler::FINAL_FRAME_LAYOUT)
{
int callerSPOffset = compiler->lvaToCallerSPRelativeOffset(0, isFramePointerUsed());
getEmitter()->emitIns_R_AR(INS_lea, EA_PTRSIZE, REG_ARG_1, genFramePointerReg(), -callerSPOffset);
}
else
{
LclVarDsc* varDsc = compiler->lvaTable;
NYI_IF((varDsc == nullptr) || !varDsc->lvIsParam, "Profiler ELT callback for a method without any params");
// lea rdx, [FramePointer + Arg0's offset]
getEmitter()->emitIns_R_S(INS_lea, EA_PTRSIZE, REG_ARG_1, 0, 0);
}
// We can use any callee trash register (other than RAX, RDI, RSI) for call target.
// We use R11 here. This will emit either
// "call ip-relative 32-bit offset" or
// "mov r11, helper addr; call r11"
genEmitHelperCall(helper, 0, EA_UNKNOWN, REG_DEFAULT_PROFILER_CALL_TARGET);
#endif // !defined(UNIX_AMD64_ABI)
#elif defined(_TARGET_X86_)
//
// Push the profilerHandle
//
if (compiler->compProfilerMethHndIndirected)
{
getEmitter()->emitIns_AR_R(INS_push, EA_PTR_DSP_RELOC, REG_NA, REG_NA, (ssize_t)compiler->compProfilerMethHnd);
}
else
{
inst_IV(INS_push, (size_t)compiler->compProfilerMethHnd);
}
genSinglePush();
genEmitHelperCall(helper,
sizeof(int) * 1, // argSize
EA_UNKNOWN); // retSize
//
// Adjust the number of stack slots used by this managed method if necessary.
//
if (compiler->fgPtrArgCntMax < 1)
{
JITDUMP("Upping fgPtrArgCntMax from %d to 1\n", compiler->fgPtrArgCntMax);
compiler->fgPtrArgCntMax = 1;
}
#elif defined(LEGACY_BACKEND) && defined(_TARGET_ARM_)
//
// Push the profilerHandle
//
// We could optimize register usage based on return value is int/long/void. But to keep it simple we will lock
// RBM_PROFILER_RET_USED always.
regNumber scratchReg = regSet.rsGrabReg(RBM_PROFILER_RET_SCRATCH);
noway_assert(scratchReg == REG_PROFILER_RET_SCRATCH);
regSet.rsLockReg(RBM_PROFILER_RET_USED);
// Contract between JIT and Profiler Leave callout on arm:
// Return size <= 4 bytes: REG_PROFILER_RET_SCRATCH will contain return value
// Return size > 4 and <= 8: <REG_PROFILER_RET_SCRATCH,r1> will contain return value.
// Floating point or double or HFA return values will be in s0-s15 in case of non-vararg methods.
// It is assumed that profiler Leave callback doesn't trash registers r1,REG_PROFILER_RET_SCRATCH and s0-s15.
//
// In the following cases r0 doesn't contain a return value and hence need not be preserved before emitting Leave
// callback.
bool r0Trashed;
emitAttr attr = EA_UNKNOWN;
if (compiler->info.compRetType == TYP_VOID || (!compiler->info.compIsVarArgs && !compiler->opts.compUseSoftFP &&
(varTypeIsFloating(compiler->info.compRetType) ||
compiler->IsHfa(compiler->info.compMethodInfo->args.retTypeClass))))
{
r0Trashed = false;
}
else
{
// Has a return value and r0 is in use. For emitting Leave profiler callout we would need r0 for passing
// profiler handle. Therefore, r0 is moved to REG_PROFILER_RETURN_SCRATCH as per contract.
if (RBM_ARG_0 & gcInfo.gcRegGCrefSetCur)
{
attr = EA_GCREF;
gcInfo.gcMarkRegSetGCref(RBM_PROFILER_RET_SCRATCH);
}
else if (RBM_ARG_0 & gcInfo.gcRegByrefSetCur)
{
attr = EA_BYREF;
gcInfo.gcMarkRegSetByref(RBM_PROFILER_RET_SCRATCH);
}
else
{
attr = EA_4BYTE;
}
getEmitter()->emitIns_R_R(INS_mov, attr, REG_PROFILER_RET_SCRATCH, REG_ARG_0);
regTracker.rsTrackRegTrash(REG_PROFILER_RET_SCRATCH);
gcInfo.gcMarkRegSetNpt(RBM_ARG_0);
r0Trashed = true;
}
if (compiler->compProfilerMethHndIndirected)
{
getEmitter()->emitIns_R_AI(INS_ldr, EA_PTR_DSP_RELOC, REG_ARG_0, (ssize_t)compiler->compProfilerMethHnd);
regTracker.rsTrackRegTrash(REG_ARG_0);
}
else
{
instGen_Set_Reg_To_Imm(EA_4BYTE, REG_ARG_0, (ssize_t)compiler->compProfilerMethHnd);
}
genEmitHelperCall(CORINFO_HELP_PROF_FCN_LEAVE,
0, // argSize
EA_UNKNOWN); // retSize
// Restore state that existed before profiler callback
if (r0Trashed)
{
getEmitter()->emitIns_R_R(INS_mov, attr, REG_ARG_0, REG_PROFILER_RET_SCRATCH);
regTracker.rsTrackRegTrash(REG_ARG_0);
gcInfo.gcMarkRegSetNpt(RBM_PROFILER_RET_SCRATCH);
}
regSet.rsUnlockReg(RBM_PROFILER_RET_USED);
#else // target
NYI("Emit Profiler Leave callback");
#endif // target
/* Restore the stack level */
SetStackLevel(saveStackLvl2);
}
#endif // PROFILING_SUPPORTED
/*****************************************************************************
Esp frames :
----------
These instructions are just a reordering of the instructions used today.
push ebp
push esi
push edi
push ebx
sub esp, LOCALS_SIZE / push dummyReg if LOCALS_SIZE=sizeof(void*)
...
add esp, LOCALS_SIZE / pop dummyReg
pop ebx
pop edi
pop esi
pop ebp
ret
Ebp frames :
----------
The epilog does "add esp, LOCALS_SIZE" instead of "mov ebp, esp".
Everything else is similar, though in a different order.
The security object will no longer be at a fixed offset. However, the
offset can still be determined by looking up the GC-info and determining
how many callee-saved registers are pushed.
push ebp
mov ebp, esp
push esi
push edi
push ebx
sub esp, LOCALS_SIZE / push dummyReg if LOCALS_SIZE=sizeof(void*)
...
add esp, LOCALS_SIZE / pop dummyReg
pop ebx
pop edi
pop esi
(mov esp, ebp if there are no callee-saved registers)
pop ebp
ret
Double-aligned frame :
--------------------
LOCALS_SIZE_ADJUSTED needs to include an unused DWORD if an odd number
of callee-saved registers are pushed on the stack so that the locals
themselves are qword-aligned. The instructions are the same as today,
just in a different order.
push ebp
mov ebp, esp
and esp, 0xFFFFFFFC
push esi
push edi
push ebx
sub esp, LOCALS_SIZE_ADJUSTED / push dummyReg if LOCALS_SIZE=sizeof(void*)
...
add esp, LOCALS_SIZE_ADJUSTED / pop dummyReg
pop ebx
pop edi
pop esi
pop ebp
mov esp, ebp
pop ebp
ret
localloc (with ebp) frames :
--------------------------
The instructions are the same as today, just in a different order.
Also, today the epilog does "lea esp, [ebp-LOCALS_SIZE-calleeSavedRegsPushedSize]"
which will change to "lea esp, [ebp-calleeSavedRegsPushedSize]".
push ebp
mov ebp, esp
push esi
push edi
push ebx
sub esp, LOCALS_SIZE / push dummyReg if LOCALS_SIZE=sizeof(void*)
...
lea esp, [ebp-calleeSavedRegsPushedSize]
pop ebx
pop edi
pop esi
(mov esp, ebp if there are no callee-saved registers)
pop ebp
ret
*****************************************************************************/
/*****************************************************************************
*
* Generates appropriate NOP padding for a function prolog to support ReJIT.
*/
void CodeGen::genPrologPadForReJit()
{
assert(compiler->compGeneratingProlog);
#ifdef _TARGET_XARCH_
if (!compiler->opts.jitFlags->IsSet(JitFlags::JIT_FLAG_PROF_REJIT_NOPS))
{
return;
}
#if FEATURE_EH_FUNCLETS
// No need to generate pad (nops) for funclets.
// When compiling the main function (and not a funclet)
// the value of funCurrentFunc->funKind is equal to FUNC_ROOT.
if (compiler->funCurrentFunc()->funKind != FUNC_ROOT)
{
return;
}
#endif // FEATURE_EH_FUNCLETS
unsigned size = getEmitter()->emitGetPrologOffsetEstimate();
if (size < 5)
{
instNop(5 - size);
}
#endif
}
/*****************************************************************************
*
* Reserve space for a function prolog.
*/
void CodeGen::genReserveProlog(BasicBlock* block)
{
assert(block != nullptr);
JITDUMP("Reserving prolog IG for block BB%02u\n", block->bbNum);
/* Nothing is live on entry to the prolog */
getEmitter()->emitCreatePlaceholderIG(IGPT_PROLOG, block, VarSetOps::MakeEmpty(compiler), 0, 0, false);
}
/*****************************************************************************
*
* Reserve space for a function epilog.
*/
void CodeGen::genReserveEpilog(BasicBlock* block)
{
regMaskTP gcrefRegsArg = gcInfo.gcRegGCrefSetCur;
regMaskTP byrefRegsArg = gcInfo.gcRegByrefSetCur;
/* The return value is special-cased: make sure it goes live for the epilog */
bool jmpEpilog = ((block->bbFlags & BBF_HAS_JMP) != 0);
if (genFullPtrRegMap && !jmpEpilog)
{
if (varTypeIsGC(compiler->info.compRetNativeType))
{
noway_assert(genTypeStSz(compiler->info.compRetNativeType) == genTypeStSz(TYP_I_IMPL));
gcInfo.gcMarkRegPtrVal(REG_INTRET, compiler->info.compRetNativeType);
switch (compiler->info.compRetNativeType)
{
case TYP_REF:
gcrefRegsArg |= RBM_INTRET;
break;
case TYP_BYREF:
byrefRegsArg |= RBM_INTRET;
break;
default:
break;
}
}
}
JITDUMP("Reserving epilog IG for block BB%02u\n", block->bbNum);
assert(block != nullptr);
const VARSET_TP& gcrefVarsArg(getEmitter()->emitThisGCrefVars);
bool last = (block->bbNext == nullptr);
getEmitter()->emitCreatePlaceholderIG(IGPT_EPILOG, block, gcrefVarsArg, gcrefRegsArg, byrefRegsArg, last);
}
#if FEATURE_EH_FUNCLETS
/*****************************************************************************
*
* Reserve space for a funclet prolog.
*/
void CodeGen::genReserveFuncletProlog(BasicBlock* block)
{
assert(block != nullptr);
/* Currently, no registers are live on entry to the prolog, except maybe
the exception object. There might be some live stack vars, but they
cannot be accessed until after the frame pointer is re-established.
In order to potentially prevent emitting a death before the prolog
and a birth right after it, we just report it as live during the
prolog, and rely on the prolog being non-interruptible. Trust
genCodeForBBlist to correctly initialize all the sets.
We might need to relax these asserts if the VM ever starts
restoring any registers, then we could have live-in reg vars...
*/
noway_assert((gcInfo.gcRegGCrefSetCur & RBM_EXCEPTION_OBJECT) == gcInfo.gcRegGCrefSetCur);
noway_assert(gcInfo.gcRegByrefSetCur == 0);
JITDUMP("Reserving funclet prolog IG for block BB%02u\n", block->bbNum);
getEmitter()->emitCreatePlaceholderIG(IGPT_FUNCLET_PROLOG, block, gcInfo.gcVarPtrSetCur, gcInfo.gcRegGCrefSetCur,
gcInfo.gcRegByrefSetCur, false);
}
/*****************************************************************************
*
* Reserve space for a funclet epilog.
*/
void CodeGen::genReserveFuncletEpilog(BasicBlock* block)
{
assert(block != nullptr);
JITDUMP("Reserving funclet epilog IG for block BB%02u\n", block->bbNum);
bool last = (block->bbNext == nullptr);
getEmitter()->emitCreatePlaceholderIG(IGPT_FUNCLET_EPILOG, block, gcInfo.gcVarPtrSetCur, gcInfo.gcRegGCrefSetCur,
gcInfo.gcRegByrefSetCur, last);
}
#endif // FEATURE_EH_FUNCLETS
/*****************************************************************************
* Finalize the frame size and offset assignments.
*
* No changes can be made to the modified register set after this, since that can affect how many
* callee-saved registers get saved.
*/
void CodeGen::genFinalizeFrame()
{
JITDUMP("Finalizing stack frame\n");
#ifndef LEGACY_BACKEND
// Initializations need to happen based on the var locations at the start
// of the first basic block, so load those up. In particular, the determination
// of whether or not to use block init in the prolog is dependent on the variable
// locations on entry to the function.
compiler->m_pLinearScan->recordVarLocationsAtStartOfBB(compiler->fgFirstBB);
#endif // !LEGACY_BACKEND
genCheckUseBlockInit();
// Set various registers as "modified" for special code generation scenarios: Edit & Continue, P/Invoke calls, etc.
CLANG_FORMAT_COMMENT_ANCHOR;
#if defined(_TARGET_X86_)
if (compiler->compTailCallUsed)
{
// If we are generating a helper-based tailcall, we've set the tailcall helper "flags"
// argument to "1", indicating to the tailcall helper that we've saved the callee-saved
// registers (ebx, esi, edi). So, we need to make sure all the callee-saved registers
// actually get saved.
regSet.rsSetRegsModified(RBM_INT_CALLEE_SAVED);
}
#endif // _TARGET_X86_
#if defined(_TARGET_ARMARCH_)
// We need to determine if we will change SP larger than a specific amount to determine if we want to use a loop
// to touch stack pages, that will require multiple registers. See genAllocLclFrame() for details.
if (compiler->compLclFrameSize >= compiler->getVeryLargeFrameSize())
{
regSet.rsSetRegsModified(VERY_LARGE_FRAME_SIZE_REG_MASK);
}
#endif // defined(_TARGET_ARMARCH_)
#if defined(_TARGET_ARM_)
// If there are any reserved registers, add them to the
if (regSet.rsMaskResvd != RBM_NONE)
{
regSet.rsSetRegsModified(regSet.rsMaskResvd);
}
#endif // _TARGET_ARM_
#ifdef DEBUG
if (verbose)
{
printf("Modified regs: ");
dspRegMask(regSet.rsGetModifiedRegsMask());
printf("\n");
}
#endif // DEBUG
// Set various registers as "modified" for special code generation scenarios: Edit & Continue, P/Invoke calls, etc.
if (compiler->opts.compDbgEnC)
{
// We always save FP.
noway_assert(isFramePointerUsed());
#ifdef _TARGET_AMD64_
// On x64 we always save exactly RBP, RSI and RDI for EnC.
regMaskTP okRegs = (RBM_CALLEE_TRASH | RBM_FPBASE | RBM_RSI | RBM_RDI);
regSet.rsSetRegsModified(RBM_RSI | RBM_RDI);
noway_assert((regSet.rsGetModifiedRegsMask() & ~okRegs) == 0);
#else // !_TARGET_AMD64_
// On x86 we save all callee saved regs so the saved reg area size is consistent
regSet.rsSetRegsModified(RBM_INT_CALLEE_SAVED & ~RBM_FPBASE);
#endif // !_TARGET_AMD64_
}
/* If we have any pinvoke calls, we might potentially trash everything */
if (compiler->info.compCallUnmanaged)
{
noway_assert(isFramePointerUsed()); // Setup of Pinvoke frame currently requires an EBP style frame
regSet.rsSetRegsModified(RBM_INT_CALLEE_SAVED & ~RBM_FPBASE);
}
#ifdef UNIX_AMD64_ABI
// On Unix x64 we also save R14 and R15 for ELT profiler hook generation.
if (compiler->compIsProfilerHookNeeded())
{
regSet.rsSetRegsModified(RBM_PROFILER_ENTER_ARG_0 | RBM_PROFILER_ENTER_ARG_1);
}
#endif
/* Count how many callee-saved registers will actually be saved (pushed) */
// EBP cannot be (directly) modified for EBP frame and double-aligned frames
noway_assert(!doubleAlignOrFramePointerUsed() || !regSet.rsRegsModified(RBM_FPBASE));
#if ETW_EBP_FRAMED
// EBP cannot be (directly) modified
noway_assert(!regSet.rsRegsModified(RBM_FPBASE));
#endif
regMaskTP maskCalleeRegsPushed = regSet.rsGetModifiedRegsMask() & RBM_CALLEE_SAVED;
#ifdef _TARGET_ARMARCH_
if (isFramePointerUsed())
{
// For a FP based frame we have to push/pop the FP register
//
maskCalleeRegsPushed |= RBM_FPBASE;
// This assert check that we are not using REG_FP
// as both the frame pointer and as a codegen register
//
assert(!regSet.rsRegsModified(RBM_FPBASE));
}
// we always push LR. See genPushCalleeSavedRegisters
//
maskCalleeRegsPushed |= RBM_LR;
#if defined(_TARGET_ARM_)
// TODO-ARM64-Bug?: enable some variant of this for FP on ARM64?
regMaskTP maskPushRegsFloat = maskCalleeRegsPushed & RBM_ALLFLOAT;
regMaskTP maskPushRegsInt = maskCalleeRegsPushed & ~maskPushRegsFloat;
if ((maskPushRegsFloat != RBM_NONE) ||
(compiler->opts.MinOpts() && (regSet.rsMaskResvd & maskCalleeRegsPushed & RBM_OPT_RSVD)))
{
// Here we try to keep stack double-aligned before the vpush
if ((genCountBits(regSet.rsMaskPreSpillRegs(true) | maskPushRegsInt) % 2) != 0)
{
regNumber extraPushedReg = REG_R4;
while (maskPushRegsInt & genRegMask(extraPushedReg))
{
extraPushedReg = REG_NEXT(extraPushedReg);
}
if (extraPushedReg < REG_R11)
{
maskPushRegsInt |= genRegMask(extraPushedReg);
regSet.rsSetRegsModified(genRegMask(extraPushedReg));
}
}
maskCalleeRegsPushed = maskPushRegsInt | maskPushRegsFloat;
}
// We currently only expect to push/pop consecutive FP registers
// and these have to be double-sized registers as well.
// Here we will insure that maskPushRegsFloat obeys these requirements.
//
if (maskPushRegsFloat != RBM_NONE)
{
regMaskTP contiguousMask = genRegMaskFloat(REG_F16, TYP_DOUBLE);
while (maskPushRegsFloat > contiguousMask)
{
contiguousMask <<= 2;
contiguousMask |= genRegMaskFloat(REG_F16, TYP_DOUBLE);
}
if (maskPushRegsFloat != contiguousMask)
{
regMaskTP maskExtraRegs = contiguousMask - maskPushRegsFloat;
maskPushRegsFloat |= maskExtraRegs;
regSet.rsSetRegsModified(maskExtraRegs);
maskCalleeRegsPushed |= maskExtraRegs;
}
}
#endif // _TARGET_ARM_
#endif // _TARGET_ARMARCH_
#if defined(_TARGET_XARCH_) && !FEATURE_STACK_FP_X87
// Compute the count of callee saved float regs saved on stack.
// On Amd64 we push only integer regs. Callee saved float (xmm6-xmm15)
// regs are stack allocated and preserved in their stack locations.
compiler->compCalleeFPRegsSavedMask = maskCalleeRegsPushed & RBM_FLT_CALLEE_SAVED;
maskCalleeRegsPushed &= ~RBM_FLT_CALLEE_SAVED;
#endif // defined(_TARGET_XARCH_) && !FEATURE_STACK_FP_X87
compiler->compCalleeRegsPushed = genCountBits(maskCalleeRegsPushed);
#ifdef DEBUG
if (verbose)
{
printf("Callee-saved registers pushed: %d ", compiler->compCalleeRegsPushed);
dspRegMask(maskCalleeRegsPushed);
printf("\n");
}
#endif // DEBUG
/* Assign the final offsets to things living on the stack frame */
compiler->lvaAssignFrameOffsets(Compiler::FINAL_FRAME_LAYOUT);
/* We want to make sure that the prolog size calculated here is accurate
(that is instructions will not shrink because of conservative stack
frame approximations). We do this by filling in the correct size
here (where we have committed to the final numbers for the frame offsets)
This will ensure that the prolog size is always correct
*/
getEmitter()->emitMaxTmpSize = compiler->tmpSize;
#ifdef DEBUG
if (compiler->opts.dspCode || compiler->opts.disAsm || compiler->opts.disAsm2 || verbose)
{
compiler->lvaTableDump();
}
#endif
}
//------------------------------------------------------------------------
// genEstablishFramePointer: Set up the frame pointer by adding an offset to the stack pointer.
//
// Arguments:
// delta - the offset to add to the current stack pointer to establish the frame pointer
// reportUnwindData - true if establishing the frame pointer should be reported in the OS unwind data.
void CodeGen::genEstablishFramePointer(int delta, bool reportUnwindData)
{
assert(compiler->compGeneratingProlog);
#if defined(_TARGET_XARCH_)
if (delta == 0)
{
getEmitter()->emitIns_R_R(INS_mov, EA_PTRSIZE, REG_FPBASE, REG_SPBASE);
psiMoveESPtoEBP();
}
else
{
getEmitter()->emitIns_R_AR(INS_lea, EA_PTRSIZE, REG_FPBASE, REG_SPBASE, delta);
// We don't update prolog scope info (there is no function to handle lea), but that is currently dead code
// anyway.
}
if (reportUnwindData)
{
compiler->unwindSetFrameReg(REG_FPBASE, delta);
}
#elif defined(_TARGET_ARM_)
assert(arm_Valid_Imm_For_Add_SP(delta));
getEmitter()->emitIns_R_R_I(INS_add, EA_PTRSIZE, REG_FPBASE, REG_SPBASE, delta);
if (reportUnwindData)
{
compiler->unwindPadding();
}
#else
NYI("establish frame pointer");
#endif
}
/*****************************************************************************
*
* Generates code for a function prolog.
*
* NOTE REGARDING CHANGES THAT IMPACT THE DEBUGGER:
*
* The debugger relies on decoding ARM instructions to be able to successfully step through code. It does not
* implement decoding all ARM instructions. It only implements decoding the instructions which the JIT emits, and
* only instructions which result in control not going to the next instruction. Basically, any time execution would
* not continue at the next instruction (such as B, BL, BX, BLX, POP{pc}, etc.), the debugger has to be able to
* decode that instruction. If any of this is changed on ARM, the debugger team needs to be notified so that it
* can ensure stepping isn't broken. This is also a requirement for x86 and amd64.
*
* If any changes are made in the prolog, epilog, calls, returns, and branches, it is a good idea to notify the
* debugger team to ensure that stepping still works.
*
* ARM stepping code is here: debug\ee\arm\armwalker.cpp, vm\arm\armsinglestepper.cpp.
*/
#ifdef _PREFAST_
#pragma warning(push)
#pragma warning(disable : 21000) // Suppress PREFast warning about overly large function
#endif
void CodeGen::genFnProlog()
{
ScopedSetVariable<bool> _setGeneratingProlog(&compiler->compGeneratingProlog, true);
compiler->funSetCurrentFunc(0);
#ifdef DEBUG
if (verbose)
{
printf("*************** In genFnProlog()\n");
}
#endif
#ifdef DEBUG
genInterruptibleUsed = true;
#endif
#ifdef LEGACY_BACKEND
genFinalizeFrame();
#endif // LEGACY_BACKEND
assert(compiler->lvaDoneFrameLayout == Compiler::FINAL_FRAME_LAYOUT);
/* Ready to start on the prolog proper */
getEmitter()->emitBegProlog();
compiler->unwindBegProlog();
// Do this so we can put the prolog instruction group ahead of
// other instruction groups
genIPmappingAddToFront((IL_OFFSETX)ICorDebugInfo::PROLOG);
#ifdef DEBUG
if (compiler->opts.dspCode)
{
printf("\n__prolog:\n");
}
#endif
if (compiler->opts.compScopeInfo && (compiler->info.compVarScopesCount > 0))
{
// Create new scopes for the method-parameters for the prolog-block.
psiBegProlog();
}
#ifdef DEBUG
if (compiler->compJitHaltMethod())
{
/* put a nop first because the debugger and other tools are likely to
put an int3 at the begining and we don't want to confuse them */
instGen(INS_nop);
instGen(INS_BREAKPOINT);
#ifdef _TARGET_ARMARCH_
// Avoid asserts in the unwind info because these instructions aren't accounted for.
compiler->unwindPadding();
#endif // _TARGET_ARMARCH_
}
#endif // DEBUG
#if FEATURE_EH_FUNCLETS && defined(DEBUG)
// We cannot force 0-initialization of the PSPSym
// as it will overwrite the real value
if (compiler->lvaPSPSym != BAD_VAR_NUM)
{
LclVarDsc* varDsc = &compiler->lvaTable[compiler->lvaPSPSym];
assert(!varDsc->lvMustInit);
}
#endif // FEATURE_EH_FUNCLETS && DEBUG
/*-------------------------------------------------------------------------
*
* Record the stack frame ranges that will cover all of the tracked
* and untracked pointer variables.
* Also find which registers will need to be zero-initialized.
*
* 'initRegs': - Generally, enregistered variables should not need to be
* zero-inited. They only need to be zero-inited when they
* have a possibly uninitialized read on some control
* flow path. Apparently some of the IL_STUBs that we
* generate have this property.
*/
int untrLclLo = +INT_MAX;
int untrLclHi = -INT_MAX;
// 'hasUntrLcl' is true if there are any stack locals which must be init'ed.
// Note that they may be tracked, but simply not allocated to a register.
bool hasUntrLcl = false;
int GCrefLo = +INT_MAX;
int GCrefHi = -INT_MAX;
bool hasGCRef = false;
regMaskTP initRegs = RBM_NONE; // Registers which must be init'ed.
regMaskTP initFltRegs = RBM_NONE; // FP registers which must be init'ed.
regMaskTP initDblRegs = RBM_NONE;
unsigned varNum;
LclVarDsc* varDsc;
for (varNum = 0, varDsc = compiler->lvaTable; varNum < compiler->lvaCount; varNum++, varDsc++)
{
if (varDsc->lvIsParam && !varDsc->lvIsRegArg)
{
continue;
}
if (!varDsc->lvIsInReg() && !varDsc->lvOnFrame)
{
noway_assert(varDsc->lvRefCnt == 0);
continue;
}
signed int loOffs = varDsc->lvStkOffs;
signed int hiOffs = varDsc->lvStkOffs + compiler->lvaLclSize(varNum);
/* We need to know the offset range of tracked stack GC refs */
/* We assume that the GC reference can be anywhere in the TYP_STRUCT */
if (compiler->lvaTypeIsGC(varNum) && varDsc->lvTrackedNonStruct() && varDsc->lvOnFrame)
{
// For fields of PROMOTION_TYPE_DEPENDENT type of promotion, they should have been
// taken care of by the parent struct.
if (!compiler->lvaIsFieldOfDependentlyPromotedStruct(varDsc))
{
hasGCRef = true;
if (loOffs < GCrefLo)
{
GCrefLo = loOffs;
}
if (hiOffs > GCrefHi)
{
GCrefHi = hiOffs;
}
}
}
/* For lvMustInit vars, gather pertinent info */
if (!varDsc->lvMustInit)
{
continue;
}
if (varDsc->lvIsInReg())
{
regMaskTP regMask = genRegMask(varDsc->lvRegNum);
if (!varDsc->IsFloatRegType())
{
initRegs |= regMask;
if (varTypeIsMultiReg(varDsc))
{
if (varDsc->lvOtherReg != REG_STK)
{
initRegs |= genRegMask(varDsc->lvOtherReg);
}
else
{
/* Upper DWORD is on the stack, and needs to be inited */
loOffs += sizeof(int);
goto INIT_STK;
}
}
}
#if !FEATURE_STACK_FP_X87
else if (varDsc->TypeGet() == TYP_DOUBLE)
{
initDblRegs |= regMask;
}
else
{
initFltRegs |= regMask;
}
#endif // !FEATURE_STACK_FP_X87
}
else
{
INIT_STK:
hasUntrLcl = true;
if (loOffs < untrLclLo)
{
untrLclLo = loOffs;
}
if (hiOffs > untrLclHi)
{
untrLclHi = hiOffs;
}
}
}
/* Don't forget about spill temps that hold pointers */
if (!TRACK_GC_TEMP_LIFETIMES)
{
assert(compiler->tmpAllFree());
for (TempDsc* tempThis = compiler->tmpListBeg(); tempThis != nullptr; tempThis = compiler->tmpListNxt(tempThis))
{
if (!varTypeIsGC(tempThis->tdTempType()))
{
continue;
}
signed int loOffs = tempThis->tdTempOffs();
signed int hiOffs = loOffs + TARGET_POINTER_SIZE;
// If there is a frame pointer used, due to frame pointer chaining it will point to the stored value of the
// previous frame pointer. Thus, stkOffs can't be zero.
CLANG_FORMAT_COMMENT_ANCHOR;
#if !defined(_TARGET_AMD64_)
// However, on amd64 there is no requirement to chain frame pointers.
noway_assert(!isFramePointerUsed() || loOffs != 0);
#endif // !defined(_TARGET_AMD64_)
// printf(" Untracked tmp at [EBP-%04X]\n", -stkOffs);
hasUntrLcl = true;
if (loOffs < untrLclLo)
{
untrLclLo = loOffs;
}
if (hiOffs > untrLclHi)
{
untrLclHi = hiOffs;
}
}
}
assert((genInitStkLclCnt > 0) == hasUntrLcl);
#ifdef DEBUG
if (verbose)
{
if (genInitStkLclCnt > 0)
{
printf("Found %u lvMustInit stk vars, frame offsets %d through %d\n", genInitStkLclCnt, -untrLclLo,
-untrLclHi);
}
}
#endif
#ifdef _TARGET_ARM_
// On the ARM we will spill any incoming struct args in the first instruction in the prolog
// Ditto for all enregistered user arguments in a varargs method.
// These registers will be available to use for the initReg. We just remove
// all of these registers from the rsCalleeRegArgMaskLiveIn.
//
intRegState.rsCalleeRegArgMaskLiveIn &= ~regSet.rsMaskPreSpillRegs(false);
#endif
/* Choose the register to use for zero initialization */
regNumber initReg = REG_SCRATCH; // Unless we find a better register below
bool initRegZeroed = false;
regMaskTP excludeMask = intRegState.rsCalleeRegArgMaskLiveIn;
regMaskTP tempMask;
// We should not use the special PINVOKE registers as the initReg
// since they are trashed by the jithelper call to setup the PINVOKE frame
if (compiler->info.compCallUnmanaged)
{
excludeMask |= RBM_PINVOKE_FRAME;
assert((!compiler->opts.ShouldUsePInvokeHelpers()) || (compiler->info.compLvFrameListRoot == BAD_VAR_NUM));
if (!compiler->opts.ShouldUsePInvokeHelpers())
{
noway_assert(compiler->info.compLvFrameListRoot < compiler->lvaCount);
excludeMask |= (RBM_PINVOKE_TCB | RBM_PINVOKE_SCRATCH);
// We also must exclude the register used by compLvFrameListRoot when it is enregistered
//
LclVarDsc* varDsc = &compiler->lvaTable[compiler->info.compLvFrameListRoot];
if (varDsc->lvRegister)
{
excludeMask |= genRegMask(varDsc->lvRegNum);
}
}
}
#ifdef _TARGET_ARM_
// If we have a variable sized frame (compLocallocUsed is true)
// then using REG_SAVED_LOCALLOC_SP in the prolog is not allowed
if (compiler->compLocallocUsed)
{
excludeMask |= RBM_SAVED_LOCALLOC_SP;
}
#endif // _TARGET_ARM_
#if defined(_TARGET_XARCH_)
if (compiler->compLclFrameSize >= compiler->getVeryLargeFrameSize())
{
// We currently must use REG_EAX on x86 here
// because the loop's backwards branch depends upon the size of EAX encodings
assert(initReg == REG_EAX);
}
else
#endif // _TARGET_XARCH_
{
tempMask = initRegs & ~excludeMask & ~regSet.rsMaskResvd;
if (tempMask != RBM_NONE)
{
// We will use one of the registers that we were planning to zero init anyway.
// We pick the lowest register number.
tempMask = genFindLowestBit(tempMask);
initReg = genRegNumFromMask(tempMask);
}
// Next we prefer to use one of the unused argument registers.
// If they aren't available we use one of the caller-saved integer registers.
else
{
tempMask = regSet.rsGetModifiedRegsMask() & RBM_ALLINT & ~excludeMask & ~regSet.rsMaskResvd;
if (tempMask != RBM_NONE)
{
// We pick the lowest register number
tempMask = genFindLowestBit(tempMask);
initReg = genRegNumFromMask(tempMask);
}
}
}
noway_assert(!compiler->info.compCallUnmanaged || (initReg != REG_PINVOKE_FRAME));
#if defined(_TARGET_AMD64_)
// If we are a varargs call, in order to set up the arguments correctly this
// must be done in a 2 step process. As per the x64 ABI:
// a) The caller sets up the argument shadow space (just before the return
// address, 4 pointer sized slots).
// b) The callee is responsible to home the arguments on the shadow space
// provided by the caller.
// This way, the varargs iterator will be able to retrieve the
// call arguments properly since both the arg regs and the stack allocated
// args will be contiguous.
if (compiler->info.compIsVarArgs)
{
getEmitter()->spillIntArgRegsToShadowSlots();
}
#endif // _TARGET_AMD64_
#ifdef _TARGET_ARM_
/*-------------------------------------------------------------------------
*
* Now start emitting the part of the prolog which sets up the frame
*/
if (regSet.rsMaskPreSpillRegs(true) != RBM_NONE)
{
inst_IV(INS_push, (int)regSet.rsMaskPreSpillRegs(true));
compiler->unwindPushMaskInt(regSet.rsMaskPreSpillRegs(true));
}
#endif // _TARGET_ARM_
#ifdef _TARGET_XARCH_
if (doubleAlignOrFramePointerUsed())
{
inst_RV(INS_push, REG_FPBASE, TYP_REF);
compiler->unwindPush(REG_FPBASE);
psiAdjustStackLevel(REGSIZE_BYTES);
#ifndef _TARGET_AMD64_ // On AMD64, establish the frame pointer after the "sub rsp"
genEstablishFramePointer(0, /*reportUnwindData*/ true);
#endif // !_TARGET_AMD64_
#if DOUBLE_ALIGN
if (compiler->genDoubleAlign())
{
noway_assert(isFramePointerUsed() == false);
noway_assert(!regSet.rsRegsModified(RBM_FPBASE)); /* Trashing EBP is out. */
inst_RV_IV(INS_AND, REG_SPBASE, -8, EA_PTRSIZE);
}
#endif // DOUBLE_ALIGN
}
#endif // _TARGET_XARCH_
#ifdef _TARGET_ARM64_
// Probe large frames now, if necessary, since genPushCalleeSavedRegisters() will allocate the frame.
genAllocLclFrame(compiler->compLclFrameSize, initReg, &initRegZeroed, intRegState.rsCalleeRegArgMaskLiveIn);
genPushCalleeSavedRegisters(initReg, &initRegZeroed);
#else // !_TARGET_ARM64_
genPushCalleeSavedRegisters();
#endif // !_TARGET_ARM64_
#ifdef _TARGET_ARM_
bool needToEstablishFP = false;
int afterLclFrameSPtoFPdelta = 0;
if (doubleAlignOrFramePointerUsed())
{
needToEstablishFP = true;
// If the local frame is small enough, we establish the frame pointer after the OS-reported prolog.
// This makes the prolog and epilog match, giving us smaller unwind data. If the frame size is
// too big, we go ahead and do it here.
int SPtoFPdelta = (compiler->compCalleeRegsPushed - 2) * REGSIZE_BYTES;
afterLclFrameSPtoFPdelta = SPtoFPdelta + compiler->compLclFrameSize;
if (!arm_Valid_Imm_For_Add_SP(afterLclFrameSPtoFPdelta))
{
// Oh well, it looks too big. Go ahead and establish the frame pointer here.
genEstablishFramePointer(SPtoFPdelta, /*reportUnwindData*/ true);
needToEstablishFP = false;
}
}
#endif // _TARGET_ARM_
//-------------------------------------------------------------------------
//
// Subtract the local frame size from SP.
//
//-------------------------------------------------------------------------
CLANG_FORMAT_COMMENT_ANCHOR;
#ifndef _TARGET_ARM64_
regMaskTP maskStackAlloc = RBM_NONE;
#ifdef _TARGET_ARM_
maskStackAlloc =
genStackAllocRegisterMask(compiler->compLclFrameSize, regSet.rsGetModifiedRegsMask() & RBM_FLT_CALLEE_SAVED);
#endif // _TARGET_ARM_
if (maskStackAlloc == RBM_NONE)
{
genAllocLclFrame(compiler->compLclFrameSize, initReg, &initRegZeroed, intRegState.rsCalleeRegArgMaskLiveIn);
}
#endif // !_TARGET_ARM64_
//-------------------------------------------------------------------------
#ifdef _TARGET_ARM_
if (compiler->compLocallocUsed)
{
getEmitter()->emitIns_R_R(INS_mov, EA_4BYTE, REG_SAVED_LOCALLOC_SP, REG_SPBASE);
regTracker.rsTrackRegTrash(REG_SAVED_LOCALLOC_SP);
compiler->unwindSetFrameReg(REG_SAVED_LOCALLOC_SP, 0);
}
#endif // _TARGET_ARMARCH_
#if defined(_TARGET_XARCH_) && !FEATURE_STACK_FP_X87
// Preserve callee saved float regs to stack.
genPreserveCalleeSavedFltRegs(compiler->compLclFrameSize);
#endif // defined(_TARGET_XARCH_) && !FEATURE_STACK_FP_X87
#ifdef _TARGET_AMD64_
// Establish the AMD64 frame pointer after the OS-reported prolog.
if (doubleAlignOrFramePointerUsed())
{
bool reportUnwindData = compiler->compLocallocUsed || compiler->opts.compDbgEnC;
genEstablishFramePointer(compiler->codeGen->genSPtoFPdelta(), reportUnwindData);
}
#endif //_TARGET_AMD64_
//-------------------------------------------------------------------------
//
// This is the end of the OS-reported prolog for purposes of unwinding
//
//-------------------------------------------------------------------------
#ifdef _TARGET_ARM_
if (needToEstablishFP)
{
genEstablishFramePointer(afterLclFrameSPtoFPdelta, /*reportUnwindData*/ false);
needToEstablishFP = false; // nobody uses this later, but set it anyway, just to be explicit
}
#endif // _TARGET_ARM_
if (compiler->info.compPublishStubParam)
{
#if CPU_LOAD_STORE_ARCH
getEmitter()->emitIns_R_R_I(ins_Store(TYP_I_IMPL), EA_PTRSIZE, REG_SECRET_STUB_PARAM, genFramePointerReg(),
compiler->lvaTable[compiler->lvaStubArgumentVar].lvStkOffs);
#else
// mov [lvaStubArgumentVar], EAX
getEmitter()->emitIns_AR_R(ins_Store(TYP_I_IMPL), EA_PTRSIZE, REG_SECRET_STUB_PARAM, genFramePointerReg(),
compiler->lvaTable[compiler->lvaStubArgumentVar].lvStkOffs);
#endif
assert(intRegState.rsCalleeRegArgMaskLiveIn & RBM_SECRET_STUB_PARAM);
// It's no longer live; clear it out so it can be used after this in the prolog
intRegState.rsCalleeRegArgMaskLiveIn &= ~RBM_SECRET_STUB_PARAM;
}
#if STACK_PROBES
// We could probably fold this into the loop for the FrameSize >= 0x3000 probing
// when creating the stack frame. Don't think it's worth it, though.
if (genNeedPrologStackProbe)
{
//
// Can't have a call until we have enough padding for rejit
//
genPrologPadForReJit();
noway_assert(compiler->opts.compNeedStackProbes);
genGenerateStackProbe();
compiler->compStackProbePrologDone = true;
}
#endif // STACK_PROBES
//
// Zero out the frame as needed
//
genZeroInitFrame(untrLclHi, untrLclLo, initReg, &initRegZeroed);
#if FEATURE_EH_FUNCLETS
genSetPSPSym(initReg, &initRegZeroed);
#else // !FEATURE_EH_FUNCLETS
// when compInitMem is true the genZeroInitFrame will zero out the shadow SP slots
if (compiler->ehNeedsShadowSPslots() && !compiler->info.compInitMem)
{
// The last slot is reserved for ICodeManager::FixContext(ppEndRegion)
unsigned filterEndOffsetSlotOffs = compiler->lvaLclSize(compiler->lvaShadowSPslotsVar) - (sizeof(void*));
// Zero out the slot for nesting level 0
unsigned firstSlotOffs = filterEndOffsetSlotOffs - (sizeof(void*));
if (!initRegZeroed)
{
instGen_Set_Reg_To_Zero(EA_PTRSIZE, initReg);
initRegZeroed = true;
}
getEmitter()->emitIns_S_R(ins_Store(TYP_I_IMPL), EA_PTRSIZE, initReg, compiler->lvaShadowSPslotsVar,
firstSlotOffs);
}
#endif // !FEATURE_EH_FUNCLETS
genReportGenericContextArg(initReg, &initRegZeroed);
#if defined(LEGACY_BACKEND) // in RyuJIT backend this has already been expanded into trees
if (compiler->info.compCallUnmanaged && !compiler->opts.ShouldUsePInvokeHelpers())
{
getEmitter()->emitDisableRandomNops();
initRegs = genPInvokeMethodProlog(initRegs);
getEmitter()->emitEnableRandomNops();
}
#endif // defined(LEGACY_BACKEND)
// The local variable representing the security object must be on the stack frame
// and must be 0 initialized.
noway_assert((compiler->lvaSecurityObject == BAD_VAR_NUM) ||
(compiler->lvaTable[compiler->lvaSecurityObject].lvOnFrame &&
compiler->lvaTable[compiler->lvaSecurityObject].lvMustInit));
// Initialize any "hidden" slots/locals
if (compiler->lvaLocAllocSPvar != BAD_VAR_NUM)
{
#ifdef _TARGET_ARM64_
getEmitter()->emitIns_S_R(ins_Store(TYP_I_IMPL), EA_PTRSIZE, REG_FPBASE, compiler->lvaLocAllocSPvar, 0);
#else
getEmitter()->emitIns_S_R(ins_Store(TYP_I_IMPL), EA_PTRSIZE, REG_SPBASE, compiler->lvaLocAllocSPvar, 0);
#endif
}
// Set up the GS security cookie
genSetGSSecurityCookie(initReg, &initRegZeroed);
#ifdef PROFILING_SUPPORTED
// Insert a function entry callback for profiling, if requested.
genProfilingEnterCallback(initReg, &initRegZeroed);
#endif // PROFILING_SUPPORTED
if (!genInterruptible)
{
/*-------------------------------------------------------------------------
*
* The 'real' prolog ends here for non-interruptible methods.
* For fully-interruptible methods, we extend the prolog so that
* we do not need to track GC inforation while shuffling the
* arguments.
*
* Make sure there's enough padding for ReJIT.
*
*/
genPrologPadForReJit();
getEmitter()->emitMarkPrologEnd();
}
#if defined(FEATURE_UNIX_AMD64_STRUCT_PASSING) && defined(FEATURE_SIMD)
// The unused bits of Vector3 arguments must be cleared
// since native compiler doesn't initize the upper bits to zeros.
//
// TODO-Cleanup: This logic can be implemented in
// genFnPrologCalleeRegArgs() for argument registers and
// genEnregisterIncomingStackArgs() for stack arguments.
genClearStackVec3ArgUpperBits();
#endif // FEATURE_UNIX_AMD64_STRUCT_PASSING && FEATURE_SIMD
/*-----------------------------------------------------------------------------
* Take care of register arguments first
*/
RegState* regState;
#ifndef LEGACY_BACKEND
// Update the arg initial register locations.
compiler->lvaUpdateArgsWithInitialReg();
#endif // !LEGACY_BACKEND
FOREACH_REGISTER_FILE(regState)
{
if (regState->rsCalleeRegArgMaskLiveIn)
{
// If we need an extra register to shuffle around the incoming registers
// we will use xtraReg (initReg) and set the xtraRegClobbered flag,
// if we don't need to use the xtraReg then this flag will stay false
//
regNumber xtraReg;
bool xtraRegClobbered = false;
if (genRegMask(initReg) & RBM_ARG_REGS)
{
xtraReg = initReg;
}
else
{
xtraReg = REG_SCRATCH;
initRegZeroed = false;
}
genFnPrologCalleeRegArgs(xtraReg, &xtraRegClobbered, regState);
if (xtraRegClobbered)
{
initRegZeroed = false;
}
}
}
// Home the incoming arguments
genEnregisterIncomingStackArgs();
/* Initialize any must-init registers variables now */
if (initRegs)
{
regMaskTP regMask = 0x1;
for (regNumber reg = REG_INT_FIRST; reg <= REG_INT_LAST; reg = REG_NEXT(reg), regMask <<= 1)
{
if (regMask & initRegs)
{
// Check if we have already zeroed this register
if ((reg == initReg) && initRegZeroed)
{
continue;
}
else
{
instGen_Set_Reg_To_Zero(EA_PTRSIZE, reg);
if (reg == initReg)
{
initRegZeroed = true;
}
}
}
}
}
#if !FEATURE_STACK_FP_X87
if (initFltRegs | initDblRegs)
{
// If initReg is not in initRegs then we will use REG_SCRATCH
if ((genRegMask(initReg) & initRegs) == 0)
{
initReg = REG_SCRATCH;
initRegZeroed = false;
}
#ifdef _TARGET_ARM_
// This is needed only for Arm since it can use a zero initialized int register
// to initialize vfp registers.
if (!initRegZeroed)
{
instGen_Set_Reg_To_Zero(EA_PTRSIZE, initReg);
initRegZeroed = true;
}
#endif // _TARGET_ARM_
genZeroInitFltRegs(initFltRegs, initDblRegs, initReg);
}
#endif // !FEATURE_STACK_FP_X87
#if FEATURE_STACK_FP_X87
//
// Here is where we load the enregistered floating point arguments
// and locals onto the x86-FPU.
//
genCodeForPrologStackFP();
#endif
//-----------------------------------------------------------------------------
//
// Increase the prolog size here only if fully interruptible.
// And again make sure it's big enough for ReJIT
//
if (genInterruptible)
{
genPrologPadForReJit();
getEmitter()->emitMarkPrologEnd();
}
if (compiler->opts.compScopeInfo && (compiler->info.compVarScopesCount > 0))
{
psiEndProlog();
}
if (hasGCRef)
{
getEmitter()->emitSetFrameRangeGCRs(GCrefLo, GCrefHi);
}
else
{
noway_assert(GCrefLo == +INT_MAX);
noway_assert(GCrefHi == -INT_MAX);
}
#ifdef DEBUG
if (compiler->opts.dspCode)
{
printf("\n");
}
#endif
#ifdef _TARGET_X86_
// On non-x86 the VARARG cookie does not need any special treatment.
// Load up the VARARG argument pointer register so it doesn't get clobbered.
// only do this if we actually access any statically declared args
// (our argument pointer register has a refcount > 0).
unsigned argsStartVar = compiler->lvaVarargsBaseOfStkArgs;
if (compiler->info.compIsVarArgs && compiler->lvaTable[argsStartVar].lvRefCnt > 0)
{
varDsc = &compiler->lvaTable[argsStartVar];
noway_assert(compiler->info.compArgsCount > 0);
// MOV EAX, <VARARGS HANDLE>
getEmitter()->emitIns_R_S(ins_Load(TYP_I_IMPL), EA_PTRSIZE, REG_EAX, compiler->info.compArgsCount - 1, 0);
regTracker.rsTrackRegTrash(REG_EAX);
// MOV EAX, [EAX]
getEmitter()->emitIns_R_AR(ins_Load(TYP_I_IMPL), EA_PTRSIZE, REG_EAX, REG_EAX, 0);
// EDX might actually be holding something here. So make sure to only use EAX for this code
// sequence.
LclVarDsc* lastArg = &compiler->lvaTable[compiler->info.compArgsCount - 1];
noway_assert(!lastArg->lvRegister);
signed offset = lastArg->lvStkOffs;
assert(offset != BAD_STK_OFFS);
noway_assert(lastArg->lvFramePointerBased);
// LEA EAX, &<VARARGS HANDLE> + EAX
getEmitter()->emitIns_R_ARR(INS_lea, EA_PTRSIZE, REG_EAX, genFramePointerReg(), REG_EAX, offset);
if (varDsc->lvIsInReg())
{
if (varDsc->lvRegNum != REG_EAX)
{
getEmitter()->emitIns_R_R(INS_mov, EA_PTRSIZE, varDsc->lvRegNum, REG_EAX);
regTracker.rsTrackRegTrash(varDsc->lvRegNum);
}
}
else
{
getEmitter()->emitIns_S_R(ins_Store(TYP_I_IMPL), EA_PTRSIZE, REG_EAX, argsStartVar, 0);
}
}
#endif // _TARGET_X86_
#ifdef DEBUG
if (compiler->opts.compStackCheckOnRet)
{
noway_assert(compiler->lvaReturnEspCheck != 0xCCCCCCCC &&
compiler->lvaTable[compiler->lvaReturnEspCheck].lvDoNotEnregister &&
compiler->lvaTable[compiler->lvaReturnEspCheck].lvOnFrame);
getEmitter()->emitIns_S_R(ins_Store(TYP_I_IMPL), EA_PTRSIZE, REG_SPBASE, compiler->lvaReturnEspCheck, 0);
}
#endif
getEmitter()->emitEndProlog();
compiler->unwindEndProlog();
noway_assert(getEmitter()->emitMaxTmpSize == compiler->tmpSize);
}
#ifdef _PREFAST_
#pragma warning(pop)
#endif
/*****************************************************************************
*
* Generates code for a function epilog.
*
* Please consult the "debugger team notification" comment in genFnProlog().
*/
#if defined(_TARGET_ARMARCH_)
void CodeGen::genFnEpilog(BasicBlock* block)
{
#ifdef DEBUG
if (verbose)
printf("*************** In genFnEpilog()\n");
#endif // DEBUG
ScopedSetVariable<bool> _setGeneratingEpilog(&compiler->compGeneratingEpilog, true);
VarSetOps::Assign(compiler, gcInfo.gcVarPtrSetCur, getEmitter()->emitInitGCrefVars);
gcInfo.gcRegGCrefSetCur = getEmitter()->emitInitGCrefRegs;
gcInfo.gcRegByrefSetCur = getEmitter()->emitInitByrefRegs;
#ifdef DEBUG
if (compiler->opts.dspCode)
printf("\n__epilog:\n");
if (verbose)
{
printf("gcVarPtrSetCur=%s ", VarSetOps::ToString(compiler, gcInfo.gcVarPtrSetCur));
dumpConvertedVarSet(compiler, gcInfo.gcVarPtrSetCur);
printf(", gcRegGCrefSetCur=");
printRegMaskInt(gcInfo.gcRegGCrefSetCur);
getEmitter()->emitDispRegSet(gcInfo.gcRegGCrefSetCur);
printf(", gcRegByrefSetCur=");
printRegMaskInt(gcInfo.gcRegByrefSetCur);
getEmitter()->emitDispRegSet(gcInfo.gcRegByrefSetCur);
printf("\n");
}
#endif // DEBUG
bool jmpEpilog = ((block->bbFlags & BBF_HAS_JMP) != 0);
#ifdef _TARGET_ARM_
// We delay starting the unwind codes until we have an instruction which we know
// needs an unwind code. In particular, for large stack frames in methods without
// localloc, the sequence might look something like this:
// movw r3, 0x38e0
// add sp, r3
// pop {r4,r5,r6,r10,r11,pc}
// In this case, the "movw" should not be part of the unwind codes, since it will
// be a NOP, and it is a waste to start with a NOP. Note that calling unwindBegEpilog()
// also sets the current location as the beginning offset of the epilog, so every
// instruction afterwards needs an unwind code. In the case above, if you call
// unwindBegEpilog() before the "movw", then you must generate a NOP for the "movw".
bool unwindStarted = false;
// Tear down the stack frame
if (compiler->compLocallocUsed)
{
if (!unwindStarted)
{
compiler->unwindBegEpilog();
unwindStarted = true;
}
// mov R9 into SP
inst_RV_RV(INS_mov, REG_SP, REG_SAVED_LOCALLOC_SP);
compiler->unwindSetFrameReg(REG_SAVED_LOCALLOC_SP, 0);
}
if (jmpEpilog ||
genStackAllocRegisterMask(compiler->compLclFrameSize, regSet.rsGetModifiedRegsMask() & RBM_FLT_CALLEE_SAVED) ==
RBM_NONE)
{
genFreeLclFrame(compiler->compLclFrameSize, &unwindStarted, jmpEpilog);
}
if (!unwindStarted)
{
// If we haven't generated anything yet, we're certainly going to generate a "pop" next.
compiler->unwindBegEpilog();
unwindStarted = true;
}
genPopCalleeSavedRegisters(jmpEpilog);
if (regSet.rsMaskPreSpillRegs(true) != RBM_NONE)
{
// We better not have used a pop PC to return otherwise this will be unreachable code
noway_assert(!genUsedPopToReturn);
int preSpillRegArgSize = genCountBits(regSet.rsMaskPreSpillRegs(true)) * REGSIZE_BYTES;
inst_RV_IV(INS_add, REG_SPBASE, preSpillRegArgSize, EA_PTRSIZE);
compiler->unwindAllocStack(preSpillRegArgSize);
}
#else // _TARGET_ARM64_
compiler->unwindBegEpilog();
genPopCalleeSavedRegistersAndFreeLclFrame(jmpEpilog);
#endif // _TARGET_ARM64_
if (jmpEpilog)
{
noway_assert(block->bbJumpKind == BBJ_RETURN);
noway_assert(block->bbTreeList != nullptr);
#ifdef _TARGET_ARM_
// We better not have used a pop PC to return otherwise this will be unreachable code
noway_assert(!genUsedPopToReturn);
#endif // _TARGET_ARM_
/* figure out what jump we have */
GenTree* jmpNode = block->lastNode();
#if !FEATURE_FASTTAILCALL
noway_assert(jmpNode->gtOper == GT_JMP);
#else // FEATURE_FASTTAILCALL
// armarch
// If jmpNode is GT_JMP then gtNext must be null.
// If jmpNode is a fast tail call, gtNext need not be null since it could have embedded stmts.
noway_assert((jmpNode->gtOper != GT_JMP) || (jmpNode->gtNext == nullptr));
// Could either be a "jmp method" or "fast tail call" implemented as epilog+jmp
noway_assert((jmpNode->gtOper == GT_JMP) ||
((jmpNode->gtOper == GT_CALL) && jmpNode->AsCall()->IsFastTailCall()));
// The next block is associated with this "if" stmt
if (jmpNode->gtOper == GT_JMP)
#endif // FEATURE_FASTTAILCALL
{
// Simply emit a jump to the methodHnd. This is similar to a call so we can use
// the same descriptor with some minor adjustments.
CORINFO_METHOD_HANDLE methHnd = (CORINFO_METHOD_HANDLE)jmpNode->gtVal.gtVal1;
CORINFO_CONST_LOOKUP addrInfo;
compiler->info.compCompHnd->getFunctionEntryPoint(methHnd, &addrInfo);
#ifdef _TARGET_ARM_
emitter::EmitCallType callType;
void* addr;
regNumber indCallReg;
switch (addrInfo.accessType)
{
case IAT_VALUE:
if (arm_Valid_Imm_For_BL((ssize_t)addrInfo.addr))
{
// Simple direct call
callType = emitter::EC_FUNC_TOKEN;
addr = addrInfo.addr;
indCallReg = REG_NA;
break;
}
// otherwise the target address doesn't fit in an immediate
// so we have to burn a register...
__fallthrough;
case IAT_PVALUE:
// Load the address into a register, load indirect and call through a register
// We have to use R12 since we assume the argument registers are in use
callType = emitter::EC_INDIR_R;
indCallReg = REG_R12;
addr = NULL;
instGen_Set_Reg_To_Imm(EA_HANDLE_CNS_RELOC, indCallReg, (ssize_t)addrInfo.addr);
if (addrInfo.accessType == IAT_PVALUE)
{
getEmitter()->emitIns_R_R_I(INS_ldr, EA_PTRSIZE, indCallReg, indCallReg, 0);
regTracker.rsTrackRegTrash(indCallReg);
}
break;
case IAT_PPVALUE:
default:
NO_WAY("Unsupported JMP indirection");
}
/* Simply emit a jump to the methodHnd. This is similar to a call so we can use
* the same descriptor with some minor adjustments.
*/
// clang-format off
getEmitter()->emitIns_Call(callType,
methHnd,
INDEBUG_LDISASM_COMMA(nullptr)
addr,
0, // argSize
EA_UNKNOWN, // retSize
gcInfo.gcVarPtrSetCur,
gcInfo.gcRegGCrefSetCur,
gcInfo.gcRegByrefSetCur,
BAD_IL_OFFSET, // IL offset
indCallReg, // ireg
REG_NA, // xreg
0, // xmul
0, // disp
true); // isJump
// clang-format on
CLANG_FORMAT_COMMENT_ANCHOR;
#else // _TARGET_ARM64_
if (addrInfo.accessType != IAT_VALUE)
{
NYI_ARM64("Unsupported JMP indirection");
}
emitter::EmitCallType callType = emitter::EC_FUNC_TOKEN;
// Simply emit a jump to the methodHnd. This is similar to a call so we can use
// the same descriptor with some minor adjustments.
// clang-format off
getEmitter()->emitIns_Call(callType,
methHnd,
INDEBUG_LDISASM_COMMA(nullptr)
addrInfo.addr,
0, // argSize
EA_UNKNOWN, // retSize
EA_UNKNOWN, // secondRetSize
gcInfo.gcVarPtrSetCur,
gcInfo.gcRegGCrefSetCur,
gcInfo.gcRegByrefSetCur,
BAD_IL_OFFSET, REG_NA, REG_NA, 0, 0, /* iloffset, ireg, xreg, xmul, disp */
true); /* isJump */
// clang-format on
CLANG_FORMAT_COMMENT_ANCHOR;
#endif // _TARGET_ARM64_
}
#if FEATURE_FASTTAILCALL
else
{
// Fast tail call.
// Call target = REG_FASTTAILCALL_TARGET
// https://github.com/dotnet/coreclr/issues/4827
// Do we need a special encoding for stack walker like rex.w prefix for x64?
getEmitter()->emitIns_R(INS_br, emitTypeSize(TYP_I_IMPL), REG_FASTTAILCALL_TARGET);
}
#endif // FEATURE_FASTTAILCALL
}
else
{
#ifdef _TARGET_ARM_
if (!genUsedPopToReturn)
{
// If we did not use a pop to return, then we did a "pop {..., lr}" instead of "pop {..., pc}",
// so we need a "bx lr" instruction to return from the function.
inst_RV(INS_bx, REG_LR, TYP_I_IMPL);
compiler->unwindBranch16();
}
#else // _TARGET_ARM64_
inst_RV(INS_ret, REG_LR, TYP_I_IMPL);
compiler->unwindReturn(REG_LR);
#endif // _TARGET_ARM64_
}
compiler->unwindEndEpilog();
}
#elif defined(_TARGET_XARCH_)
void CodeGen::genFnEpilog(BasicBlock* block)
{
#ifdef DEBUG
if (verbose)
{
printf("*************** In genFnEpilog()\n");
}
#endif
ScopedSetVariable<bool> _setGeneratingEpilog(&compiler->compGeneratingEpilog, true);
VarSetOps::Assign(compiler, gcInfo.gcVarPtrSetCur, getEmitter()->emitInitGCrefVars);
gcInfo.gcRegGCrefSetCur = getEmitter()->emitInitGCrefRegs;
gcInfo.gcRegByrefSetCur = getEmitter()->emitInitByrefRegs;
noway_assert(!compiler->opts.MinOpts() || isFramePointerUsed()); // FPO not allowed with minOpts
#ifdef DEBUG
genInterruptibleUsed = true;
#endif
bool jmpEpilog = ((block->bbFlags & BBF_HAS_JMP) != 0);
#ifdef DEBUG
if (compiler->opts.dspCode)
{
printf("\n__epilog:\n");
}
if (verbose)
{
printf("gcVarPtrSetCur=%s ", VarSetOps::ToString(compiler, gcInfo.gcVarPtrSetCur));
dumpConvertedVarSet(compiler, gcInfo.gcVarPtrSetCur);
printf(", gcRegGCrefSetCur=");
printRegMaskInt(gcInfo.gcRegGCrefSetCur);
getEmitter()->emitDispRegSet(gcInfo.gcRegGCrefSetCur);
printf(", gcRegByrefSetCur=");
printRegMaskInt(gcInfo.gcRegByrefSetCur);
getEmitter()->emitDispRegSet(gcInfo.gcRegByrefSetCur);
printf("\n");
}
#endif
#if !FEATURE_STACK_FP_X87
// Restore float registers that were saved to stack before SP is modified.
genRestoreCalleeSavedFltRegs(compiler->compLclFrameSize);
#endif // !FEATURE_STACK_FP_X87
#ifdef JIT32_GCENCODER
// When using the JIT32 GC encoder, we do not start the OS-reported portion of the epilog until after
// the above call to `genRestoreCalleeSavedFltRegs` because that function
// a) does not actually restore any registers: there are none when targeting the Windows x86 ABI,
// which is the only target that uses the JIT32 GC encoder
// b) may issue a `vzeroupper` instruction to eliminate AVX -> SSE transition penalties.
// Because the `vzeroupper` instruction is not recognized by the VM's unwinder and there are no
// callee-save FP restores that the unwinder would need to see, we can avoid the need to change the
// unwinder (and break binary compat with older versions of the runtime) by starting the epilog
// after any `vzeroupper` instruction has been emitted. If either of the above conditions changes,
// we will need to rethink this.
getEmitter()->emitStartEpilog();
#endif
/* Compute the size in bytes we've pushed/popped */
if (!doubleAlignOrFramePointerUsed())
{
// We have an ESP frame */
noway_assert(compiler->compLocallocUsed == false); // Only used with frame-pointer
/* Get rid of our local variables */
if (compiler->compLclFrameSize)
{
#ifdef _TARGET_X86_
/* Add 'compiler->compLclFrameSize' to ESP */
/* Use pop ECX to increment ESP by 4, unless compiler->compJmpOpUsed is true */
if ((compiler->compLclFrameSize == sizeof(void*)) && !compiler->compJmpOpUsed)
{
inst_RV(INS_pop, REG_ECX, TYP_I_IMPL);
regTracker.rsTrackRegTrash(REG_ECX);
}
else
#endif // _TARGET_X86
{
/* Add 'compiler->compLclFrameSize' to ESP */
/* Generate "add esp, <stack-size>" */
inst_RV_IV(INS_add, REG_SPBASE, compiler->compLclFrameSize, EA_PTRSIZE);
}
}
genPopCalleeSavedRegisters();
}
else
{
noway_assert(doubleAlignOrFramePointerUsed());
/* Tear down the stack frame */
bool needMovEspEbp = false;
#if DOUBLE_ALIGN
if (compiler->genDoubleAlign())
{
//
// add esp, compLclFrameSize
//
// We need not do anything (except the "mov esp, ebp") if
// compiler->compCalleeRegsPushed==0. However, this is unlikely, and it
// also complicates the code manager. Hence, we ignore that case.
noway_assert(compiler->compLclFrameSize != 0);
inst_RV_IV(INS_add, REG_SPBASE, compiler->compLclFrameSize, EA_PTRSIZE);
needMovEspEbp = true;
}
else
#endif // DOUBLE_ALIGN
{
bool needLea = false;
if (compiler->compLocallocUsed)
{
// ESP may be variable if a localloc was actually executed. Reset it.
// lea esp, [ebp - compiler->compCalleeRegsPushed * REGSIZE_BYTES]
needLea = true;
}
else if (!regSet.rsRegsModified(RBM_CALLEE_SAVED))
{
if (compiler->compLclFrameSize != 0)
{
#ifdef _TARGET_AMD64_
// AMD64 can't use "mov esp, ebp", according to the ABI specification describing epilogs. So,
// do an LEA to "pop off" the frame allocation.
needLea = true;
#else // !_TARGET_AMD64_
// We will just generate "mov esp, ebp" and be done with it.
needMovEspEbp = true;
#endif // !_TARGET_AMD64_
}
}
else if (compiler->compLclFrameSize == 0)
{
// do nothing before popping the callee-saved registers
}
#ifdef _TARGET_X86_
else if (compiler->compLclFrameSize == REGSIZE_BYTES)
{
// "pop ecx" will make ESP point to the callee-saved registers
inst_RV(INS_pop, REG_ECX, TYP_I_IMPL);
regTracker.rsTrackRegTrash(REG_ECX);
}
#endif // _TARGET_X86
else
{
// We need to make ESP point to the callee-saved registers
needLea = true;
}
if (needLea)
{
int offset;
#ifdef _TARGET_AMD64_
// lea esp, [ebp + compiler->compLclFrameSize - genSPtoFPdelta]
//
// Case 1: localloc not used.
// genSPToFPDelta = compiler->compCalleeRegsPushed * REGSIZE_BYTES + compiler->compLclFrameSize
// offset = compiler->compCalleeRegsPushed * REGSIZE_BYTES;
// The amount to be subtracted from RBP to point at callee saved int regs.
//
// Case 2: localloc used
// genSPToFPDelta = Min(240, (int)compiler->lvaOutgoingArgSpaceSize)
// Offset = Amount to be aded to RBP to point at callee saved int regs.
offset = genSPtoFPdelta() - compiler->compLclFrameSize;
// Offset should fit within a byte if localloc is not used.
if (!compiler->compLocallocUsed)
{
noway_assert(offset < UCHAR_MAX);
}
#else
// lea esp, [ebp - compiler->compCalleeRegsPushed * REGSIZE_BYTES]
offset = compiler->compCalleeRegsPushed * REGSIZE_BYTES;
noway_assert(offset < UCHAR_MAX); // the offset fits in a byte
#endif
getEmitter()->emitIns_R_AR(INS_lea, EA_PTRSIZE, REG_SPBASE, REG_FPBASE, -offset);
}
}
//
// Pop the callee-saved registers (if any)
//
genPopCalleeSavedRegisters();
#ifdef _TARGET_AMD64_
assert(!needMovEspEbp); // "mov esp, ebp" is not allowed in AMD64 epilogs
#else // !_TARGET_AMD64_
if (needMovEspEbp)
{
// mov esp, ebp
inst_RV_RV(INS_mov, REG_SPBASE, REG_FPBASE);
}
#endif // !_TARGET_AMD64_
// pop ebp
inst_RV(INS_pop, REG_EBP, TYP_I_IMPL);
}
getEmitter()->emitStartExitSeq(); // Mark the start of the "return" sequence
/* Check if this a special return block i.e.
* CEE_JMP instruction */
if (jmpEpilog)
{
noway_assert(block->bbJumpKind == BBJ_RETURN);
noway_assert(block->bbTreeList);
// figure out what jump we have
GenTree* jmpNode = block->lastNode();
#if !FEATURE_FASTTAILCALL
// x86
noway_assert(jmpNode->gtOper == GT_JMP);
#else
// amd64
// If jmpNode is GT_JMP then gtNext must be null.
// If jmpNode is a fast tail call, gtNext need not be null since it could have embedded stmts.
noway_assert((jmpNode->gtOper != GT_JMP) || (jmpNode->gtNext == nullptr));
// Could either be a "jmp method" or "fast tail call" implemented as epilog+jmp
noway_assert((jmpNode->gtOper == GT_JMP) ||
((jmpNode->gtOper == GT_CALL) && jmpNode->AsCall()->IsFastTailCall()));
// The next block is associated with this "if" stmt
if (jmpNode->gtOper == GT_JMP)
#endif
{
// Simply emit a jump to the methodHnd. This is similar to a call so we can use
// the same descriptor with some minor adjustments.
CORINFO_METHOD_HANDLE methHnd = (CORINFO_METHOD_HANDLE)jmpNode->gtVal.gtVal1;
CORINFO_CONST_LOOKUP addrInfo;
compiler->info.compCompHnd->getFunctionEntryPoint(methHnd, &addrInfo);
if (addrInfo.accessType != IAT_VALUE && addrInfo.accessType != IAT_PVALUE)
{
NO_WAY("Unsupported JMP indirection");
}
const emitter::EmitCallType callType =
(addrInfo.accessType == IAT_VALUE) ? emitter::EC_FUNC_TOKEN : emitter::EC_FUNC_TOKEN_INDIR;
// Simply emit a jump to the methodHnd. This is similar to a call so we can use
// the same descriptor with some minor adjustments.
// clang-format off
getEmitter()->emitIns_Call(callType,
methHnd,
INDEBUG_LDISASM_COMMA(nullptr)
addrInfo.addr,
0, // argSize
EA_UNKNOWN // retSize
MULTIREG_HAS_SECOND_GC_RET_ONLY_ARG(EA_UNKNOWN), // secondRetSize
gcInfo.gcVarPtrSetCur,
gcInfo.gcRegGCrefSetCur,
gcInfo.gcRegByrefSetCur,
BAD_IL_OFFSET, REG_NA, REG_NA, 0, 0, /* iloffset, ireg, xreg, xmul, disp */
true); /* isJump */
// clang-format on
}
#if FEATURE_FASTTAILCALL
else
{
#ifdef _TARGET_AMD64_
// Fast tail call.
// Call target = RAX.
// Stack walker requires that a register indirect tail call be rex.w prefixed.
getEmitter()->emitIns_R(INS_rex_jmp, emitTypeSize(TYP_I_IMPL), REG_RAX);
#else
assert(!"Fast tail call as epilog+jmp");
unreached();
#endif //_TARGET_AMD64_
}
#endif // FEATURE_FASTTAILCALL
}
else
{
unsigned stkArgSize = 0; // Zero on all platforms except x86
#if defined(_TARGET_X86_)
bool fCalleePop = true;
// varargs has caller pop
if (compiler->info.compIsVarArgs)
fCalleePop = false;
#ifdef UNIX_X86_ABI
if (IsCallerPop(compiler->info.compMethodInfo->args.callConv))
fCalleePop = false;
#endif // UNIX_X86_ABI
if (fCalleePop)
{
noway_assert(compiler->compArgSize >= intRegState.rsCalleeRegArgCount * sizeof(void*));
stkArgSize = compiler->compArgSize - intRegState.rsCalleeRegArgCount * sizeof(void*);
noway_assert(compiler->compArgSize < 0x10000); // "ret" only has 2 byte operand
}
#endif // _TARGET_X86_
/* Return, popping our arguments (if any) */
instGen_Return(stkArgSize);
}
}
#else // _TARGET_*
#error Unsupported or unset target architecture
#endif // _TARGET_*
#if FEATURE_EH_FUNCLETS
#ifdef _TARGET_ARM_
/*****************************************************************************
*
* Generates code for an EH funclet prolog.
*
* Funclets have the following incoming arguments:
*
* catch: r0 = the exception object that was caught (see GT_CATCH_ARG)
* filter: r0 = the exception object to filter (see GT_CATCH_ARG), r1 = CallerSP of the containing function
* finally/fault: none
*
* Funclets set the following registers on exit:
*
* catch: r0 = the address at which execution should resume (see BBJ_EHCATCHRET)
* filter: r0 = non-zero if the handler should handle the exception, zero otherwise (see GT_RETFILT)
* finally/fault: none
*
* The ARM funclet prolog sequence is:
*
* push {regs,lr} ; We push the callee-saved regs and 'lr'.
* ; TODO-ARM-CQ: We probably only need to save lr, plus any callee-save registers that we
* ; actually use in the funclet. Currently, we save the same set of callee-saved regs
* ; calculated for the entire function.
* sub sp, XXX ; Establish the rest of the frame.
* ; XXX is determined by lvaOutgoingArgSpaceSize plus space for the PSP slot, aligned
* ; up to preserve stack alignment. If we push an odd number of registers, we also
* ; generate this, to keep the stack aligned.
*
* ; Fill the PSP slot, for use by the VM (it gets reported with the GC info), or by code generation of nested
* ; filters.
* ; This is not part of the "OS prolog"; it has no associated unwind data, and is not reversed in the funclet
* ; epilog.
*
* if (this is a filter funclet)
* {
* // r1 on entry to a filter funclet is CallerSP of the containing function:
* // either the main function, or the funclet for a handler that this filter is dynamically nested within.
* // Note that a filter can be dynamically nested within a funclet even if it is not statically within
* // a funclet. Consider:
* //
* // try {
* // try {
* // throw new Exception();
* // } catch(Exception) {
* // throw new Exception(); // The exception thrown here ...
* // }
* // } filter { // ... will be processed here, while the "catch" funclet frame is
* // // still on the stack
* // } filter-handler {
* // }
* //
* // Because of this, we need a PSP in the main function anytime a filter funclet doesn't know whether the
* // enclosing frame will be a funclet or main function. We won't know any time there is a filter protecting
* // nested EH. To simplify, we just always create a main function PSP for any function with a filter.
*
* ldr r1, [r1 - PSP_slot_CallerSP_offset] ; Load the CallerSP of the main function (stored in the PSP of
* ; the dynamically containing funclet or function)
* str r1, [sp + PSP_slot_SP_offset] ; store the PSP
* sub r11, r1, Function_CallerSP_to_FP_delta ; re-establish the frame pointer
* }
* else
* {
* // This is NOT a filter funclet. The VM re-establishes the frame pointer on entry.
* // TODO-ARM-CQ: if VM set r1 to CallerSP on entry, like for filters, we could save an instruction.
*
* add r3, r11, Function_CallerSP_to_FP_delta ; compute the CallerSP, given the frame pointer. r3 is scratch.
* str r3, [sp + PSP_slot_SP_offset] ; store the PSP
* }
*
* The epilog sequence is then:
*
* add sp, XXX ; if necessary
* pop {regs,pc}
*
* If it is worth it, we could push r0, r1, r2, r3 instead of using an additional add/sub instruction.
* Code size would be smaller, but we would be writing to / reading from the stack, which might be slow.
*
* The funclet frame is thus:
*
* | |
* |-----------------------|
* | incoming |
* | arguments |
* +=======================+ <---- Caller's SP
* |Callee saved registers |
* |-----------------------|
* |Pre-spill regs space | // This is only necessary to keep the PSP slot at the same offset
* | | // in function and funclet
* |-----------------------|
* | PSP slot | // Omitted in CoreRT ABI
* |-----------------------|
* ~ possible 4 byte pad ~
* ~ for alignment ~
* |-----------------------|
* | Outgoing arg space |
* |-----------------------| <---- Ambient SP
* | | |
* ~ | Stack grows ~
* | | downward |
* V
*/
void CodeGen::genFuncletProlog(BasicBlock* block)
{
#ifdef DEBUG
if (verbose)
printf("*************** In genFuncletProlog()\n");
#endif
assert(block != NULL);
assert(block->bbFlags & BBF_FUNCLET_BEG);
ScopedSetVariable<bool> _setGeneratingProlog(&compiler->compGeneratingProlog, true);
gcInfo.gcResetForBB();
compiler->unwindBegProlog();
regMaskTP maskPushRegsFloat = genFuncletInfo.fiSaveRegs & RBM_ALLFLOAT;
regMaskTP maskPushRegsInt = genFuncletInfo.fiSaveRegs & ~maskPushRegsFloat;
regMaskTP maskStackAlloc = genStackAllocRegisterMask(genFuncletInfo.fiSpDelta, maskPushRegsFloat);
maskPushRegsInt |= maskStackAlloc;
assert(FitsIn<int>(maskPushRegsInt));
inst_IV(INS_push, (int)maskPushRegsInt);
compiler->unwindPushMaskInt(maskPushRegsInt);
if (maskPushRegsFloat != RBM_NONE)
{
genPushFltRegs(maskPushRegsFloat);
compiler->unwindPushMaskFloat(maskPushRegsFloat);
}
bool isFilter = (block->bbCatchTyp == BBCT_FILTER);
regMaskTP maskArgRegsLiveIn;
if (isFilter)
{
maskArgRegsLiveIn = RBM_R0 | RBM_R1;
}
else if ((block->bbCatchTyp == BBCT_FINALLY) || (block->bbCatchTyp == BBCT_FAULT))
{
maskArgRegsLiveIn = RBM_NONE;
}
else
{
maskArgRegsLiveIn = RBM_R0;
}
regNumber initReg = REG_R3; // R3 is never live on entry to a funclet, so it can be trashed
bool initRegZeroed = false;
if (maskStackAlloc == RBM_NONE)
{
genAllocLclFrame(genFuncletInfo.fiSpDelta, initReg, &initRegZeroed, maskArgRegsLiveIn);
}
// This is the end of the OS-reported prolog for purposes of unwinding
compiler->unwindEndProlog();
if (isFilter)
{
// This is the first block of a filter
getEmitter()->emitIns_R_R_I(ins_Load(TYP_I_IMPL), EA_PTRSIZE, REG_R1, REG_R1,
genFuncletInfo.fiPSP_slot_CallerSP_offset);
regTracker.rsTrackRegTrash(REG_R1);
getEmitter()->emitIns_R_R_I(ins_Store(TYP_I_IMPL), EA_PTRSIZE, REG_R1, REG_SPBASE,
genFuncletInfo.fiPSP_slot_SP_offset);
getEmitter()->emitIns_R_R_I(INS_sub, EA_PTRSIZE, REG_FPBASE, REG_R1,
genFuncletInfo.fiFunctionCallerSPtoFPdelta);
}
else
{
// This is a non-filter funclet
getEmitter()->emitIns_R_R_I(INS_add, EA_PTRSIZE, REG_R3, REG_FPBASE,
genFuncletInfo.fiFunctionCallerSPtoFPdelta);
regTracker.rsTrackRegTrash(REG_R3);
getEmitter()->emitIns_R_R_I(ins_Store(TYP_I_IMPL), EA_PTRSIZE, REG_R3, REG_SPBASE,
genFuncletInfo.fiPSP_slot_SP_offset);
}
}
/*****************************************************************************
*
* Generates code for an EH funclet epilog.
*/
void CodeGen::genFuncletEpilog()
{
#ifdef DEBUG
if (verbose)
printf("*************** In genFuncletEpilog()\n");
#endif
ScopedSetVariable<bool> _setGeneratingEpilog(&compiler->compGeneratingEpilog, true);
// Just as for the main function, we delay starting the unwind codes until we have
// an instruction which we know needs an unwind code. This is to support code like
// this:
// movw r3, 0x38e0
// add sp, r3
// pop {r4,r5,r6,r10,r11,pc}
// where the "movw" shouldn't be part of the unwind codes. See genFnEpilog() for more details.
bool unwindStarted = false;
/* The saved regs info saves the LR register. We need to pop the PC register to return */
assert(genFuncletInfo.fiSaveRegs & RBM_LR);
regMaskTP maskPopRegsFloat = genFuncletInfo.fiSaveRegs & RBM_ALLFLOAT;
regMaskTP maskPopRegsInt = genFuncletInfo.fiSaveRegs & ~maskPopRegsFloat;
regMaskTP maskStackAlloc = genStackAllocRegisterMask(genFuncletInfo.fiSpDelta, maskPopRegsFloat);
maskPopRegsInt |= maskStackAlloc;
if (maskStackAlloc == RBM_NONE)
{
genFreeLclFrame(genFuncletInfo.fiSpDelta, &unwindStarted, false);
}
if (!unwindStarted)
{
// We'll definitely generate an unwindable instruction next
compiler->unwindBegEpilog();
unwindStarted = true;
}
maskPopRegsInt &= ~RBM_LR;
maskPopRegsInt |= RBM_PC;
if (maskPopRegsFloat != RBM_NONE)
{
genPopFltRegs(maskPopRegsFloat);
compiler->unwindPopMaskFloat(maskPopRegsFloat);
}
assert(FitsIn<int>(maskPopRegsInt));
inst_IV(INS_pop, (int)maskPopRegsInt);
compiler->unwindPopMaskInt(maskPopRegsInt);
compiler->unwindEndEpilog();
}
/*****************************************************************************
*
* Capture the information used to generate the funclet prologs and epilogs.
* Note that all funclet prologs are identical, and all funclet epilogs are
* identical (per type: filters are identical, and non-filters are identical).
* Thus, we compute the data used for these just once.
*
* See genFuncletProlog() for more information about the prolog/epilog sequences.
*/
void CodeGen::genCaptureFuncletPrologEpilogInfo()
{
if (compiler->ehAnyFunclets())
{
assert(isFramePointerUsed());
assert(compiler->lvaDoneFrameLayout ==
Compiler::FINAL_FRAME_LAYOUT); // The frame size and offsets must be finalized
// Frame pointer doesn't point at the end, it points at the pushed r11. So, instead
// of adding the number of callee-saved regs to CallerSP, we add 1 for lr and 1 for r11
// (plus the "pre spill regs"). Note that we assume r12 and r13 aren't saved
// (also assumed in genFnProlog()).
assert((regSet.rsMaskCalleeSaved & (RBM_R12 | RBM_R13)) == 0);
unsigned preSpillRegArgSize = genCountBits(regSet.rsMaskPreSpillRegs(true)) * REGSIZE_BYTES;
genFuncletInfo.fiFunctionCallerSPtoFPdelta = preSpillRegArgSize + 2 * REGSIZE_BYTES;
regMaskTP rsMaskSaveRegs = regSet.rsMaskCalleeSaved;
unsigned saveRegsCount = genCountBits(rsMaskSaveRegs);
unsigned saveRegsSize = saveRegsCount * REGSIZE_BYTES; // bytes of regs we're saving
assert(compiler->lvaOutgoingArgSpaceSize % REGSIZE_BYTES == 0);
unsigned funcletFrameSize =
preSpillRegArgSize + saveRegsSize + REGSIZE_BYTES /* PSP slot */ + compiler->lvaOutgoingArgSpaceSize;
unsigned funcletFrameSizeAligned = roundUp(funcletFrameSize, STACK_ALIGN);
unsigned funcletFrameAlignmentPad = funcletFrameSizeAligned - funcletFrameSize;
unsigned spDelta = funcletFrameSizeAligned - saveRegsSize;
unsigned PSP_slot_SP_offset = compiler->lvaOutgoingArgSpaceSize + funcletFrameAlignmentPad;
int PSP_slot_CallerSP_offset =
-(int)(funcletFrameSize - compiler->lvaOutgoingArgSpaceSize); // NOTE: it's negative!
/* Now save it for future use */
genFuncletInfo.fiSaveRegs = rsMaskSaveRegs;
genFuncletInfo.fiSpDelta = spDelta;
genFuncletInfo.fiPSP_slot_SP_offset = PSP_slot_SP_offset;
genFuncletInfo.fiPSP_slot_CallerSP_offset = PSP_slot_CallerSP_offset;
#ifdef DEBUG
if (verbose)
{
printf("\n");
printf("Funclet prolog / epilog info\n");
printf(" Function CallerSP-to-FP delta: %d\n", genFuncletInfo.fiFunctionCallerSPtoFPdelta);
printf(" Save regs: ");
dspRegMask(rsMaskSaveRegs);
printf("\n");
printf(" SP delta: %d\n", genFuncletInfo.fiSpDelta);
printf(" PSP slot SP offset: %d\n", genFuncletInfo.fiPSP_slot_SP_offset);
printf(" PSP slot Caller SP offset: %d\n", genFuncletInfo.fiPSP_slot_CallerSP_offset);
if (PSP_slot_CallerSP_offset !=
compiler->lvaGetCallerSPRelativeOffset(compiler->lvaPSPSym)) // for debugging
printf("lvaGetCallerSPRelativeOffset(lvaPSPSym): %d\n",
compiler->lvaGetCallerSPRelativeOffset(compiler->lvaPSPSym));
}
#endif // DEBUG
assert(PSP_slot_CallerSP_offset < 0);
if (compiler->lvaPSPSym != BAD_VAR_NUM)
{
assert(PSP_slot_CallerSP_offset ==
compiler->lvaGetCallerSPRelativeOffset(compiler->lvaPSPSym)); // same offset used in main
// function and funclet!
}
}
}
#elif defined(_TARGET_AMD64_)
/*****************************************************************************
*
* Generates code for an EH funclet prolog.
*
* Funclets have the following incoming arguments:
*
* catch/filter-handler: rcx = InitialSP, rdx = the exception object that was caught (see GT_CATCH_ARG)
* filter: rcx = InitialSP, rdx = the exception object to filter (see GT_CATCH_ARG)
* finally/fault: rcx = InitialSP
*
* Funclets set the following registers on exit:
*
* catch/filter-handler: rax = the address at which execution should resume (see BBJ_EHCATCHRET)
* filter: rax = non-zero if the handler should handle the exception, zero otherwise (see GT_RETFILT)
* finally/fault: none
*
* The AMD64 funclet prolog sequence is:
*
* push ebp
* push callee-saved regs
* ; TODO-AMD64-CQ: We probably only need to save any callee-save registers that we actually use
* ; in the funclet. Currently, we save the same set of callee-saved regs calculated for
* ; the entire function.
* sub sp, XXX ; Establish the rest of the frame.
* ; XXX is determined by lvaOutgoingArgSpaceSize plus space for the PSP slot, aligned
* ; up to preserve stack alignment. If we push an odd number of registers, we also
* ; generate this, to keep the stack aligned.
*
* ; Fill the PSP slot, for use by the VM (it gets reported with the GC info), or by code generation of nested
* ; filters.
* ; This is not part of the "OS prolog"; it has no associated unwind data, and is not reversed in the funclet
* ; epilog.
* ; Also, re-establish the frame pointer from the PSP.
*
* mov rbp, [rcx + PSP_slot_InitialSP_offset] ; Load the PSP (InitialSP of the main function stored in the
* ; PSP of the dynamically containing funclet or function)
* mov [rsp + PSP_slot_InitialSP_offset], rbp ; store the PSP in our frame
* lea ebp, [rbp + Function_InitialSP_to_FP_delta] ; re-establish the frame pointer of the parent frame. If
* ; Function_InitialSP_to_FP_delta==0, we don't need this
* ; instruction.
*
* The epilog sequence is then:
*
* add rsp, XXX
* pop callee-saved regs ; if necessary
* pop rbp
* ret
*
* The funclet frame is thus:
*
* | |
* |-----------------------|
* | incoming |
* | arguments |
* +=======================+ <---- Caller's SP
* | Return address |
* |-----------------------|
* | Saved EBP |
* |-----------------------|
* |Callee saved registers |
* |-----------------------|
* ~ possible 8 byte pad ~
* ~ for alignment ~
* |-----------------------|
* | PSP slot | // Omitted in CoreRT ABI
* |-----------------------|
* | Outgoing arg space | // this only exists if the function makes a call
* |-----------------------| <---- Initial SP
* | | |
* ~ | Stack grows ~
* | | downward |
* V
*
* TODO-AMD64-Bug?: the frame pointer should really point to the PSP slot (the debugger seems to assume this
* in DacDbiInterfaceImpl::InitParentFrameInfo()), or someplace above Initial-SP. There is an AMD64
* UNWIND_INFO restriction that it must be within 240 bytes of Initial-SP. See jit64\amd64\inc\md.h
* "FRAMEPTR OFFSETS" for details.
*/
void CodeGen::genFuncletProlog(BasicBlock* block)
{
#ifdef DEBUG
if (verbose)
{
printf("*************** In genFuncletProlog()\n");
}
#endif
assert(!regSet.rsRegsModified(RBM_FPBASE));
assert(block != nullptr);
assert(block->bbFlags & BBF_FUNCLET_BEG);
assert(isFramePointerUsed());
ScopedSetVariable<bool> _setGeneratingProlog(&compiler->compGeneratingProlog, true);
gcInfo.gcResetForBB();
compiler->unwindBegProlog();
// We need to push ebp, since it's callee-saved.
// We need to push the callee-saved registers. We only need to push the ones that we need, but we don't
// keep track of that on a per-funclet basis, so we push the same set as in the main function.
// The only fixed-size frame we need to allocate is whatever is big enough for the PSPSym, since nothing else
// is stored here (all temps are allocated in the parent frame).
// We do need to allocate the outgoing argument space, in case there are calls here. This must be the same
// size as the parent frame's outgoing argument space, to keep the PSPSym offset the same.
inst_RV(INS_push, REG_FPBASE, TYP_REF);
compiler->unwindPush(REG_FPBASE);
// Callee saved int registers are pushed to stack.
genPushCalleeSavedRegisters();
regMaskTP maskArgRegsLiveIn;
if ((block->bbCatchTyp == BBCT_FINALLY) || (block->bbCatchTyp == BBCT_FAULT))
{
maskArgRegsLiveIn = RBM_ARG_0;
}
else
{
maskArgRegsLiveIn = RBM_ARG_0 | RBM_ARG_2;
}
regNumber initReg = REG_EBP; // We already saved EBP, so it can be trashed
bool initRegZeroed = false;
genAllocLclFrame(genFuncletInfo.fiSpDelta, initReg, &initRegZeroed, maskArgRegsLiveIn);
// Callee saved float registers are copied to stack in their assigned stack slots
// after allocating space for them as part of funclet frame.
genPreserveCalleeSavedFltRegs(genFuncletInfo.fiSpDelta);
// This is the end of the OS-reported prolog for purposes of unwinding
compiler->unwindEndProlog();
// If there is no PSPSym (CoreRT ABI), we are done.
if (compiler->lvaPSPSym == BAD_VAR_NUM)
{
return;
}
getEmitter()->emitIns_R_AR(INS_mov, EA_PTRSIZE, REG_FPBASE, REG_ARG_0, genFuncletInfo.fiPSP_slot_InitialSP_offset);
regTracker.rsTrackRegTrash(REG_FPBASE);
getEmitter()->emitIns_AR_R(INS_mov, EA_PTRSIZE, REG_FPBASE, REG_SPBASE, genFuncletInfo.fiPSP_slot_InitialSP_offset);
if (genFuncletInfo.fiFunction_InitialSP_to_FP_delta != 0)
{
getEmitter()->emitIns_R_AR(INS_lea, EA_PTRSIZE, REG_FPBASE, REG_FPBASE,
genFuncletInfo.fiFunction_InitialSP_to_FP_delta);
}
// We've modified EBP, but not really. Say that we haven't...
regSet.rsRemoveRegsModified(RBM_FPBASE);
}
/*****************************************************************************
*
* Generates code for an EH funclet epilog.
*
* Note that we don't do anything with unwind codes, because AMD64 only cares about unwind codes for the prolog.
*/
void CodeGen::genFuncletEpilog()
{
#ifdef DEBUG
if (verbose)
{
printf("*************** In genFuncletEpilog()\n");
}
#endif
ScopedSetVariable<bool> _setGeneratingEpilog(&compiler->compGeneratingEpilog, true);
// Restore callee saved XMM regs from their stack slots before modifying SP
// to position at callee saved int regs.
genRestoreCalleeSavedFltRegs(genFuncletInfo.fiSpDelta);
inst_RV_IV(INS_add, REG_SPBASE, genFuncletInfo.fiSpDelta, EA_PTRSIZE);
genPopCalleeSavedRegisters();
inst_RV(INS_pop, REG_EBP, TYP_I_IMPL);
instGen_Return(0);
}
/*****************************************************************************
*
* Capture the information used to generate the funclet prologs and epilogs.
*/
void CodeGen::genCaptureFuncletPrologEpilogInfo()
{
if (!compiler->ehAnyFunclets())
{
return;
}
// Note that compLclFrameSize can't be used (for can we call functions that depend on it),
// because we're not going to allocate the same size frame as the parent.
assert(isFramePointerUsed());
assert(compiler->lvaDoneFrameLayout ==
Compiler::FINAL_FRAME_LAYOUT); // The frame size and offsets must be finalized
assert(compiler->compCalleeFPRegsSavedMask != (regMaskTP)-1); // The float registers to be preserved is finalized
// Even though lvaToInitialSPRelativeOffset() depends on compLclFrameSize,
// that's ok, because we're figuring out an offset in the parent frame.
genFuncletInfo.fiFunction_InitialSP_to_FP_delta =
compiler->lvaToInitialSPRelativeOffset(0, true); // trick to find the Initial-SP-relative offset of the frame
// pointer.
assert(compiler->lvaOutgoingArgSpaceSize % REGSIZE_BYTES == 0);
#ifndef UNIX_AMD64_ABI
// No 4 slots for outgoing params on the stack for System V systems.
assert((compiler->lvaOutgoingArgSpaceSize == 0) ||
(compiler->lvaOutgoingArgSpaceSize >= (4 * REGSIZE_BYTES))); // On AMD64, we always have 4 outgoing argument
// slots if there are any calls in the function.
#endif // UNIX_AMD64_ABI
unsigned offset = compiler->lvaOutgoingArgSpaceSize;
genFuncletInfo.fiPSP_slot_InitialSP_offset = offset;
// How much stack do we allocate in the funclet?
// We need to 16-byte align the stack.
unsigned totalFrameSize =
REGSIZE_BYTES // return address
+ REGSIZE_BYTES // pushed EBP
+ (compiler->compCalleeRegsPushed * REGSIZE_BYTES); // pushed callee-saved int regs, not including EBP
// Entire 128-bits of XMM register is saved to stack due to ABI encoding requirement.
// Copying entire XMM register to/from memory will be performant if SP is aligned at XMM_REGSIZE_BYTES boundary.
unsigned calleeFPRegsSavedSize = genCountBits(compiler->compCalleeFPRegsSavedMask) * XMM_REGSIZE_BYTES;
unsigned FPRegsPad = (calleeFPRegsSavedSize > 0) ? AlignmentPad(totalFrameSize, XMM_REGSIZE_BYTES) : 0;
unsigned PSPSymSize = (compiler->lvaPSPSym != BAD_VAR_NUM) ? REGSIZE_BYTES : 0;
totalFrameSize += FPRegsPad // Padding before pushing entire xmm regs
+ calleeFPRegsSavedSize // pushed callee-saved float regs
// below calculated 'pad' will go here
+ PSPSymSize // PSPSym
+ compiler->lvaOutgoingArgSpaceSize // outgoing arg space
;
unsigned pad = AlignmentPad(totalFrameSize, 16);
genFuncletInfo.fiSpDelta = FPRegsPad // Padding to align SP on XMM_REGSIZE_BYTES boundary
+ calleeFPRegsSavedSize // Callee saved xmm regs
+ pad + PSPSymSize // PSPSym
+ compiler->lvaOutgoingArgSpaceSize // outgoing arg space
;
#ifdef DEBUG
if (verbose)
{
printf("\n");
printf("Funclet prolog / epilog info\n");
printf(" Function InitialSP-to-FP delta: %d\n", genFuncletInfo.fiFunction_InitialSP_to_FP_delta);
printf(" SP delta: %d\n", genFuncletInfo.fiSpDelta);
printf(" PSP slot Initial SP offset: %d\n", genFuncletInfo.fiPSP_slot_InitialSP_offset);
}
if (compiler->lvaPSPSym != BAD_VAR_NUM)
{
assert(genFuncletInfo.fiPSP_slot_InitialSP_offset ==
compiler->lvaGetInitialSPRelativeOffset(compiler->lvaPSPSym)); // same offset used in main function and
// funclet!
}
#endif // DEBUG
}
#elif defined(_TARGET_ARM64_)
// Look in CodeGenArm64.cpp
#elif defined(_TARGET_X86_)
/*****************************************************************************
*
* Generates code for an EH funclet prolog.
*
*
* Funclets have the following incoming arguments:
*
* catch/filter-handler: eax = the exception object that was caught (see GT_CATCH_ARG)
* filter: eax = the exception object that was caught (see GT_CATCH_ARG)
* finally/fault: none
*
* Funclets set the following registers on exit:
*
* catch/filter-handler: eax = the address at which execution should resume (see BBJ_EHCATCHRET)
* filter: eax = non-zero if the handler should handle the exception, zero otherwise (see GT_RETFILT)
* finally/fault: none
*
* Funclet prolog/epilog sequence and funclet frame layout are TBD.
*
*/
void CodeGen::genFuncletProlog(BasicBlock* block)
{
#ifdef DEBUG
if (verbose)
{
printf("*************** In genFuncletProlog()\n");
}
#endif
ScopedSetVariable<bool> _setGeneratingProlog(&compiler->compGeneratingProlog, true);
gcInfo.gcResetForBB();
compiler->unwindBegProlog();
// This is the end of the OS-reported prolog for purposes of unwinding
compiler->unwindEndProlog();
// TODO We may need EBP restore sequence here if we introduce PSPSym
// Add a padding for 16-byte alignment
inst_RV_IV(INS_sub, REG_SPBASE, 12, EA_PTRSIZE);
}
/*****************************************************************************
*
* Generates code for an EH funclet epilog.
*/
void CodeGen::genFuncletEpilog()
{
#ifdef DEBUG
if (verbose)
{
printf("*************** In genFuncletEpilog()\n");
}
#endif
ScopedSetVariable<bool> _setGeneratingEpilog(&compiler->compGeneratingEpilog, true);
// Revert a padding that was added for 16-byte alignment
inst_RV_IV(INS_add, REG_SPBASE, 12, EA_PTRSIZE);
instGen_Return(0);
}
/*****************************************************************************
*
* Capture the information used to generate the funclet prologs and epilogs.
*/
void CodeGen::genCaptureFuncletPrologEpilogInfo()
{
if (!compiler->ehAnyFunclets())
{
return;
}
}
#else // _TARGET_*
/*****************************************************************************
*
* Generates code for an EH funclet prolog.
*/
void CodeGen::genFuncletProlog(BasicBlock* block)
{
NYI("Funclet prolog");
}
/*****************************************************************************
*
* Generates code for an EH funclet epilog.
*/
void CodeGen::genFuncletEpilog()
{
NYI("Funclet epilog");
}
/*****************************************************************************
*
* Capture the information used to generate the funclet prologs and epilogs.
*/
void CodeGen::genCaptureFuncletPrologEpilogInfo()
{
if (compiler->ehAnyFunclets())
{
NYI("genCaptureFuncletPrologEpilogInfo()");
}
}
#endif // _TARGET_*
/*-----------------------------------------------------------------------------
*
* Set the main function PSPSym value in the frame.
* Funclets use different code to load the PSP sym and save it in their frame.
* See the document "X64 and ARM ABIs.docx" for a full description of the PSPSym.
* The PSPSym section of that document is copied here.
*
***********************************
* The name PSPSym stands for Previous Stack Pointer Symbol. It is how a funclet
* accesses locals from the main function body.
*
* First, two definitions.
*
* Caller-SP is the value of the stack pointer in a function's caller before the call
* instruction is executed. That is, when function A calls function B, Caller-SP for B
* is the value of the stack pointer immediately before the call instruction in A
* (calling B) was executed. Note that this definition holds for both AMD64, which
* pushes the return value when a call instruction is executed, and for ARM, which
* doesn't. For AMD64, Caller-SP is the address above the call return address.
*
* Initial-SP is the initial value of the stack pointer after the fixed-size portion of
* the frame has been allocated. That is, before any "alloca"-type allocations.
*
* The PSPSym is a pointer-sized local variable in the frame of the main function and
* of each funclet. The value stored in PSPSym is the value of Initial-SP/Caller-SP
* for the main function. The stack offset of the PSPSym is reported to the VM in the
* GC information header. The value reported in the GC information is the offset of the
* PSPSym from Initial-SP/Caller-SP. (Note that both the value stored, and the way the
* value is reported to the VM, differs between architectures. In particular, note that
* most things in the GC information header are reported as offsets relative to Caller-SP,
* but PSPSym on AMD64 is one (maybe the only) exception.)
*
* The VM uses the PSPSym to find other locals it cares about (such as the generics context
* in a funclet frame). The JIT uses it to re-establish the frame pointer register, so that
* the frame pointer is the same value in a funclet as it is in the main function body.
*
* When a funclet is called, it is passed the Establisher Frame Pointer. For AMD64 this is
* true for all funclets and it is passed as the first argument in RCX, but for ARM this is
* only true for first pass funclets (currently just filters) and it is passed as the second
* argument in R1. The Establisher Frame Pointer is a stack pointer of an interesting "parent"
* frame in the exception processing system. For the CLR, it points either to the main function
* frame or a dynamically enclosing funclet frame from the same function, for the funclet being
* invoked. The value of the Establisher Frame Pointer is Initial-SP on AMD64, Caller-SP on ARM.
*
* Using the establisher frame, the funclet wants to load the value of the PSPSym. Since we
* don't know if the Establisher Frame is from the main function or a funclet, we design the
* main function and funclet frame layouts to place the PSPSym at an identical, small, constant
* offset from the Establisher Frame in each case. (This is also required because we only report
* a single offset to the PSPSym in the GC information, and that offset must be valid for the main
* function and all of its funclets). Then, the funclet uses this known offset to compute the
* PSPSym address and read its value. From this, it can compute the value of the frame pointer
* (which is a constant offset from the PSPSym value) and set the frame register to be the same
* as the parent function. Also, the funclet writes the value of the PSPSym to its own frame's
* PSPSym. This "copying" of the PSPSym happens for every funclet invocation, in particular,
* for every nested funclet invocation.
*
* On ARM, for all second pass funclets (finally, fault, catch, and filter-handler) the VM
* restores all non-volatile registers to their values within the parent frame. This includes
* the frame register (R11). Thus, the PSPSym is not used to recompute the frame pointer register
* in this case, though the PSPSym is copied to the funclet's frame, as for all funclets.
*
* Catch, Filter, and Filter-handlers also get an Exception object (GC ref) as an argument
* (REG_EXCEPTION_OBJECT). On AMD64 it is the second argument and thus passed in RDX. On
* ARM this is the first argument and passed in R0.
*
* (Note that the JIT64 source code contains a comment that says, "The current CLR doesn't always
* pass the correct establisher frame to the funclet. Funclet may receive establisher frame of
* funclet when expecting that of original routine." It indicates this is the reason that a PSPSym
* is required in all funclets as well as the main function, whereas if the establisher frame was
* correctly reported, the PSPSym could be omitted in some cases.)
***********************************
*/
void CodeGen::genSetPSPSym(regNumber initReg, bool* pInitRegZeroed)
{
assert(compiler->compGeneratingProlog);
if (compiler->lvaPSPSym == BAD_VAR_NUM)
{
return;
}
noway_assert(isFramePointerUsed()); // We need an explicit frame pointer
#if defined(_TARGET_ARM_)
// We either generate:
// add r1, r11, 8
// str r1, [reg + PSPSymOffset]
// or:
// add r1, sp, 76
// str r1, [reg + PSPSymOffset]
// depending on the smallest encoding
int SPtoCallerSPdelta = -genCallerSPtoInitialSPdelta();
int callerSPOffs;
regNumber regBase;
if (arm_Valid_Imm_For_Add_SP(SPtoCallerSPdelta))
{
// use the "add <reg>, sp, imm" form
callerSPOffs = SPtoCallerSPdelta;
regBase = REG_SPBASE;
}
else
{
// use the "add <reg>, r11, imm" form
int FPtoCallerSPdelta = -genCallerSPtoFPdelta();
noway_assert(arm_Valid_Imm_For_Add(FPtoCallerSPdelta, INS_FLAGS_DONT_CARE));
callerSPOffs = FPtoCallerSPdelta;
regBase = REG_FPBASE;
}
// We will just use the initReg since it is an available register
// and we are probably done using it anyway...
regNumber regTmp = initReg;
*pInitRegZeroed = false;
getEmitter()->emitIns_R_R_I(INS_add, EA_PTRSIZE, regTmp, regBase, callerSPOffs);
getEmitter()->emitIns_S_R(ins_Store(TYP_I_IMPL), EA_PTRSIZE, regTmp, compiler->lvaPSPSym, 0);
#elif defined(_TARGET_ARM64_)
int SPtoCallerSPdelta = -genCallerSPtoInitialSPdelta();
// We will just use the initReg since it is an available register
// and we are probably done using it anyway...
regNumber regTmp = initReg;
*pInitRegZeroed = false;
getEmitter()->emitIns_R_R_Imm(INS_add, EA_PTRSIZE, regTmp, REG_SPBASE, SPtoCallerSPdelta);
getEmitter()->emitIns_S_R(ins_Store(TYP_I_IMPL), EA_PTRSIZE, regTmp, compiler->lvaPSPSym, 0);
#elif defined(_TARGET_AMD64_)
// The PSP sym value is Initial-SP, not Caller-SP!
// We assume that RSP is Initial-SP when this function is called. That is, the stack frame
// has been established.
//
// We generate:
// mov [rbp-20h], rsp // store the Initial-SP (our current rsp) in the PSPsym
getEmitter()->emitIns_S_R(ins_Store(TYP_I_IMPL), EA_PTRSIZE, REG_SPBASE, compiler->lvaPSPSym, 0);
#else // _TARGET_*
NYI("Set function PSP sym");
#endif // _TARGET_*
}
#endif // FEATURE_EH_FUNCLETS
/*****************************************************************************
*
* Generates code for all the function and funclet prologs and epilogs.
*/
void CodeGen::genGeneratePrologsAndEpilogs()
{
#ifdef DEBUG
if (verbose)
{
printf("*************** Before prolog / epilog generation\n");
getEmitter()->emitDispIGlist(false);
}
#endif
#ifndef LEGACY_BACKEND
// Before generating the prolog, we need to reset the variable locations to what they will be on entry.
// This affects our code that determines which untracked locals need to be zero initialized.
compiler->m_pLinearScan->recordVarLocationsAtStartOfBB(compiler->fgFirstBB);
#endif // !LEGACY_BACKEND
// Tell the emitter we're done with main code generation, and are going to start prolog and epilog generation.
getEmitter()->emitStartPrologEpilogGeneration();
gcInfo.gcResetForBB();
genFnProlog();
// Generate all the prologs and epilogs.
CLANG_FORMAT_COMMENT_ANCHOR;
#if FEATURE_EH_FUNCLETS
// Capture the data we're going to use in the funclet prolog and epilog generation. This is
// information computed during codegen, or during function prolog generation, like
// frame offsets. It must run after main function prolog generation.
genCaptureFuncletPrologEpilogInfo();
#endif // FEATURE_EH_FUNCLETS
// Walk the list of prologs and epilogs and generate them.
// We maintain a list of prolog and epilog basic blocks in
// the insGroup structure in the emitter. This list was created
// during code generation by the genReserve*() functions.
//
// TODO: it seems like better design would be to create a list of prologs/epilogs
// in the code generator (not the emitter), and then walk that list. But we already
// have the insGroup list, which serves well, so we don't need the extra allocations
// for a prolog/epilog list in the code generator.
getEmitter()->emitGeneratePrologEpilog();
// Tell the emitter we're done with all prolog and epilog generation.
getEmitter()->emitFinishPrologEpilogGeneration();
#ifdef DEBUG
if (verbose)
{
printf("*************** After prolog / epilog generation\n");
getEmitter()->emitDispIGlist(false);
}
#endif
}
/*
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX XX
XX End Prolog / Epilog XX
XX XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
*/
#if STACK_PROBES
void CodeGen::genGenerateStackProbe()
{
noway_assert(compiler->opts.compNeedStackProbes);
// If this assert fires, it means somebody has changed the value
// CORINFO_STACKPROBE_DEPTH.
// Why does the EE need such a deep probe? It should just need a couple
// of bytes, to set up a frame in the unmanaged code..
static_assert_no_msg(CORINFO_STACKPROBE_DEPTH + JIT_RESERVED_STACK < compiler->eeGetPageSize());
JITDUMP("Emitting stack probe:\n");
getEmitter()->emitIns_AR_R(INS_TEST, EA_PTRSIZE, REG_EAX, REG_SPBASE,
-(CORINFO_STACKPROBE_DEPTH + JIT_RESERVED_STACK));
}
#endif // STACK_PROBES
#ifdef LEGACY_BACKEND
/*****************************************************************************
*
* Record the constant and return a tree node that yields its address.
*/
GenTreePtr CodeGen::genMakeConst(const void* cnsAddr, var_types cnsType, GenTreePtr cnsTree, bool dblAlign)
{
// Assign the constant an offset in the data section
UNATIVE_OFFSET cnsSize = genTypeSize(cnsType);
UNATIVE_OFFSET cnum = getEmitter()->emitDataConst(cnsAddr, cnsSize, dblAlign);
#ifdef DEBUG
if (compiler->opts.dspCode)
{
printf(" @%s%02u ", "CNS", cnum);
switch (cnsType)
{
case TYP_INT:
printf("DD %d \n", *(int*)cnsAddr);
break;
case TYP_LONG:
printf("DQ %lld\n", *(__int64*)cnsAddr);
break;
case TYP_FLOAT:
printf("DF %f \n", *(float*)cnsAddr);
break;
case TYP_DOUBLE:
printf("DQ %lf\n", *(double*)cnsAddr);
break;
default:
noway_assert(!"unexpected constant type");
}
}
#endif
// Access to inline data is 'abstracted' by a special type of static member
// (produced by eeFindJitDataOffs) which the emitter recognizes as being a reference
// to constant data, not a real static field.
return new (compiler, GT_CLS_VAR) GenTreeClsVar(cnsType, compiler->eeFindJitDataOffs(cnum), nullptr);
}
#endif // LEGACY_BACKEND
#if defined(_TARGET_XARCH_) && !FEATURE_STACK_FP_X87
// Save compCalleeFPRegsPushed with the smallest register number saved at [RSP+offset], working
// down the stack to the largest register number stored at [RSP+offset-(genCountBits(regMask)-1)*XMM_REG_SIZE]
// Here offset = 16-byte aligned offset after pushing integer registers.
//
// Params
// lclFrameSize - Fixed frame size excluding callee pushed int regs.
// non-funclet: this will be compLclFrameSize.
// funclet frames: this will be FuncletInfo.fiSpDelta.
void CodeGen::genPreserveCalleeSavedFltRegs(unsigned lclFrameSize)
{
genVzeroupperIfNeeded(false);
regMaskTP regMask = compiler->compCalleeFPRegsSavedMask;
// Only callee saved floating point registers should be in regMask
assert((regMask & RBM_FLT_CALLEE_SAVED) == regMask);
// fast path return
if (regMask == RBM_NONE)
{
return;
}
#ifdef _TARGET_AMD64_
unsigned firstFPRegPadding = compiler->lvaIsCalleeSavedIntRegCountEven() ? REGSIZE_BYTES : 0;
unsigned offset = lclFrameSize - firstFPRegPadding - XMM_REGSIZE_BYTES;
// Offset is 16-byte aligned since we use movaps for preserving xmm regs.
assert((offset % 16) == 0);
instruction copyIns = ins_Copy(TYP_FLOAT);
#else // !_TARGET_AMD64_
unsigned offset = lclFrameSize - XMM_REGSIZE_BYTES;
instruction copyIns = INS_movupd;
#endif // !_TARGET_AMD64_
for (regNumber reg = REG_FLT_CALLEE_SAVED_FIRST; regMask != RBM_NONE; reg = REG_NEXT(reg))
{
regMaskTP regBit = genRegMask(reg);
if ((regBit & regMask) != 0)
{
// ABI requires us to preserve lower 128-bits of YMM register.
getEmitter()->emitIns_AR_R(copyIns,
EA_8BYTE, // TODO-XArch-Cleanup: size specified here doesn't matter but should be
// EA_16BYTE
reg, REG_SPBASE, offset);
compiler->unwindSaveReg(reg, offset);
regMask &= ~regBit;
offset -= XMM_REGSIZE_BYTES;
}
}
}
// Save/Restore compCalleeFPRegsPushed with the smallest register number saved at [RSP+offset], working
// down the stack to the largest register number stored at [RSP+offset-(genCountBits(regMask)-1)*XMM_REG_SIZE]
// Here offset = 16-byte aligned offset after pushing integer registers.
//
// Params
// lclFrameSize - Fixed frame size excluding callee pushed int regs.
// non-funclet: this will be compLclFrameSize.
// funclet frames: this will be FuncletInfo.fiSpDelta.
void CodeGen::genRestoreCalleeSavedFltRegs(unsigned lclFrameSize)
{
regMaskTP regMask = compiler->compCalleeFPRegsSavedMask;
// Only callee saved floating point registers should be in regMask
assert((regMask & RBM_FLT_CALLEE_SAVED) == regMask);
// fast path return
if (regMask == RBM_NONE)
{
genVzeroupperIfNeeded();
return;
}
#ifdef _TARGET_AMD64_
unsigned firstFPRegPadding = compiler->lvaIsCalleeSavedIntRegCountEven() ? REGSIZE_BYTES : 0;
instruction copyIns = ins_Copy(TYP_FLOAT);
#else // !_TARGET_AMD64_
unsigned firstFPRegPadding = 0;
instruction copyIns = INS_movupd;
#endif // !_TARGET_AMD64_
unsigned offset;
regNumber regBase;
if (compiler->compLocallocUsed)
{
// localloc frame: use frame pointer relative offset
assert(isFramePointerUsed());
regBase = REG_FPBASE;
offset = lclFrameSize - genSPtoFPdelta() - firstFPRegPadding - XMM_REGSIZE_BYTES;
}
else
{
regBase = REG_SPBASE;
offset = lclFrameSize - firstFPRegPadding - XMM_REGSIZE_BYTES;
}
#ifdef _TARGET_AMD64_
// Offset is 16-byte aligned since we use movaps for restoring xmm regs
assert((offset % 16) == 0);
#endif // _TARGET_AMD64_
for (regNumber reg = REG_FLT_CALLEE_SAVED_FIRST; regMask != RBM_NONE; reg = REG_NEXT(reg))
{
regMaskTP regBit = genRegMask(reg);
if ((regBit & regMask) != 0)
{
// ABI requires us to restore lower 128-bits of YMM register.
getEmitter()->emitIns_R_AR(copyIns,
EA_8BYTE, // TODO-XArch-Cleanup: size specified here doesn't matter but should be
// EA_16BYTE
reg, regBase, offset);
regMask &= ~regBit;
offset -= XMM_REGSIZE_BYTES;
}
}
genVzeroupperIfNeeded();
}
// Generate Vzeroupper instruction as needed to zero out upper 128b-bit of all YMM registers so that the
// AVX/Legacy SSE transition penalties can be avoided. This function is been used in genPreserveCalleeSavedFltRegs
// (prolog) and genRestoreCalleeSavedFltRegs (epilog). Issue VZEROUPPER in Prolog if the method contains
// 128-bit or 256-bit AVX code, to avoid legacy SSE to AVX transition penalty, which could happen when native
// code contains legacy SSE code calling into JIT AVX code (e.g. reverse pinvoke). Issue VZEROUPPER in Epilog
// if the method contains 256-bit AVX code, to avoid AVX to legacy SSE transition penalty.
//
// Params
// check256bitOnly - true to check if the function contains 256-bit AVX instruction and generate Vzeroupper
// instruction, false to check if the function contains AVX instruciton (either 128-bit or 256-bit).
//
void CodeGen::genVzeroupperIfNeeded(bool check256bitOnly /* = true*/)
{
bool emitVzeroUpper = false;
if (check256bitOnly)
{
emitVzeroUpper = getEmitter()->Contains256bitAVX();
}
else
{
emitVzeroUpper = getEmitter()->ContainsAVX();
}
if (emitVzeroUpper)
{
assert(compiler->getSIMDSupportLevel() == SIMD_AVX2_Supported);
instGen(INS_vzeroupper);
}
}
#endif // defined(_TARGET_XARCH_) && !FEATURE_STACK_FP_X87
//-----------------------------------------------------------------------------------
// IsMultiRegPassedType: Returns true if the type is returned in multiple registers
//
// Arguments:
// hClass - type handle
//
// Return Value:
// true if type is passed in multiple registers, false otherwise.
//
bool Compiler::IsMultiRegPassedType(CORINFO_CLASS_HANDLE hClass)
{
if (hClass == NO_CLASS_HANDLE)
{
return false;
}
structPassingKind howToPassStruct;
var_types returnType = getArgTypeForStruct(hClass, &howToPassStruct);
return (returnType == TYP_STRUCT);
}
//-----------------------------------------------------------------------------------
// IsMultiRegReturnedType: Returns true if the type is returned in multiple registers
//
// Arguments:
// hClass - type handle
//
// Return Value:
// true if type is returned in multiple registers, false otherwise.
//
bool Compiler::IsMultiRegReturnedType(CORINFO_CLASS_HANDLE hClass)
{
if (hClass == NO_CLASS_HANDLE)
{
return false;
}
structPassingKind howToReturnStruct;
var_types returnType = getReturnTypeForStruct(hClass, &howToReturnStruct);
return (returnType == TYP_STRUCT);
}
//----------------------------------------------
// Methods that support HFA's for ARM32/ARM64
//----------------------------------------------
bool Compiler::IsHfa(CORINFO_CLASS_HANDLE hClass)
{
#ifdef FEATURE_HFA
return varTypeIsFloating(GetHfaType(hClass));
#else
return false;
#endif
}
bool Compiler::IsHfa(GenTreePtr tree)
{
#ifdef FEATURE_HFA
return IsHfa(gtGetStructHandleIfPresent(tree));
#else
return false;
#endif
}
var_types Compiler::GetHfaType(GenTreePtr tree)
{
#ifdef FEATURE_HFA
return GetHfaType(gtGetStructHandleIfPresent(tree));
#else
return TYP_UNDEF;
#endif
}
unsigned Compiler::GetHfaCount(GenTreePtr tree)
{
return GetHfaCount(gtGetStructHandleIfPresent(tree));
}
var_types Compiler::GetHfaType(CORINFO_CLASS_HANDLE hClass)
{
var_types result = TYP_UNDEF;
if (hClass != NO_CLASS_HANDLE)
{
#ifdef FEATURE_HFA
CorInfoType corType = info.compCompHnd->getHFAType(hClass);
if (corType != CORINFO_TYPE_UNDEF)
{
result = JITtype2varType(corType);
}
#endif // FEATURE_HFA
}
return result;
}
//------------------------------------------------------------------------
// GetHfaCount: Given a class handle for an HFA struct
// return the number of registers needed to hold the HFA
//
// Note that on ARM32 the single precision registers overlap with
// the double precision registers and for that reason each
// double register is considered to be two single registers.
// Thus for ARM32 an HFA of 4 doubles this function will return 8.
// On ARM64 given an HFA of 4 singles or 4 doubles this function will
// will return 4 for both.
// Arguments:
// hClass: the class handle of a HFA struct
//
unsigned Compiler::GetHfaCount(CORINFO_CLASS_HANDLE hClass)
{
assert(IsHfa(hClass));
#ifdef _TARGET_ARM_
// A HFA of doubles is twice as large as an HFA of singles for ARM32
// (i.e. uses twice the number of single precison registers)
return info.compCompHnd->getClassSize(hClass) / REGSIZE_BYTES;
#else // _TARGET_ARM64_
var_types hfaType = GetHfaType(hClass);
unsigned classSize = info.compCompHnd->getClassSize(hClass);
// Note that the retail build issues a warning about a potential divsion by zero without the Max function
unsigned elemSize = Max((unsigned)1, EA_SIZE_IN_BYTES(emitActualTypeSize(hfaType)));
return classSize / elemSize;
#endif // _TARGET_ARM64_
}
#ifdef _TARGET_XARCH_
//------------------------------------------------------------------------
// genMapShiftInsToShiftByConstantIns: Given a general shift/rotate instruction,
// map it to the specific x86/x64 shift opcode for a shift/rotate by a constant.
// X86/x64 has a special encoding for shift/rotate-by-constant-1.
//
// Arguments:
// ins: the base shift/rotate instruction
// shiftByValue: the constant value by which we are shifting/rotating
//
instruction CodeGen::genMapShiftInsToShiftByConstantIns(instruction ins, int shiftByValue)
{
assert(ins == INS_rcl || ins == INS_rcr || ins == INS_rol || ins == INS_ror || ins == INS_shl || ins == INS_shr ||
ins == INS_sar);
// Which format should we use?
instruction shiftByConstantIns;
if (shiftByValue == 1)
{
// Use the shift-by-one format.
assert(INS_rcl + 1 == INS_rcl_1);
assert(INS_rcr + 1 == INS_rcr_1);
assert(INS_rol + 1 == INS_rol_1);
assert(INS_ror + 1 == INS_ror_1);
assert(INS_shl + 1 == INS_shl_1);
assert(INS_shr + 1 == INS_shr_1);
assert(INS_sar + 1 == INS_sar_1);
shiftByConstantIns = (instruction)(ins + 1);
}
else
{
// Use the shift-by-NNN format.
assert(INS_rcl + 2 == INS_rcl_N);
assert(INS_rcr + 2 == INS_rcr_N);
assert(INS_rol + 2 == INS_rol_N);
assert(INS_ror + 2 == INS_ror_N);
assert(INS_shl + 2 == INS_shl_N);
assert(INS_shr + 2 == INS_shr_N);
assert(INS_sar + 2 == INS_sar_N);
shiftByConstantIns = (instruction)(ins + 2);
}
return shiftByConstantIns;
}
#endif // _TARGET_XARCH_
#if !defined(LEGACY_BACKEND)
//------------------------------------------------------------------------------------------------ //
// getFirstArgWithStackSlot - returns the first argument with stack slot on the caller's frame.
//
// Return value:
// The number of the first argument with stack slot on the caller's frame.
//
// Note:
// On x64 Windows the caller always creates slots (homing space) in its frame for the
// first 4 arguments of a callee (register passed args). So, the the variable number
// (lclNum) for the first argument with a stack slot is always 0.
// For System V systems or armarch, there is no such calling convention requirement, and the code needs to find
// the first stack passed argument from the caller. This is done by iterating over
// all the lvParam variables and finding the first with lvArgReg equals to REG_STK.
//
unsigned CodeGen::getFirstArgWithStackSlot()
{
#if defined(FEATURE_UNIX_AMD64_STRUCT_PASSING) || defined(_TARGET_ARMARCH_)
unsigned baseVarNum = 0;
#if defined(FEATURE_UNIX_AMR64_STRUCT_PASSING)
baseVarNum = compiler->lvaFirstStackIncomingArgNum;
if (compiler->lvaFirstStackIncomingArgNum != BAD_VAR_NUM)
{
baseVarNum = compiler->lvaFirstStackIncomingArgNum;
}
else
#endif // FEATURE_UNIX_ARM64_STRUCT_PASSING
{
// Iterate over all the local variables in the Lcl var table.
// They contain all the implicit arguments - thisPtr, retBuf,
// generic context, PInvoke cookie, var arg cookie,no-standard args, etc.
LclVarDsc* varDsc = nullptr;
for (unsigned i = 0; i < compiler->info.compArgsCount; i++)
{
varDsc = &(compiler->lvaTable[i]);
// We are iterating over the arguments only.
assert(varDsc->lvIsParam);
if (varDsc->lvArgReg == REG_STK)
{
baseVarNum = i;
#if defined(FEATURE_UNIX_AMR64_STRUCT_PASSING)
compiler->lvaFirstStackIncomingArgNum = baseVarNum;
#endif // FEATURE_UNIX_ARM64_STRUCT_PASSING
break;
}
}
assert(varDsc != nullptr);
}
return baseVarNum;
#elif defined(_TARGET_AMD64_)
return 0;
#else // _TARGET_X86
// Not implemented for x86.
NYI_X86("getFirstArgWithStackSlot not yet implemented for x86.");
return BAD_VAR_NUM;
#endif // _TARGET_X86_
}
#endif // !LEGACY_BACKEND
//------------------------------------------------------------------------
// genSinglePush: Report a change in stack level caused by a single word-sized push instruction
//
void CodeGen::genSinglePush()
{
AddStackLevel(REGSIZE_BYTES);
}
//------------------------------------------------------------------------
// genSinglePop: Report a change in stack level caused by a single word-sized pop instruction
//
void CodeGen::genSinglePop()
{
SubtractStackLevel(REGSIZE_BYTES);
}
//------------------------------------------------------------------------
// genPushRegs: Push the given registers.
//
// Arguments:
// regs - mask or registers to push
// byrefRegs - OUT arg. Set to byref registers that were pushed.
// noRefRegs - OUT arg. Set to non-GC ref registers that were pushed.
//
// Return Value:
// Mask of registers pushed.
//
// Notes:
// This function does not check if the register is marked as used, etc.
//
regMaskTP CodeGen::genPushRegs(regMaskTP regs, regMaskTP* byrefRegs, regMaskTP* noRefRegs)
{
*byrefRegs = RBM_NONE;
*noRefRegs = RBM_NONE;
if (regs == RBM_NONE)
{
return RBM_NONE;
}
#if FEATURE_FIXED_OUT_ARGS
NYI("Don't call genPushRegs with real regs!");
return RBM_NONE;
#else // FEATURE_FIXED_OUT_ARGS
noway_assert(genTypeStSz(TYP_REF) == genTypeStSz(TYP_I_IMPL));
noway_assert(genTypeStSz(TYP_BYREF) == genTypeStSz(TYP_I_IMPL));
regMaskTP pushedRegs = regs;
for (regNumber reg = REG_INT_FIRST; regs != RBM_NONE; reg = REG_NEXT(reg))
{
regMaskTP regBit = regMaskTP(1) << reg;
if ((regBit & regs) == RBM_NONE)
continue;
var_types type;
if (regBit & gcInfo.gcRegGCrefSetCur)
{
type = TYP_REF;
}
else if (regBit & gcInfo.gcRegByrefSetCur)
{
*byrefRegs |= regBit;
type = TYP_BYREF;
}
else if (noRefRegs != NULL)
{
*noRefRegs |= regBit;
type = TYP_I_IMPL;
}
else
{
continue;
}
inst_RV(INS_push, reg, type);
genSinglePush();
gcInfo.gcMarkRegSetNpt(regBit);
regs &= ~regBit;
}
return pushedRegs;
#endif // FEATURE_FIXED_OUT_ARGS
}
//------------------------------------------------------------------------
// genPopRegs: Pop the registers that were pushed by genPushRegs().
//
// Arguments:
// regs - mask of registers to pop
// byrefRegs - The byref registers that were pushed by genPushRegs().
// noRefRegs - The non-GC ref registers that were pushed by genPushRegs().
//
// Return Value:
// None
//
void CodeGen::genPopRegs(regMaskTP regs, regMaskTP byrefRegs, regMaskTP noRefRegs)
{
if (regs == RBM_NONE)
{
return;
}
#if FEATURE_FIXED_OUT_ARGS
NYI("Don't call genPopRegs with real regs!");
#else // FEATURE_FIXED_OUT_ARGS
noway_assert((regs & byrefRegs) == byrefRegs);
noway_assert((regs & noRefRegs) == noRefRegs);
noway_assert((regs & (gcInfo.gcRegGCrefSetCur | gcInfo.gcRegByrefSetCur)) == RBM_NONE);
noway_assert(genTypeStSz(TYP_REF) == genTypeStSz(TYP_INT));
noway_assert(genTypeStSz(TYP_BYREF) == genTypeStSz(TYP_INT));
// Walk the registers in the reverse order as genPushRegs()
for (regNumber reg = REG_INT_LAST; regs != RBM_NONE; reg = REG_PREV(reg))
{
regMaskTP regBit = regMaskTP(1) << reg;
if ((regBit & regs) == RBM_NONE)
continue;
var_types type;
if (regBit & byrefRegs)
{
type = TYP_BYREF;
}
else if (regBit & noRefRegs)
{
type = TYP_INT;
}
else
{
type = TYP_REF;
}
inst_RV(INS_pop, reg, type);
genSinglePop();
if (type != TYP_INT)
gcInfo.gcMarkRegPtrVal(reg, type);
regs &= ~regBit;
}
#endif // FEATURE_FIXED_OUT_ARGS
}
/*****************************************************************************
* genSetScopeInfo
*
* This function should be called only after the sizes of the emitter blocks
* have been finalized.
*/
void CodeGen::genSetScopeInfo()
{
if (!compiler->opts.compScopeInfo)
{
return;
}
#ifdef DEBUG
if (verbose)
{
printf("*************** In genSetScopeInfo()\n");
}
#endif
if (compiler->info.compVarScopesCount == 0)
{
compiler->eeSetLVcount(0);
compiler->eeSetLVdone();
return;
}
noway_assert(compiler->opts.compScopeInfo && (compiler->info.compVarScopesCount > 0));
noway_assert(psiOpenScopeList.scNext == nullptr);
unsigned i;
unsigned scopeCnt = siScopeCnt + psiScopeCnt;
compiler->eeSetLVcount(scopeCnt);
#ifdef DEBUG
genTrnslLocalVarCount = scopeCnt;
if (scopeCnt)
{
genTrnslLocalVarInfo = new (compiler, CMK_DebugOnly) TrnslLocalVarInfo[scopeCnt];
}
#endif
// Record the scopes found for the parameters over the prolog.
// The prolog needs to be treated differently as a variable may not
// have the same info in the prolog block as is given by compiler->lvaTable.
// eg. A register parameter is actually on the stack, before it is loaded to reg.
CodeGen::psiScope* scopeP;
for (i = 0, scopeP = psiScopeList.scNext; i < psiScopeCnt; i++, scopeP = scopeP->scNext)
{
noway_assert(scopeP != nullptr);
noway_assert(scopeP->scStartLoc.Valid());
noway_assert(scopeP->scEndLoc.Valid());
UNATIVE_OFFSET startOffs = scopeP->scStartLoc.CodeOffset(getEmitter());
UNATIVE_OFFSET endOffs = scopeP->scEndLoc.CodeOffset(getEmitter());
unsigned varNum = scopeP->scSlotNum;
noway_assert(startOffs <= endOffs);
// The range may be 0 if the prolog is empty. For such a case,
// report the liveness of arguments to span at least the first
// instruction in the method. This will be incorrect (except on
// entry to the method) if the very first instruction of the method
// is part of a loop. However, this should happen
// very rarely, and the incorrectness is worth being able to look
// at the argument on entry to the method.
if (startOffs == endOffs)
{
noway_assert(startOffs == 0);
endOffs++;
}
Compiler::siVarLoc varLoc;
if (scopeP->scRegister)
{
varLoc.vlType = Compiler::VLT_REG;
varLoc.vlReg.vlrReg = (regNumber)scopeP->u1.scRegNum;
}
else
{
varLoc.vlType = Compiler::VLT_STK;
varLoc.vlStk.vlsBaseReg = (regNumber)scopeP->u2.scBaseReg;
varLoc.vlStk.vlsOffset = scopeP->u2.scOffset;
}
genSetScopeInfo(i, startOffs, endOffs - startOffs, varNum, scopeP->scLVnum, true, varLoc);
}
// Record the scopes for the rest of the method.
// Check that the LocalVarInfo scopes look OK
noway_assert(siOpenScopeList.scNext == nullptr);
CodeGen::siScope* scopeL;
for (i = 0, scopeL = siScopeList.scNext; i < siScopeCnt; i++, scopeL = scopeL->scNext)
{
noway_assert(scopeL != nullptr);
noway_assert(scopeL->scStartLoc.Valid());
noway_assert(scopeL->scEndLoc.Valid());
// Find the start and end IP
UNATIVE_OFFSET startOffs = scopeL->scStartLoc.CodeOffset(getEmitter());
UNATIVE_OFFSET endOffs = scopeL->scEndLoc.CodeOffset(getEmitter());
noway_assert(scopeL->scStartLoc != scopeL->scEndLoc);
// For stack vars, find the base register, and offset
regNumber baseReg;
signed offset = compiler->lvaTable[scopeL->scVarNum].lvStkOffs;
if (!compiler->lvaTable[scopeL->scVarNum].lvFramePointerBased)
{
baseReg = REG_SPBASE;
offset += scopeL->scStackLevel;
}
else
{
baseReg = REG_FPBASE;
}
// Now fill in the varLoc
Compiler::siVarLoc varLoc;
// TODO-Review: This only works for always-enregistered variables. With LSRA, a variable might be in a register
// for part of its lifetime, or in different registers for different parts of its lifetime.
// This should only matter for non-debug code, where we do variable enregistration.
// We should store the ranges of variable enregistration in the scope table.
if (compiler->lvaTable[scopeL->scVarNum].lvIsInReg())
{
var_types type = genActualType(compiler->lvaTable[scopeL->scVarNum].TypeGet());
switch (type)
{
case TYP_INT:
case TYP_REF:
case TYP_BYREF:
#ifdef _TARGET_64BIT_
case TYP_LONG:
#endif // _TARGET_64BIT_
varLoc.vlType = Compiler::VLT_REG;
varLoc.vlReg.vlrReg = compiler->lvaTable[scopeL->scVarNum].lvRegNum;
break;
#ifndef _TARGET_64BIT_
case TYP_LONG:
#if !CPU_HAS_FP_SUPPORT
case TYP_DOUBLE:
#endif
if (compiler->lvaTable[scopeL->scVarNum].lvOtherReg != REG_STK)
{
varLoc.vlType = Compiler::VLT_REG_REG;
varLoc.vlRegReg.vlrrReg1 = compiler->lvaTable[scopeL->scVarNum].lvRegNum;
varLoc.vlRegReg.vlrrReg2 = compiler->lvaTable[scopeL->scVarNum].lvOtherReg;
}
else
{
varLoc.vlType = Compiler::VLT_REG_STK;
varLoc.vlRegStk.vlrsReg = compiler->lvaTable[scopeL->scVarNum].lvRegNum;
varLoc.vlRegStk.vlrsStk.vlrssBaseReg = baseReg;
if (!isFramePointerUsed() && varLoc.vlRegStk.vlrsStk.vlrssBaseReg == REG_SPBASE)
{
varLoc.vlRegStk.vlrsStk.vlrssBaseReg = (regNumber)ICorDebugInfo::REGNUM_AMBIENT_SP;
}
varLoc.vlRegStk.vlrsStk.vlrssOffset = offset + sizeof(int);
}
break;
#endif // !_TARGET_64BIT_
#ifdef _TARGET_64BIT_
case TYP_FLOAT:
case TYP_DOUBLE:
// TODO-AMD64-Bug: ndp\clr\src\inc\corinfo.h has a definition of RegNum that only goes up to R15,
// so no XMM registers can get debug information.
varLoc.vlType = Compiler::VLT_REG_FP;
varLoc.vlReg.vlrReg = compiler->lvaTable[scopeL->scVarNum].lvRegNum;
break;
#else // !_TARGET_64BIT_
#if CPU_HAS_FP_SUPPORT
case TYP_FLOAT:
case TYP_DOUBLE:
if (isFloatRegType(type))
{
varLoc.vlType = Compiler::VLT_FPSTK;
varLoc.vlFPstk.vlfReg = compiler->lvaTable[scopeL->scVarNum].lvRegNum;
}
break;
#endif // CPU_HAS_FP_SUPPORT
#endif // !_TARGET_64BIT_
#ifdef FEATURE_SIMD
case TYP_SIMD8:
case TYP_SIMD12:
case TYP_SIMD16:
case TYP_SIMD32:
varLoc.vlType = Compiler::VLT_REG_FP;
// TODO-AMD64-Bug: ndp\clr\src\inc\corinfo.h has a definition of RegNum that only goes up to R15,
// so no XMM registers can get debug information.
//
// Note: Need to initialize vlrReg field, otherwise during jit dump hitting an assert
// in eeDispVar() --> getRegName() that regNumber is valid.
varLoc.vlReg.vlrReg = compiler->lvaTable[scopeL->scVarNum].lvRegNum;
break;
#endif // FEATURE_SIMD
default:
noway_assert(!"Invalid type");
}
}
else
{
assert(offset != BAD_STK_OFFS);
LclVarDsc* varDsc = compiler->lvaTable + scopeL->scVarNum;
switch (genActualType(varDsc->TypeGet()))
{
case TYP_INT:
case TYP_REF:
case TYP_BYREF:
case TYP_FLOAT:
case TYP_STRUCT:
case TYP_BLK: // Needed because of the TYP_BLK stress mode
#ifdef FEATURE_SIMD
case TYP_SIMD8:
case TYP_SIMD12:
case TYP_SIMD16:
case TYP_SIMD32:
#endif
#ifdef _TARGET_64BIT_
case TYP_LONG:
case TYP_DOUBLE:
#endif // _TARGET_64BIT_
#if defined(_TARGET_AMD64_) || defined(_TARGET_ARM64_)
// In the AMD64 ABI we are supposed to pass a struct by reference when its
// size is not 1, 2, 4 or 8 bytes in size. During fgMorph, the compiler modifies
// the IR to comply with the ABI and therefore changes the type of the lclVar
// that holds the struct from TYP_STRUCT to TYP_BYREF but it gives us a hint that
// this is still a struct by setting the lvIsTemp flag.
// The same is true for ARM64 and structs > 16 bytes.
// (See Compiler::fgMarkImplicitByRefArgs in Morph.cpp for further detail)
// Now, the VM expects a special enum for these type of local vars: VLT_STK_BYREF
// to accomodate for this situation.
if (varDsc->lvType == TYP_BYREF && varDsc->lvIsTemp)
{
assert(varDsc->lvIsParam);
varLoc.vlType = Compiler::VLT_STK_BYREF;
}
else
#endif // defined(_TARGET_AMD64_) || defined(_TARGET_ARM64_)
{
varLoc.vlType = Compiler::VLT_STK;
}
varLoc.vlStk.vlsBaseReg = baseReg;
varLoc.vlStk.vlsOffset = offset;
if (!isFramePointerUsed() && varLoc.vlStk.vlsBaseReg == REG_SPBASE)
{
varLoc.vlStk.vlsBaseReg = (regNumber)ICorDebugInfo::REGNUM_AMBIENT_SP;
}
break;
#ifndef _TARGET_64BIT_
case TYP_LONG:
case TYP_DOUBLE:
varLoc.vlType = Compiler::VLT_STK2;
varLoc.vlStk2.vls2BaseReg = baseReg;
varLoc.vlStk2.vls2Offset = offset;
if (!isFramePointerUsed() && varLoc.vlStk2.vls2BaseReg == REG_SPBASE)
{
varLoc.vlStk2.vls2BaseReg = (regNumber)ICorDebugInfo::REGNUM_AMBIENT_SP;
}
break;
#endif // !_TARGET_64BIT_
default:
noway_assert(!"Invalid type");
}
}
genSetScopeInfo(psiScopeCnt + i, startOffs, endOffs - startOffs, scopeL->scVarNum, scopeL->scLVnum,
scopeL->scAvailable, varLoc);
}
compiler->eeSetLVdone();
}
//------------------------------------------------------------------------
// genSetScopeInfo: Record scope information for debug info
//
// Arguments:
// which
// startOffs - the starting offset for this scope
// length - the length of this scope
// varNum - the lclVar for this scope info
// LVnum
// avail
// varLoc
//
// Notes:
// Called for every scope info piece to record by the main genSetScopeInfo()
void CodeGen::genSetScopeInfo(unsigned which,
UNATIVE_OFFSET startOffs,
UNATIVE_OFFSET length,
unsigned varNum,
unsigned LVnum,
bool avail,
Compiler::siVarLoc& varLoc)
{
// We need to do some mapping while reporting back these variables.
unsigned ilVarNum = compiler->compMap2ILvarNum(varNum);
noway_assert((int)ilVarNum != ICorDebugInfo::UNKNOWN_ILNUM);
#ifdef _TARGET_X86_
// Non-x86 platforms are allowed to access all arguments directly
// so we don't need this code.
// Is this a varargs function?
if (compiler->info.compIsVarArgs && varNum != compiler->lvaVarargsHandleArg &&
varNum < compiler->info.compArgsCount && !compiler->lvaTable[varNum].lvIsRegArg)
{
noway_assert(varLoc.vlType == Compiler::VLT_STK || varLoc.vlType == Compiler::VLT_STK2);
// All stack arguments (except the varargs handle) have to be
// accessed via the varargs cookie. Discard generated info,
// and just find its position relative to the varargs handle
PREFIX_ASSUME(compiler->lvaVarargsHandleArg < compiler->info.compArgsCount);
if (!compiler->lvaTable[compiler->lvaVarargsHandleArg].lvOnFrame)
{
noway_assert(!compiler->opts.compDbgCode);
return;
}
// Can't check compiler->lvaTable[varNum].lvOnFrame as we don't set it for
// arguments of vararg functions to avoid reporting them to GC.
noway_assert(!compiler->lvaTable[varNum].lvRegister);
unsigned cookieOffset = compiler->lvaTable[compiler->lvaVarargsHandleArg].lvStkOffs;
unsigned varOffset = compiler->lvaTable[varNum].lvStkOffs;
noway_assert(cookieOffset < varOffset);
unsigned offset = varOffset - cookieOffset;
unsigned stkArgSize = compiler->compArgSize - intRegState.rsCalleeRegArgCount * sizeof(void*);
noway_assert(offset < stkArgSize);
offset = stkArgSize - offset;
varLoc.vlType = Compiler::VLT_FIXED_VA;
varLoc.vlFixedVarArg.vlfvOffset = offset;
}
#endif // _TARGET_X86_
VarName name = nullptr;
#ifdef DEBUG
for (unsigned scopeNum = 0; scopeNum < compiler->info.compVarScopesCount; scopeNum++)
{
if (LVnum == compiler->info.compVarScopes[scopeNum].vsdLVnum)
{
name = compiler->info.compVarScopes[scopeNum].vsdName;
}
}
// Hang on to this compiler->info.
TrnslLocalVarInfo& tlvi = genTrnslLocalVarInfo[which];
tlvi.tlviVarNum = ilVarNum;
tlvi.tlviLVnum = LVnum;
tlvi.tlviName = name;
tlvi.tlviStartPC = startOffs;
tlvi.tlviLength = length;
tlvi.tlviAvailable = avail;
tlvi.tlviVarLoc = varLoc;
#endif // DEBUG
compiler->eeSetLVinfo(which, startOffs, length, ilVarNum, LVnum, name, avail, varLoc);
}
/*****************************************************************************/
#ifdef LATE_DISASM
#if defined(DEBUG)
/*****************************************************************************
* CompilerRegName
*
* Can be called only after lviSetLocalVarInfo() has been called
*/
/* virtual */
const char* CodeGen::siRegVarName(size_t offs, size_t size, unsigned reg)
{
if (!compiler->opts.compScopeInfo)
return nullptr;
if (compiler->info.compVarScopesCount == 0)
return nullptr;
noway_assert(genTrnslLocalVarCount == 0 || genTrnslLocalVarInfo);
for (unsigned i = 0; i < genTrnslLocalVarCount; i++)
{
if ((genTrnslLocalVarInfo[i].tlviVarLoc.vlIsInReg((regNumber)reg)) &&
(genTrnslLocalVarInfo[i].tlviAvailable == true) && (genTrnslLocalVarInfo[i].tlviStartPC <= offs + size) &&
(genTrnslLocalVarInfo[i].tlviStartPC + genTrnslLocalVarInfo[i].tlviLength > offs))
{
return genTrnslLocalVarInfo[i].tlviName ? compiler->VarNameToStr(genTrnslLocalVarInfo[i].tlviName) : NULL;
}
}
return NULL;
}
/*****************************************************************************
* CompilerStkName
*
* Can be called only after lviSetLocalVarInfo() has been called
*/
/* virtual */
const char* CodeGen::siStackVarName(size_t offs, size_t size, unsigned reg, unsigned stkOffs)
{
if (!compiler->opts.compScopeInfo)
return nullptr;
if (compiler->info.compVarScopesCount == 0)
return nullptr;
noway_assert(genTrnslLocalVarCount == 0 || genTrnslLocalVarInfo);
for (unsigned i = 0; i < genTrnslLocalVarCount; i++)
{
if ((genTrnslLocalVarInfo[i].tlviVarLoc.vlIsOnStk((regNumber)reg, stkOffs)) &&
(genTrnslLocalVarInfo[i].tlviAvailable == true) && (genTrnslLocalVarInfo[i].tlviStartPC <= offs + size) &&
(genTrnslLocalVarInfo[i].tlviStartPC + genTrnslLocalVarInfo[i].tlviLength > offs))
{
return genTrnslLocalVarInfo[i].tlviName ? compiler->VarNameToStr(genTrnslLocalVarInfo[i].tlviName) : NULL;
}
}
return NULL;
}
/*****************************************************************************/
#endif // defined(DEBUG)
#endif // LATE_DISASM
#ifdef DEBUG
/*****************************************************************************
* Display a IPmappingDsc. Pass -1 as mappingNum to not display a mapping number.
*/
void CodeGen::genIPmappingDisp(unsigned mappingNum, Compiler::IPmappingDsc* ipMapping)
{
if (mappingNum != unsigned(-1))
{
printf("%d: ", mappingNum);
}
IL_OFFSETX offsx = ipMapping->ipmdILoffsx;
if (offsx == BAD_IL_OFFSET)
{
printf("???");
}
else
{
Compiler::eeDispILOffs(jitGetILoffsAny(offsx));
if (jitIsStackEmpty(offsx))
{
printf(" STACK_EMPTY");
}
if (jitIsCallInstruction(offsx))
{
printf(" CALL_INSTRUCTION");
}
}
printf(" ");
ipMapping->ipmdNativeLoc.Print();
// We can only call this after code generation. Is there any way to tell when it's legal to call?
// printf(" [%x]", ipMapping->ipmdNativeLoc.CodeOffset(getEmitter()));
if (ipMapping->ipmdIsLabel)
{
printf(" label");
}
printf("\n");
}
void CodeGen::genIPmappingListDisp()
{
unsigned mappingNum = 0;
Compiler::IPmappingDsc* ipMapping;
for (ipMapping = compiler->genIPmappingList; ipMapping != nullptr; ipMapping = ipMapping->ipmdNext)
{
genIPmappingDisp(mappingNum, ipMapping);
++mappingNum;
}
}
#endif // DEBUG
/*****************************************************************************
*
* Append an IPmappingDsc struct to the list that we're maintaining
* for the debugger.
* Record the instr offset as being at the current code gen position.
*/
void CodeGen::genIPmappingAdd(IL_OFFSETX offsx, bool isLabel)
{
if (!compiler->opts.compDbgInfo)
{
return;
}
assert(offsx != BAD_IL_OFFSET);
switch ((int)offsx) // Need the cast since offs is unsigned and the case statements are comparing to signed.
{
case ICorDebugInfo::PROLOG:
case ICorDebugInfo::EPILOG:
break;
default:
if (offsx != ICorDebugInfo::NO_MAPPING)
{
noway_assert(jitGetILoffs(offsx) <= compiler->info.compILCodeSize);
}
// Ignore this one if it's the same IL offset as the last one we saw.
// Note that we'll let through two identical IL offsets if the flag bits
// differ, or two identical "special" mappings (e.g., PROLOG).
if ((compiler->genIPmappingLast != nullptr) && (offsx == compiler->genIPmappingLast->ipmdILoffsx))
{
JITDUMP("genIPmappingAdd: ignoring duplicate IL offset 0x%x\n", offsx);
return;
}
break;
}
/* Create a mapping entry and append it to the list */
Compiler::IPmappingDsc* addMapping =
(Compiler::IPmappingDsc*)compiler->compGetMem(sizeof(*addMapping), CMK_DebugInfo);
addMapping->ipmdNativeLoc.CaptureLocation(getEmitter());
addMapping->ipmdILoffsx = offsx;
addMapping->ipmdIsLabel = isLabel;
addMapping->ipmdNext = nullptr;
if (compiler->genIPmappingList != nullptr)
{
assert(compiler->genIPmappingLast != nullptr);
assert(compiler->genIPmappingLast->ipmdNext == nullptr);
compiler->genIPmappingLast->ipmdNext = addMapping;
}
else
{
assert(compiler->genIPmappingLast == nullptr);
compiler->genIPmappingList = addMapping;
}
compiler->genIPmappingLast = addMapping;
#ifdef DEBUG
if (verbose)
{
printf("Added IP mapping: ");
genIPmappingDisp(unsigned(-1), addMapping);
}
#endif // DEBUG
}
/*****************************************************************************
*
* Prepend an IPmappingDsc struct to the list that we're maintaining
* for the debugger.
* Record the instr offset as being at the current code gen position.
*/
void CodeGen::genIPmappingAddToFront(IL_OFFSETX offsx)
{
if (!compiler->opts.compDbgInfo)
{
return;
}
assert(offsx != BAD_IL_OFFSET);
assert(compiler->compGeneratingProlog); // We only ever do this during prolog generation.
switch ((int)offsx) // Need the cast since offs is unsigned and the case statements are comparing to signed.
{
case ICorDebugInfo::NO_MAPPING:
case ICorDebugInfo::PROLOG:
case ICorDebugInfo::EPILOG:
break;
default:
noway_assert(jitGetILoffs(offsx) <= compiler->info.compILCodeSize);
break;
}
/* Create a mapping entry and prepend it to the list */
Compiler::IPmappingDsc* addMapping =
(Compiler::IPmappingDsc*)compiler->compGetMem(sizeof(*addMapping), CMK_DebugInfo);
addMapping->ipmdNativeLoc.CaptureLocation(getEmitter());
addMapping->ipmdILoffsx = offsx;
addMapping->ipmdIsLabel = true;
addMapping->ipmdNext = nullptr;
addMapping->ipmdNext = compiler->genIPmappingList;
compiler->genIPmappingList = addMapping;
if (compiler->genIPmappingLast == nullptr)
{
compiler->genIPmappingLast = addMapping;
}
#ifdef DEBUG
if (verbose)
{
printf("Added IP mapping to front: ");
genIPmappingDisp(unsigned(-1), addMapping);
}
#endif // DEBUG
}
/*****************************************************************************/
C_ASSERT(IL_OFFSETX(ICorDebugInfo::NO_MAPPING) != IL_OFFSETX(BAD_IL_OFFSET));
C_ASSERT(IL_OFFSETX(ICorDebugInfo::PROLOG) != IL_OFFSETX(BAD_IL_OFFSET));
C_ASSERT(IL_OFFSETX(ICorDebugInfo::EPILOG) != IL_OFFSETX(BAD_IL_OFFSET));
C_ASSERT(IL_OFFSETX(BAD_IL_OFFSET) > MAX_IL_OFFSET);
C_ASSERT(IL_OFFSETX(ICorDebugInfo::NO_MAPPING) > MAX_IL_OFFSET);
C_ASSERT(IL_OFFSETX(ICorDebugInfo::PROLOG) > MAX_IL_OFFSET);
C_ASSERT(IL_OFFSETX(ICorDebugInfo::EPILOG) > MAX_IL_OFFSET);
//------------------------------------------------------------------------
// jitGetILoffs: Returns the IL offset portion of the IL_OFFSETX type.
// Asserts if any ICorDebugInfo distinguished value (like ICorDebugInfo::NO_MAPPING)
// is seen; these are unexpected here. Also asserts if passed BAD_IL_OFFSET.
//
// Arguments:
// offsx - the IL_OFFSETX value with the IL offset to extract.
//
// Return Value:
// The IL offset.
IL_OFFSET jitGetILoffs(IL_OFFSETX offsx)
{
assert(offsx != BAD_IL_OFFSET);
switch ((int)offsx) // Need the cast since offs is unsigned and the case statements are comparing to signed.
{
case ICorDebugInfo::NO_MAPPING:
case ICorDebugInfo::PROLOG:
case ICorDebugInfo::EPILOG:
unreached();
default:
return IL_OFFSET(offsx & ~IL_OFFSETX_BITS);
}
}
//------------------------------------------------------------------------
// jitGetILoffsAny: Similar to jitGetILoffs(), but passes through ICorDebugInfo
// distinguished values. Asserts if passed BAD_IL_OFFSET.
//
// Arguments:
// offsx - the IL_OFFSETX value with the IL offset to extract.
//
// Return Value:
// The IL offset.
IL_OFFSET jitGetILoffsAny(IL_OFFSETX offsx)
{
assert(offsx != BAD_IL_OFFSET);
switch ((int)offsx) // Need the cast since offs is unsigned and the case statements are comparing to signed.
{
case ICorDebugInfo::NO_MAPPING:
case ICorDebugInfo::PROLOG:
case ICorDebugInfo::EPILOG:
return IL_OFFSET(offsx);
default:
return IL_OFFSET(offsx & ~IL_OFFSETX_BITS);
}
}
//------------------------------------------------------------------------
// jitIsStackEmpty: Does the IL offset have the stack empty bit set?
// Asserts if passed BAD_IL_OFFSET.
//
// Arguments:
// offsx - the IL_OFFSETX value to check
//
// Return Value:
// 'true' if the stack empty bit is set; 'false' otherwise.
bool jitIsStackEmpty(IL_OFFSETX offsx)
{
assert(offsx != BAD_IL_OFFSET);
switch ((int)offsx) // Need the cast since offs is unsigned and the case statements are comparing to signed.
{
case ICorDebugInfo::NO_MAPPING:
case ICorDebugInfo::PROLOG:
case ICorDebugInfo::EPILOG:
return true;
default:
return (offsx & IL_OFFSETX_STKBIT) == 0;
}
}
//------------------------------------------------------------------------
// jitIsCallInstruction: Does the IL offset have the call instruction bit set?
// Asserts if passed BAD_IL_OFFSET.
//
// Arguments:
// offsx - the IL_OFFSETX value to check
//
// Return Value:
// 'true' if the call instruction bit is set; 'false' otherwise.
bool jitIsCallInstruction(IL_OFFSETX offsx)
{
assert(offsx != BAD_IL_OFFSET);
switch ((int)offsx) // Need the cast since offs is unsigned and the case statements are comparing to signed.
{
case ICorDebugInfo::NO_MAPPING:
case ICorDebugInfo::PROLOG:
case ICorDebugInfo::EPILOG:
return false;
default:
return (offsx & IL_OFFSETX_CALLINSTRUCTIONBIT) != 0;
}
}
/*****************************************************************************/
void CodeGen::genEnsureCodeEmitted(IL_OFFSETX offsx)
{
if (!compiler->opts.compDbgCode)
{
return;
}
if (offsx == BAD_IL_OFFSET)
{
return;
}
/* If other IL were offsets reported, skip */
if (compiler->genIPmappingLast == nullptr)
{
return;
}
if (compiler->genIPmappingLast->ipmdILoffsx != offsx)
{
return;
}
/* offsx was the last reported offset. Make sure that we generated native code */
if (compiler->genIPmappingLast->ipmdNativeLoc.IsCurrentLocation(getEmitter()))
{
instGen(INS_nop);
}
}
/*****************************************************************************
*
* Shut down the IP-mapping logic, report the info to the EE.
*/
void CodeGen::genIPmappingGen()
{
if (!compiler->opts.compDbgInfo)
{
return;
}
#ifdef DEBUG
if (verbose)
{
printf("*************** In genIPmappingGen()\n");
}
#endif
if (compiler->genIPmappingList == nullptr)
{
compiler->eeSetLIcount(0);
compiler->eeSetLIdone();
return;
}
Compiler::IPmappingDsc* tmpMapping;
Compiler::IPmappingDsc* prevMapping;
unsigned mappingCnt;
UNATIVE_OFFSET lastNativeOfs;
/* First count the number of distinct mapping records */
mappingCnt = 0;
lastNativeOfs = UNATIVE_OFFSET(~0);
for (prevMapping = nullptr, tmpMapping = compiler->genIPmappingList; tmpMapping != nullptr;
tmpMapping = tmpMapping->ipmdNext)
{
IL_OFFSETX srcIP = tmpMapping->ipmdILoffsx;
// Managed RetVal - since new sequence points are emitted to identify IL calls,
// make sure that those are not filtered and do not interfere with filtering of
// other sequence points.
if (jitIsCallInstruction(srcIP))
{
mappingCnt++;
continue;
}
UNATIVE_OFFSET nextNativeOfs = tmpMapping->ipmdNativeLoc.CodeOffset(getEmitter());
if (nextNativeOfs != lastNativeOfs)
{
mappingCnt++;
lastNativeOfs = nextNativeOfs;
prevMapping = tmpMapping;
continue;
}
/* If there are mappings with the same native offset, then:
o If one of them is NO_MAPPING, ignore it
o If one of them is a label, report that and ignore the other one
o Else report the higher IL offset
*/
PREFIX_ASSUME(prevMapping != nullptr); // We would exit before if this was true
if (prevMapping->ipmdILoffsx == (IL_OFFSETX)ICorDebugInfo::NO_MAPPING)
{
// If the previous entry was NO_MAPPING, ignore it
prevMapping->ipmdNativeLoc.Init();
prevMapping = tmpMapping;
}
else if (srcIP == (IL_OFFSETX)ICorDebugInfo::NO_MAPPING)
{
// If the current entry is NO_MAPPING, ignore it
// Leave prevMapping unchanged as tmpMapping is no longer valid
tmpMapping->ipmdNativeLoc.Init();
}
else if (srcIP == (IL_OFFSETX)ICorDebugInfo::EPILOG || srcIP == 0)
{
// counting for special cases: see below
mappingCnt++;
prevMapping = tmpMapping;
}
else
{
noway_assert(prevMapping != nullptr);
noway_assert(!prevMapping->ipmdNativeLoc.Valid() ||
lastNativeOfs == prevMapping->ipmdNativeLoc.CodeOffset(getEmitter()));
/* The previous block had the same native offset. We have to
discard one of the mappings. Simply reinitialize ipmdNativeLoc
and prevMapping will be ignored later. */
if (prevMapping->ipmdIsLabel)
{
// Leave prevMapping unchanged as tmpMapping is no longer valid
tmpMapping->ipmdNativeLoc.Init();
}
else
{
prevMapping->ipmdNativeLoc.Init();
prevMapping = tmpMapping;
}
}
}
/* Tell them how many mapping records we've got */
compiler->eeSetLIcount(mappingCnt);
/* Now tell them about the mappings */
mappingCnt = 0;
lastNativeOfs = UNATIVE_OFFSET(~0);
for (tmpMapping = compiler->genIPmappingList; tmpMapping != nullptr; tmpMapping = tmpMapping->ipmdNext)
{
// Do we have to skip this record ?
if (!tmpMapping->ipmdNativeLoc.Valid())
{
continue;
}
UNATIVE_OFFSET nextNativeOfs = tmpMapping->ipmdNativeLoc.CodeOffset(getEmitter());
IL_OFFSETX srcIP = tmpMapping->ipmdILoffsx;
if (jitIsCallInstruction(srcIP))
{
compiler->eeSetLIinfo(mappingCnt++, nextNativeOfs, jitGetILoffs(srcIP), jitIsStackEmpty(srcIP), true);
}
else if (nextNativeOfs != lastNativeOfs)
{
compiler->eeSetLIinfo(mappingCnt++, nextNativeOfs, jitGetILoffsAny(srcIP), jitIsStackEmpty(srcIP), false);
lastNativeOfs = nextNativeOfs;
}
else if (srcIP == (IL_OFFSETX)ICorDebugInfo::EPILOG || srcIP == 0)
{
// For the special case of an IL instruction with no body
// followed by the epilog (say ret void immediately preceding
// the method end), we put two entries in, so that we'll stop
// at the (empty) ret statement if the user tries to put a
// breakpoint there, and then have the option of seeing the
// epilog or not based on SetUnmappedStopMask for the stepper.
compiler->eeSetLIinfo(mappingCnt++, nextNativeOfs, jitGetILoffsAny(srcIP), jitIsStackEmpty(srcIP), false);
}
}
#if 0
// TODO-Review:
//This check is disabled. It is always true that any time this check asserts, the debugger would have a
//problem with IL source level debugging. However, for a C# file, it only matters if things are on
//different source lines. As a result, we have all sorts of latent problems with how we emit debug
//info, but very few actual ones. Whenever someone wants to tackle that problem in general, turn this
//assert back on.
if (compiler->opts.compDbgCode)
{
//Assert that the first instruction of every basic block with more than one incoming edge has a
//different sequence point from each incoming block.
//
//It turns out that the only thing we really have to assert is that the first statement in each basic
//block has an IL offset and appears in eeBoundaries.
for (BasicBlock * block = compiler->fgFirstBB; block != nullptr; block = block->bbNext)
{
if ((block->bbRefs > 1) && (block->bbTreeList != nullptr))
{
noway_assert(block->bbTreeList->gtOper == GT_STMT);
bool found = false;
if (block->bbTreeList->gtStmt.gtStmtILoffsx != BAD_IL_OFFSET)
{
IL_OFFSET ilOffs = jitGetILoffs(block->bbTreeList->gtStmt.gtStmtILoffsx);
for (unsigned i = 0; i < eeBoundariesCount; ++i)
{
if (eeBoundaries[i].ilOffset == ilOffs)
{
found = true;
break;
}
}
}
noway_assert(found && "A basic block that is a jump target did not start a new sequence point.");
}
}
}
#endif // 0
compiler->eeSetLIdone();
}
/*============================================================================
*
* These are empty stubs to help the late dis-assembler to compile
* if the late disassembler is being built into a non-DEBUG build.
*
*============================================================================
*/
#if defined(LATE_DISASM)
#if !defined(DEBUG)
/* virtual */
const char* CodeGen::siRegVarName(size_t offs, size_t size, unsigned reg)
{
return NULL;
}
/* virtual */
const char* CodeGen::siStackVarName(size_t offs, size_t size, unsigned reg, unsigned stkOffs)
{
return NULL;
}
/*****************************************************************************/
#endif // !defined(DEBUG)
#endif // defined(LATE_DISASM)
/*****************************************************************************/
|